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ABSTRACT
Learning unsupervised node embeddings facilitates several down-

stream tasks such as node classification and link prediction. A node

embedding is universal if it is designed to be used by and benefit

various downstream tasks. This work introduces PanRep, a graph

neural network (GNN) model, for unsupervised learning of univer-

sal node representations for heterogenous graphs. PanRep consists

of a GNN encoder that obtains node embeddings and four decoders,

each capturing different topological and node feature properties.

Abiding to these properties the novel unsupervised framework

learns universal embeddings applicable to different downstream

tasks. PanRep can be furthered fine-tuned to account for possible

limited labels. In this operational setting PanRep is considered as a

pretrained model for extracting node embeddings of heterogenous

graph data. PanRep outperforms all unsupervised and certain super-

vised methods in node classification and link prediction, especially

when the labeled data for the supervised methods is small. PanRep-

FT (with fine-tuning) outperforms all other supervised approaches,

which corroborates the merits of pretraining models. Finally, we

apply PanRep-FT for discovering novel drugs for Covid-19. We

showcase the advantage of universal embeddings in drug repur-

posing and identify several drugs used in clinical trials as possible

drug candidates.
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1 INTRODUCTION
Learning node representations from heterogeneous graph data pow-

ers the success of many downstream machine learning tasks such

as node classification [28], and link prediction [46]. Graph neural

networks (GNNs) learn node embeddings by applying a sequence of

nonlinear operations parametrized by the graph adjacency matrix

and achieve state-of-the-art performance in the aforementioned

downstream tasks. The era of big data provides an opportunity

for machine learning methods to harness large datasets [48]. Nev-

ertheless, typically the labels in these datasets are scarce due to

either lack of information or increased labeling costs [9]. The lack

of labeled data points hinders the performance of supervised algo-

rithms, which may not generalize well to unseen data and motivates

unsupervised learning.
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Figure 1: Illustration of the PanRep (left) and PanRep-FT
(right) models. The GNN encoder processes the node fea-
tures X to obtain the embeddings H. The decoders facilitate
unsupervised learning of H. On the other hand, PanRep-FT
is further fine-tuned for a few iterations by the task specific
loss.

Unsupervised node embeddings may be used for downstream

learning tasks, while the specific tasks are typically not known

a priori. For example, node representations of the Amazon book

graph can be employed for recommending new books as well as

classifying a book’s genre. This work aspires to provide universal
node embeddings, which will be applied in multiple downstream

tasks and achieve comparable performance to their supervised

counterparts.

Although unsupervised learning has numerous applications, lim-

ited labels of the downstream task may be available. Refining the

unsupervised universal representations with these labels could fur-

ther increase the representation power of the embeddings. This

can be achieved by fine-tuning the unsupervised model. Natural

language processing methods have achieved state-of-the-art perfor-

mance by applying such a fine-tuning framework [12]. Fine-tuning

pretrained models is beneficial compared to end-to-end supervised

learning since the former typically generalizes better especially

when labeled data are limited [16] and decreases the inference time

since typically just a few fine-tuning iterations typically suffice for

the model to converge [12].

1.1 Contributions
This work introduces a framework for unsupervised learning of

universal node representations on heterogenous graphs termed

PanRep
1
. It consists of a GNN encoder that maps the heterogenous

graph data to node embeddings and four decoders, each captur-

ing different topological and node feature properties. The cluster

and recover (CR) decoder exploits a clustering prior of the node

attributes. The motif (Mot) decoder captures structural node prop-

erties that are encoded in the network motifs. The meta-path ran-

dom walk (MRW) decoder promotes embedding similarity among

nodes participating in a MRW and hence captures intermediate

neighborhood structure. Finally, the heterogeneous information

maximization (HIM) decoder aims at maximizing the mutual in-

formation among node local and the global representations per

node type. These decoders model general properties of the graph

data related to node homophily [19, 29] or node structural similar-

ity [15, 36]. PanRep is solely supervised by the decoders and has

1
Pan: Pangkosmios (Greek for universal) and Rep: Representation
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no knowledge of the labels of the downstream task. The univer-

sal embeddings learned by PanRep are employed as features by

models such as SVM [41] or DistMult [50] to be trained for the

downstream tasks. To further accommodate the case where limited

labels are available for some downstream tasks we propose fine-

tuning PanRep (PanRep-FT). In this operational setting, PanRep-FT

is optimized adhering to a task-specific loss. PanRep can be con-

sidered as a pretrained model for extracting node embeddings of

heterogenous graph data. Figure 1 illustrates the two novel models.

The contribution of this work is threefold. We introduce a novel

problem formulation of universal unsupervised learning and de-

sign a tailored learning framework termed PanRep. We identify the

following general properties of the heterogenous graph data: (i) the

clustering of local node features, (ii) structural similarity among

nodes, (iii) the local and intermediate neighborhood structure, (iv)

and the mutual information among same-type nodes. We develop

four novel decoders to model the aforementioned properties. We ad-

just the unsupervised universal learning framework to account for

possible limited labels of the downstream task. PanRep-FT refines

the universal embeddings and increases the model generalization

capability.We compare the proposed models to state-of-the-art su-

pervised and unsupervised methods for node classification and link

prediction. PanRep outperforms all unsupervised and certain super-

vised methods in node classification, especially when the labeled

data for the supervised methods is small. PanRep-FT outperforms

even supervised approaches in node classification and link predic-

tion, which corroborates the merits of pretraining models. Finally,

we apply our method on the drug-repurposing knowledge graph

for discovering drugs for Covid-19 and identify several drugs used

in clinical trials as possible drug candidates.

2 RELATEDWORK
Unsupervised learning. Representation learning amounts to map-

ping nodes in an embedding space where the graph topological

information and structure is preserved [22]. Typically, represen-

tation learning methods follow the encoder-decoder framework

advocated by PanRep. Nevertheless, the decoder is typically attuned

to a single task based on e.g., matrix factorization [4, 8, 10, 32, 42],

random walks [21, 33], or kernels on graphs [40]. Recently, meth-

ods relying on GNNs are increasingly popular for representation

learning tasks [49]. GNNs typically rely on random walk-based ob-

jectives [21, 22] or on maximizing the mutual information among

node representations [44]. Relational GNNs methods extend repre-

sentation learning to heterogeneous graphs [14, 38, 39]. Relative to

these contemporary works PanRep introduces multiple decoders to

learn universal embeddings for heterogeneous graph data capturing

the clustering of local node features, structural similarity among

nodes, the local and intermediate neighborhood structure, and the

mutual information among same-type nodes.

Supervised learning. Node classification is typically formulated

as a semi-supervised learning (SSL) task over graphs, where the

labels for a subset of nodes are available for training [7]. GNNs

achieve state-of-the-art performance in SSL by utilizing regular

graph convolution [28] or graph attention [43], while these models

have been extended in heterogeneous graphs [17, 37, 47]. Simi-

larly, another prominent supervised downstream learning task is

link prediction with numerous applications in recommendation

systems [46] and drug discovery [26, 54]. Knowledge-graph (KG)

embedding models rely on mapping the nodes and edges of the

KG to a vector space by maximizing a score function for existing

KG edges [46, 50, 53]. RGCN models [37] have been successful in

link prediction and contrary to KG embedding models can further

utilize node features. The universal embeddings extracted from

PanRep without labeled supervision offer a strong competitive to

these supervised approaches for both node classification and link

prediction tasks.

Pretraining. Pretraining models provides a significant perfor-

mance boost compared to traditional approaches in natural lan-

guage processing [12, 31, 34, 35] and computer vision [13, 18] . Pre-

training offers increased generalization capability especially when

the labeled data is scarce and increased inference speed relative to

end-to-end training [12]. Recently, [25] introduced a framework for

pretraining GNNs for graph classification. Different than [25] that

focuses on graph representations, PanRep aims at node prediction

tasks and obtains node representations via capturing properties

related to node homophily [19, 29] or node structural similarity [36].

PanRep is a novel pretrained model for node classification and link

prediction that requires significantly less labeled points to reach

the performance of its fully supervised counterparts.

3 DEFINITIONS AND PROBLEM
FORMULATION

A heterogeneous graph with 𝑇 node types and 𝑅 relation types

is defined as G := {{V𝑡 }𝑇𝑡=1, {E𝑟 }
𝑅
𝑟=1

}. The node types represent
the different entities and the relation types represent how these

entities are semantically associated to each other. For example, in

the IMDB network, the node types correspond to actors, directors,

movies, etc., whereas the relation types correspond to directed-by
and played-in relations. The number of nodes of type 𝑡 is denoted

by 𝑁𝑡 and its associated nodal set by V𝑡 := {𝑛𝑡 }𝑁𝑡

𝑛=1
. The total

number of nodes in G is 𝑁 :=
∑𝑡
𝑡=1 𝑁𝑡 . The 𝑟 th relation type,

E𝑟 := {(𝑛𝑡 , 𝑛′𝑡 ′) ∈ V𝑡 ×V𝑡 ′}, holds all interactions of a certain type

amongV𝑡 andV𝑡 ′ and may represent that a movie is directed-by
a director. Heterogenous graphs are typically used to represent

knowledge graphs [46]. Each node 𝑛𝑡 is also associated with an

𝐹 × 1 feature vector x𝑛𝑡 . This feature may be a natural language

embedding of the title of a movie. The nodal features are collected

in a 𝑁 × 𝐹 matrix X. Note that certain node types may not have

features and for these we use an embedding layer to represent their

features.

Unsupervised learning. Given G andX, the goal of representation
learning is to estimate a function 𝑔 such that H := 𝑔(X,G), where
H ∈ R𝑁×𝐷

represents the node embeddings and 𝐷 is the size of the

embedding space.Note that in estimating 𝑔, no labeled information

is available.

Universal representation learning. The universal representations
H should perform well on different downstream tasks. Different

node classification and link prediction tasks may arise by consid-

ering different number of training nodes and links and different

label types, e.g., occupation label or education level label. Consider
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𝐼 downstream task, for the universal representations H it holds that

L (𝑖) (𝑓 (𝑖) (H),T (𝑖) ) ≤ 𝜖, 𝑖 = 1, . . . , 𝐼 , (1)

where L (𝑖)
, 𝑓 (𝑖) , and T (𝑖)

represent the loss function, learned

classifier, and training set (node labels or links) for task 𝑖 , respec-

tively and 𝜖 is the largest error for all tasks. The goal of unsu-

pervised universal representation learning is to learn H such that

𝜖 is small. While learning H, PanRep does not have knowledge

of {L (𝑖) , 𝑓 (𝑖) ,T (𝑖) }𝑖 . Nevertheless, by utilizing the novel decoder

scheme PanRep achieves superior performance even compared to

supervised approaches across tasks.

4 PANREP
Our universal representation learning framework aims at embed-

ding nodes in a low-dimensional space such that the representations

are discriminative for node classification and link prediction. Meth-

ods for learning over graphs typically rely on modeling homophily

of nodes that postulates neighboring vertices to have similar at-

tributes [19, 29, 40, 51] or structural similarity among nodes [36],

where vertices involved in similar graph structural patterns possess

related attributes [15]. Motivated by these methods we identify re-

lated properties encoded in the graph data. Clustering nodes based

on their attributes provides a strong signal for node homophily [30].

Network motifs reveal the local structure information for nodes in

the graph [5]. Metapaths encode the heterogeneous graph neighbor-

hood and indicate the local connectivity [14]. Finally, maximizing

the mutual information among embeddings declusters node repre-

sentations and provides further discriminative information [44].

Although the PanRep framework can utilize any GNN model

as an encoder [49], in this paper PanRep uses a relational (R)GCN

encoder [37]. RGCNs extend the graph convolution operation [28]

to heterogenous graphs. An RGCN model is comprised by a se-

quence of RGCN layers. Essentially, the output of the RGCN layer

for node 𝑛 is a nonlinear combination of the hidden representations

of neighboring nodes weighted based on the relation type.

4.1 Universal supervision signals
In order to capture the aforementioned properties we develop four

novel universal decoders.

Cluster and recover supervision. Node attributes may reveal inter-

esting properties of nodes, such as clusters of customers based on

their buying power and age. This is important in recommendation

systems, where traditional matrix factorization approaches [30]

rely on revealing clusters of similar buyers. To capitalize such infor-

mation we propose to supervise the universal embeddings by such

cluster representations. Specifically, we cluster the node attributes

via𝐾-means [27] and then design a model that decodesH to recover

the original clusters. The CR-decoder is modeled as a two layer

MLP and is supervised by

Lcr := −
𝑁∑
𝑛=1

𝐾∑
𝑘=1

𝐶𝑛𝑘 ln𝐶𝑛𝑘 , (2)

where the cluster assignment 𝐶𝑛𝑘 is 1 if node 𝑛 belongs in class

𝑘 and the predicted cluster assignment 𝐶𝑛𝑘 is the output of the

CR-decoder. Such a supervision signal will enrich the universal

embeddings H with information based on the clustering of local

node features.

Motif supervision. Network motifs are sub-graphs where the

nodes have specific connectivity patterns. Typical size-3 motifs for

example, are the triangle and the star motifs. Each of these sub-

graphs is identified by a particular pattern of interactions among

nodes, and reveals important properties for the participating nodes.

In gene regulatory networks for example, motifs are associated

with certain biological properties [6]. The work in [5] develops

efficient parallel implementations for extracting networkmotifs.We

aspire to capture structural similarity among nodes by predicting

their motif information. The motivation is that nodes which might

be distant in the graph may have similar structural properties as

described by their motifs.

Using the method in [5] we extract a frequency vector 𝝁𝑛 per

node that shows how many times 𝑛 participates to graph motifs

up to size 4. This information reveals the structural role of nodes

such as star-center, star-edge nodes, or bridge nodes [23, 36]. The

motif decoder predicts this vector for all nodes using the universal

representationH. This allows for information sharing among nodes

which are far away in the graph but have similar motif frequency

vectors. The novel motif decoder is modeled as a two-layer MLP

and is supervised by the following loss function

Lmot :=

𝑁∑
𝑛=1

∥𝝁𝑛 − 𝝁𝑛 ∥22 (3)

where 𝝁𝑛 is the output of the Mot-decoder for the 𝑛th node. Using

the Mot-decoder PanRep enhances the universal embeddings by

structural information encoded in the node motifs.

Metapath RW supervision. Metapaths are sequences of edges of

possibly different type that connect nodes in a KG [14]. A metapath

random walk (MRW) is a specialized RW that follows different

edge-types; see e.g., [14].

We aspire to capture local connectivity patterns by promoting

nodes participating in a MRW to have similar embeddings. Con-

sider all node pairs for nodes (𝑛𝑡 , 𝑛′𝑡 ′) participating in a MRW, the

following criterion maximizes the similarity among these nodes as

follows

Lmrw := log(1 + exp(−𝑦 × h⊤𝑛𝑡 diag(r𝑡,𝑡 ′)h𝑛′𝑡′ )), (4)

where h𝑛𝑡 and h𝑛′𝑡′ are the universal embeddings for nodes 𝑛𝑡
and 𝑛′𝑡 ′ , respectively, r𝑡,𝑡 ′ is an embedding parametrized on the

pair of node-types and 𝑦 is 1 if 𝑛𝑡 and 𝑛
′
𝑡 ′ co-occur in the MRW

and -1 otherwise. Negative examples are generated by randomly

selecting tail nodes for a fixed head node with ratio 5 negatives

per positive example. Link prediction is indeed a special case of

the MRW supervision that considers MRWs of length 1. However,

metapaths convey more information than regular links since the

former can be defined to promote certain prior knowledge. For

example, in predicting the movie genre in IMDB the metapath

configured by the edge types (played by, played in) among node

types (movie, actor, movie) will potentially connect movies with

same genre and hence it is desirable. The embedding per node-

type pair r𝑡,𝑡 ′ allows the MRW-decoder to weight the similarity

among node embeddings from different node types accordingly. The
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length of the MRW controls the radius of the graph neighborhood

considered in equation (4) and it can vary from local to intermediate.

Heterogenous information maximization. The aforementioned

supervision signals capture clustering affinity, structural similarity

and local and intermediate neighborhood of the nodes. Neverthe-

less, further information can be extracted by the representations

by maximizing the mutual information among node representa-

tions. Such an approach for homogeneous graphs is detailed in [44],

where the mutual information between node representations and

the global graph summaries is maximized [24].

Towards further refining the universal embeddings, we propose

an adaptation of [44] for heterogeneous graphs. We consider a

global summary vector per 𝑡 as s𝑡 :=
∑𝑁𝑡

𝑛𝑡=1
h𝑛𝑡 that captures the

average 𝑡 th node representation. We aspire to maximize the mutual

information among s𝑡 and the corresponding nodes in V𝑡 . The
proposed HIM decoder is supervised by the following contrastive

loss function

Lhim :=

𝑇∑
𝑡=1

( 𝑁𝑡∑
𝑛𝑡=1

log

(
𝜎 (h⊤𝑛𝑡Ws𝑡 )

)
+ log

(
1 − 𝜎 ( ˜h⊤𝑛𝑡Ws𝑡 )

) )
(5)

where the bilinear scoring function [50] 𝜎 ( ˜h⊤𝑛𝑡Ws𝑡 ) captures how
close is ℎ𝑛𝑡 to the global summary, W is a learnable matrix and

˜h𝑛𝑡 represents the negative example used to facilitate training.

Designing negative examples is a cornerstone property for training

contrastive models [44]. We generate the negative examples in (5)

by shuffling node attributes among nodes of the same type. The

HIM decoder maximizes the mutual information across nodes and

complements the former decoders.

Putting everything together. PanRep’s overall loss function is the

linear unweighted combination of (2)-(5) and can be considered

in the framework of deep multitask learning [52], since the GNN

encoder is shared across the multiple supervision tasks and PanRep

makes multiple inferences in one forward pass. A future direction

of PanRep is to introduce adaptive weights per decoder to control

its learning rate [11].

4.2 PanRep-FT
In certain cases a very small subset of labels may be known a priori

for the downstream task. In such cases it is beneficial to fine-tune

PanRep’s model to obtain refined node representations. In this

context, PanRep can be considered as pretrained model and a down-

stream task specific loss may be applied to supervise PanRep. BERT

models in natural language processing have reported state of the art

results by considering such a pretrain and fine-tune framework [12].

PanRep-FT can be considered a counterpart of BERT for extracting

information from heterogenous graph data. PanRep-FT combines

the benefit of universal unsupervised learning and task specific

information and achieves greater generalization capacity especially

when labeled data are scarce [16].

5 EXPERIMENTS
The proposed universal represention learning techniques are com-

pared with state-of-the-art methods. For node classification the fol-

lowing contemporarymethods are considered RGCN [37], HAN [47],

MAGNN [17], node2vec [21], meta2vec [14] and an adaptations of

the work in [44] for heterogenous graphs termed HIM. For link

prediction the baseline models is RGCN [37] with DistMult super-

vision [50] that uses the same encoder as PanRep. The Mot-decoder

and RC-decoder employ a 2-layer MLP. For the MRW-decoder we

use length-2 MRWs. The parameters for all methods considered

are optimized using the performance on the validation set. The

method in this paper are implemented using the efficient deep

graph learning (DGL) [45].

Datasets. We consider a subset of IMDB dataset [1] containing

11,616 nodes with 3 node-types and 17,106 edges from 6 edge-types.

Each movie is associated with a label representing its genre and

with a feature vector capturing its keywords. We also use a subset

of the OAG dataset [2] with 23,696 with 4 node types (authors,

affiliations, papers, venues) and 90,183 edges from 14 edge-types.

In OAG we did not use mot supervision since [5] is not applicable.

Each paper is associated with a label denoting the scientific area

and with an embedding of the papers’ text. Finally, we utilize the

drug-repurposing knowledge graph (DRKG) constructed in [26].

DRKG contains 5,874,261 biological interactions belonging to 107

edge-types among 97,238 biological entities from 13 entity-types.

For further details on the datasets and configuration of methods

see the supplementary material.

5.1 Node classification
We split the labeled nodes in 10% training, 5% validation, and 85%

testing sets. In this experiment we compare supervised and unsu-

pervised methods for classification. First, the methods learn em-

beddings for the labeled nodes with or without labeled supervision.

We then obtain the embeddings corresponding to the 85% testing

nodes as calculated from the unsupervised and supervised methods

and further split these nodes to training and testing sets and train

a linear SVM. This evaluation setting allows us to directly compare

the different supervised and unsupervised approaches.

We report the Macro and Micro F1 accuracy for different training

percentages of the 85% nodes fed to the SVM classifier in Table 1. It

is observed that PanRep outperforms significantly other unsuper-

vised approaches as well as some supervised approaches. In certain

splits, PanRep outperforms its supervised counterpart RGCN that

uses node labels for supervision. Metapath2vec [14] reports com-

petitive performance for OAG in Macro-F1 score but unperformed

in Micro-F1. This result is also in par with the Table ?? where the
strongest signal for PanRep is given by the MRW decoder. PanRep-

FT outperforms significantly RGCN that uses the same encoder,

which is a testament to the power of pretraining models. Finally,

PanRep-FT matches and outperforms in certain splits the state-of-

the-art MAGNN that uses a more expressive encoder. PanRep’s

universal decoders enhance the embeddings with additional dis-

criminative power that results to improved performance in the

downstream tasks.

5.2 Link prediction
Our universal embedding framework is further evaluated for link

prediction using the IMDB and OAG datasets. The MRW decoder

is used to evaluate the performance of PanRep in link prediction.

Figure 2 reports the MRR, and Hit-10 scores of the baseline meth-

ods along with the PanRep and PanRep-FT methods. We report the
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Table 1: Node classification results.

Train %

Unsupervised Semi-supervised

node2vec meta2vec HIM PanRep HAN MAGNN RGCN PanRep-FT

IMDB

Mac-F1

40% 50.63 47.57 55.21 56.04 56.15 60.27 58.48 59.49

60% 51.65 48.17 57.66 58.51 57.29 60.66 58.42 59.86

80% 51.49 49.99 57.89 60.23 58.51 61.44 58.76 61.49

Mic-F1

40% 51.77 48.17 55.11 55.92 57.32 60.50 58.64 59.67

60% 52.79 49.87 56.57 58.41 58.42 60.88 58.55 59.75

80% 52.72 50.50 57.79 60.14 59.24 61.53 58.89 61.59

OAG

Mac-F1

40% 56.37 65.75 50.54 57.76 63.99 63.31 64.68 64.72
60% 57.01 66.09 51.98 59.72 64.25 63.42 65.96 66.99
80% 58.05 65.75 53.25 63.03 64.37 63.89 67.67 67.90

Mic-F1

40% 70.17 74.54 71.91 75.50 73.95 72.74 81.92 80.36

60% 70.95 74.96 73.89 77.39 75.32 72.75 81.39 81.78
80% 72.24 74.73 75.31 79.76 75.24 73.43 82.38 83.17
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Figure 2: MRR and Hit-10 for link prediction across different percentages of testing links.

Table 2: Drug inhibits gene scores for Covid-
19.

PanRep-FT RGCN

Drug name # hits Drug name # hits

Losartan 232 Chloroquine 69

Chloroquine 198 Colchicine 41

Deferoxamine 104 Tetrandrine 40

Ribavirin 101 Oseltamivir 37

Methylprednisolone 44 Azithromycin 36

We retain the top-5 drugs based on their number of hits for eachmethod. Note that a random

classifier will result to approximately 5.3 per drug. This suggests that the reported predic-

tions are significantly better than random.

performance of the methods for different percentages of links used

for training. Observe that PanRep-FT consistently outperforms the

competing methods and the performance gain increases as the per-

centage of training links decreases. This corroborates the advantage

of pretraining GNNs for link prediction. Note that PanRep reports

similar performance with RGCN that is trained solely in link predic-

tion. This result confirms the success of the universal embeddings

in link prediction.

5.3 Drug repurposing
Drug-repurposing aims at discovering the most effective existing

drugs to treat a certain disease. Using the Drug Repurposing Knowl-

edge Graph (DRKG) [26], we compare the drug repurposing results

in Covid-19 among PanRep-FT that is finetuned in link prediction

and the baseline RGCN [37]. We employ 𝐿 = 1 hidden layer with

𝐷 = 600 and train for 800 epochs both networks. Drug-repurposing

can be formulated as predicting direct links in the DRKG. Here, we

attempt to predict whether a drug inhibits a certain gene, which is

related to the target disease. We identify 442 genes that are related

with the Covid-19 disease [20, 54]. We select 8,104 FDA-approved

drugs in the DRKG as candidates; see also [26]. To validate our

predictions we use 32 Covid-19 clinical trial drugs from [3].

For each gene node we calculate with RGCN and PanRep-FT

an inhibit link score associated with every drug. Next, we score

all ‘drug-inhibits-gene’ triples and rank them per target gene. We

obtain in this way 442 ranked lists of drugs, one per gene node. Fi-

nally, to assess whether our prediction is in par with the drugs used

for treatment, we check the overlap among the top 100 predicted

drugs and the drugs used in clinical trials per gene. Table 2 lists

the clinical drugs included in the top-100 predicted drugs across all

the genes with their corresponding number of hits for the RGCN

and PanRep-FT. It can be observed, that several of the widely used

drugs in clinical trials appear high on the predicted list in both

prediction. Furthermore, PanRep-FT reports a higher hit rate than

RGCN, which corroborates the benefit of using the universal pre-

training decoders. The universal representation endows PanRep

with increased generalization power that allows for accurate link

prediction performance when training data are extremely scarce as

is the case of Covid-19. While this study, does not recommend spe-

cific drugs, it demonstrates a powerful deep learning methodology

to prioritize existing drugs for further investigation, which holds

the potential of accelerating therapeutic development for Covid-19.

6 CONCLUSION
This paper develops a novel framework for unsupervised learning

of universal node representations on heterogenous graphs termed.

To further facilitate cases where limited labels are available we

implement PanRep-FT. Experiments in node classification and link

prediction corroborate the competitive performance of the learned

universal node representations compared to unsupervised and su-

pervised methods. Experiments on the DRKG showcase the advan-

tage of the universal embeddings in drug repurposing.
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A IMPLEMENTATION FRAMEWORK
The methods presented in this paper are implemented in the ef-

ficient deep graph learning (DGL)
2
library [45]. PanRep is imple-

mented using the mini-batch training framework that facilitates

training for very large graphs even with limited computational

resources
3
. The competing methods RGCN, MAGNN and HAN are

also implemented using the DGL. PanRep experiments are executed

on an AWS P3.8xlarge
4
instances with 8 GPUs each having 16GB

of memory.

B METHODS
Different competingmethods include RGCN [37], HAN [47],MAGNN [17],

node2vec [21], meta2vec [14] and an adaptation of the work in [44]

for heterogenous graphs termed HIM. For link prediction the base-

line model is RGCN [37] with DistMult supervision [50] that uses

the same encoder as PanRep. The Mot-decoder and RC-decoder em-

ploy a 2-layer MLP. For the MRW-decoder we use length-2 MRWs.

The parameters for all methods considered are optimized using the

performance on the validation set. For the majority of the experi-

ments PanRep uses a hidden dimension of 300, 1 hidden layer, 800

epochs of model training, 100 epochs for finetuning, and a learning

rate of 0.001. For link prediction finetuning PanRep uses a DistMult

model [50] whereas for node classification it uses a logistic loss.

C DATASETS
C.1 DRKG
The Drug Repurposing Knowledge Graph (DRKG) contains 97055

entities belonging to 13 entity-types [26]. The type-wise distribu-

tion of the entities is shown in Table 4. DRKG contains a total of

5869294 triplets belonging to 107 edge-types. Table 5 shows the

number of triplets between different entity-type pairs for DRKG

and various data sources. The DRKG is publicly available.
5

C.2 IMDB and OAG
IDMB [1] is a movie database including information about the

cast, production crew, and plot summaries. A subset of IMDb is

used after data preprocessing in Table 3. Movies are labeled as

one of three classes (Action, Comedy, and Drama) based on their

genre information. Each movie is also described by a bag-of-words

representation of its plot keywords.

OAG [2] is bibliography website. We preprocess the data and re-

tain the subgraph in Table 3. The papers are divided into 6 research

areas. Each paper is described by a BERT embedding of the paper’s

title.

2
https://www.dgl.ai/

3
https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero

4
https://aws.amazon.com/ec2/instance-types/p3/

5
https://github.com/gnn4dr/DRKG/

https://www.dgl.ai/
https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn-hetero
https://github.com/gnn4dr/DRKG/
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Table 3: Statistics of datasets.

Dataset Node Edge

IMDb

# movie (M): 4,278

# director (D): 2,081

# actor (A): 5,257

# M-directed by-D: 4,278 , D-directed-M: 4,278

# M-played by-A: 12,828, A-played-M: 12,828

OAG

# author (A): 13,720

# paper (P): 7,326

# affiliation (Af): 2,290

# venue (V): 782

# P-in journal-V: 3941, V-journal has-P: 3941

# P-conference-V: 3368, V-conference has-P: 3368

# P-cites-P: 3327, P-cited by-P: 3327

# A-writes as last-P: 4522, P-written by last-A: 4522

# A-writes as other-P: 7769, P-written by other-A: 7769

# A-writes as first-P: 4795, P-written by first-A: 4795

# A-affiliated with-Af: 17035, Af-affiliated with-A: 17035

Table 4: Number of nodes per node type in the DRKG and the data sources.

Entity type Drugbank GNBR Hetionet STRING IntAct DGIdb Bibliography Total Entities

Anatomy - - 400 - - - - 400

Atc 4, 048 - - - - - - 4, 048

Biological Process - - 11, 381 - - - - 11, 381

Cellular Component - - 1, 391 - - - - 1, 391

Compound 9, 708 11, 961 1, 538 - 153 6, 348 6, 250 24, 313

Disease 1, 182 4, 746 257 - - - 33 5, 103

Gene 4, 973 27, 111 19, 145 18, 316 16, 321 2, 551 3, 181 39, 220

Molecular Function - - 2, 884 - - - - 2, 884

Pathway - - 1, 822 - - - - 1, 822

Pharmacologic Class - - 345 - - - - 345

Side Effect - - 5, 701 - - - - 5, 701

Symptom - - 415 - - - - 415

Tax - 215 - - - - - 215

Total 19, 911 44, 033 45, 279 18, 316 16, 474 8, 899 9, 464 97, 238

Table 5: Number of interactions in the DRKG and the data sources.

Entity-type pair Drugbank GNBR Hetionet STRING IntAct DGIdb Bibliography Total interactions

(’Gene’, ’Gene’) - 667, 22 474, 526 1, 496, 708 254, 346 - 58, 629 2, 350, 931

(’Compound’, ’Gene’) 24, 801 80, 803 51, 429 - 1, 805 26, 290 25, 666 210, 794

(’Disease’, ’Gene’) - 95, 399 27, 977 - - - 461 123, 837

(’Atc’, ’Compound’) 15, 750 - - - - - - 15, 750

(’Compound’, ’Compound’) 1, 379, 271 - 6, 486 - - - - 1, 385, 757

(’Compound’, ’Disease’) 4, 968 77, 782 1, 145 - - - - 83, 895

(’Gene’, ’Tax’) - 14, 663 - - - - - 14, 663

(’Biological Process’, ’Gene’) - - 559, 504 - - - - 559, 504

(’Disease’, ’Symptom’) - - 3, 357 - - - - 3, 357

(’Anatomy’, ’Disease’) - - 3, 602 - - - - 3, 602

(’Disease’, ’Disease’) - - 543 - - - - 543

(’Anatomy’, ’Gene’) - - 726, 495 - - - - 726, 495

(’Gene’, ’Molecular Function’) - - 97, 222 - - - - 97, 222

(’Compound’, ’Pharmacologic Class’) - - 1, 029 - - - - 1, 029

(’Cellular Component’, ’Gene’) - - 73, 566 - - - - 73, 566

(’Gene’, ’Pathway’) - - 84, 372 - - - - 84, 372

(’Compound’, ’Side Effect’) - - 138, 944 - - - - 138, 944

Total 1, 424, 790 335, 369 2, 250, 197 1, 496, 708 256, 151 26, 290 84, 756 5, 874, 261
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