Learning Distributed Representations of Graphs with Geo2DR

Paul Scherer
University of Cambridge
Cambridge, United Kingdom

ABSTRACT

We present Geo2DR (Geometric to Distributed Representations),
a GPU ready Python library for unsupervised learning on graph-
structured data using discrete substructure patterns and neural
language models. It contains efficient implementations of popu-
lar graph decomposition algorithms and neural language models
in PyTorch which can be combined to learn representations of
graphs using the distributive hypothesis. Furthermore, Geo2DR
comes with general data processing and loading methods to bring
substantial speed-up in the training of the neural language mod-
els. Through this we provide a modular set of tools and building
blocks to quickly construct methods capable of learning distributed
representations of graphs. This is useful for replication of exist-
ing methods, modification, and development of completely new
methods. This paper serves to present the Geo2DR library and per-
form a comprehensive comparative analysis of existing methods
re-implemented using Geo2DR across widely used graph classifica-
tion benchmarks. Geo2DR displays a high reproducibility of results
of published methods and interoperability with other libraries use-
ful for distributive language modelling, making it a useful addition
to the graph representation learning toolkit.

CCS CONCEPTS

« Computing methodologies — Machine learning; Kernel meth-
ods; Neural networks; Learning latent representations.

KEYWORDS

library, toolkit, graph representation learning, reproducibility, dis-
tributed representations

ACM Reference Format:

Paul Scherer and Pietro Lio. 2020. Learning Distributed Representations of
Graphs with Geo2DR. In DLG-KDD’20: The Second International Workshop
on Deep Learning on Graphs: Methods and Applications, August 24, 2020,
San Diego, CA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Representation learning of graphs using neural networks has turned
into a large and exciting hub of research driven by successive pro-
posals of graph representation learning methods and datasets to
apply them onto. A significant part of the activity has focused on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DLG-KDD’20, August 24, 2020, San Diego, CA

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Pietro Lio
University of Cambridge
Cambridge, United Kingdom

Graph Convolutional Neural Networks (GCNN). Such neural net-
works are characterised by graph convolutional operators [2, 6, 13]
that serve as useful inductive biases for learning representations of
nodes and other graph substructures. Gilmer et al. [8] generalised
the convolution operator over irregular domains as a message pass-
ing scheme (MPNN), allowing the specification of a full spectrum
of methods as variants of this equation. Representations of en-
tire graphs are then created through the successive application of
graph convolution operations followed by different pooling meth-
ods [6, 15, 28] which aggregate node representations towards a
single vector representation for the entire graph.

The difficulty of reliably constructing GCNN models has driven
the need for toolkits and libraries to facilitate their development for
replication, extension and creation of new models. Several such li-
braries have been made such as: Graph Nets introduced by Battaglia
et al. [1], DGL by Wang et al. [26], GEM by Goyal et al. [9], and
most recently PyTorch Geometric by Fey and Lenssen [7]. These
libraries have greatly contributed to lowering the barrier of entry
into GCNN research, fueling the development of novel methods
and libraries supporting them in a healthy feedback cycle.

Alongside ongoing research into GCNNs and its variants, an-
other approach has focused on extending graph kernel methods
with neural language embedding methods [11, 17, 27] that exploit
the distributive hypothesis to learn representations of graphs. This
is a useful alternative inductive bias to model the vector space em-
beddings of graphs over the distribution of the discrete substructure
patterns contextualising them. Much like how the semantic mean-
ing of words is similar to words that have similar context words
around them [10], comparability can also be defined for graphs with
the appropriate specification of what constitutes context and the
entities (nodes, subgraphs, substructure patterns) that are involved.
Such vector representations of graphs are inductively biased to be
close when they contain similar substructure patterns, and distant
when they do not. This perspective enables the construction of a
powerful class of unsupervised representation learning methods.

At this point, there are multiple excellent MPNN and Graph Ker-
nel libraries for calling specific implementations of existing meth-
ods. Some GCNN focused libraries such as PyTorch Geometric [7]
even allow composing new methods by interfacing with extensible
message-passing or pooling modules. However, to our knowledge,
no toolkit currently exists for rapidly composing new methods ca-
pable of learning distributed representations of graphs. This project,
Geo2DR (Geometric to Distributed Representations), aims to fill this
gap by providing a modular set of building blocks built around a
conceptual framework that is applicable to existing methods and an
even greater number of unexplored ones. The Geo2DR library along
with links to documentation, example methods reimplementations,
experiment replication, and supporting material can be found on
the GitHub repository (https://github.com/paulmorio/geo2dr)
with package releases on PyPL

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DLG-KDD’20, August 24, 2020, San Diego, CA

Paul Scherer and Pietro Lio

Data Format
Processing

Data Processing and
Corpus Construction

Training and

Optimization

Modules Modules Modules
- Substructure
: ' Embeddings
! A 4
: \
Substructure Pattern !I N Distributed Representation Learning
Graph Induction (Neural Embedding)
Dataset
J
Step 1 Step 2

Decomposition into patterns
like graphlets, walks, trees.

Training neural language
models: Skipgram, CBOW,
PV-DM, PV-DBOW

Graph
Embeddings

Figure 1: The two-stage design methodology for creating distributed representations of graphs and the various modules (in
rectangles) included in Geo2DR to support this process. All modules were designed with consistent interfaces so that they
may be mixed and matched to create existing and novel methods, as well as simplify integration of custom modules.

2 BACKGROUND

The approach towards distributive modelling of graphs was pio-
neered by Yanardag and Vishwanathan [27]. They observed that
many graph kernel methods can be formulated as instances of the
R-Convolutional framework. Herein, the similarity between dif-
ferent graphs is computed by decomposing graphs into discrete
substructure patterns such as graphlets, shortest paths, and rooted
subgraphs. This produces a |V|-dimensional bag-of-words or pat-
tern frequency vectors for each graph where V is the set of the
unique patterns induced over all the graphs in a dataset. The graphs
and their induced substructure patterns are input to a kernel func-
tion, such as counting the common substructures across pattern
frequency vectors. This defines the relation or similarity measure
between the graphs to construct the kernel matrix for use with
kernel methods such as SVMs.

Yanardag and Vishwanathan [27] further observed that as the
size of graphs and the specificity of substructure patterns to be
induced from graphs increases (via lengthening walks/paths, in-
creasing the number of nodes in graphlet patterns) graphs are rep-
resented by extremely high dimensional pattern frequency vectors.
As a result, only few substructure patterns are common across any
given set of graphs producing sparse solutions where each graph
is more similar to itself, a phenomenon known as diagonal domi-
nance. To tackle this issue the authors proposed the use of neural
language models which exploit the distributive hypothesis [10] to
learn smooth low dimensional distributed representations of the sub-
structures and construct graph kernel matrices. This was quickly
followed up by works such as the aptly named Graph2Vec [17]
and Anonymous Walk Embeddings [11] (AWE). These proposed
different substructure patterns to induce over the graphs and the
use of Doc2Vec variants [14] to build distributed representations of
whole graphs directly. We provide a brief primer and conceptual
framework for learning distributed representations of graphs in
Appendix A.

Geo2DR provides various modules that can be used as "building
blocks" to rapidly construct systems capable of learning such dis-
tributed representations of both substructure patterns and whole

graphs of arbitrary size. Existing libraries for GCNNs [1, 7, 9, 26]
would require a substantial shift in philosophical focus from con-
structing message passing schemes and pooling methods to accom-
modate these methods. Hence Geo2DR is a complementary library
alongside existing toolkits enabling researchers a broader range of
options and tools for graph representation learning. A brief com-
parison of existing libraries for graph representation learning is
provided in Section 5 after describing the structure and usage of
Geo2DR for better exposition.

3 OVERVIEW OF GEO2DR

Geo2DR is a Python library containing various "building blocks"
to support rapid construction of methods capable of learning dis-
tributed representations of graphs. This framework for self super-
vised learning of substructures and entire graphs is based around a
simple two stage design methodology summarised in Figure 1.

e Induction of descriptive substructure patterns: The first
step consists of inducing discrete substructure patterns such
as graphlets, rooted subgraphs, or anonymous walks within
and across the dataset of graphs to construct a shared vo-
cabulary and corpus dataset contextualizing the patterns and
graphs. One may also use the output pattern distributions at
this stage to construct a variety of graph kernels.

e Learning distributed vector representations: The sec-
ond stage consists of utilising the distributive hypothesis [10]
to learn distributed representations of graphs contextualised
by the induced substructure patterns. Embedding methods
which exploit the distributive hypothesis such as skipgram
[16] can be used to learn fixed-size vector embeddings of
substructure patterns or whole graph in an unsupervised
manner.

The two stage methodology allows for the succinct description
of existing methods as compositions of what substructure patterns
are being induced across the graphs, and the specification of the
target-context relationships as implied by the distributive neural
embedding method. Hence, combination of Geo2DR’s modules for

Learning Distributed Representations of Graphs with Geo2DR

DLG-KDD’20, August 24, 2020, San Diego, CA

Table 1: Table characterising each of the existing published methods by the substructure patterns induced and associated
embedding method to create the graph kernel matrix (for DGK models) or graph embeddings.

Method Induced substructure pattern Embedding method Object embedded
DGK-WL WL rooted subgraphs Skipgram or CBOW Substructure patterns
DGK-SP Shortest paths Skipgram or CBOW Substructure patterns
DGK-GK Graphlets Skipgram or CBOW Substructure patterns
Graph2Vec WL rooted subgraphs PV-DBOW Whole graphs
AWE-DD Anonymous walks PV-DM Whole graphs

decomposition and distributed representation learning can be used
to quickly replicate existing methods such as those shown in Table
1. Just as importantly, it highlights the vast possibilities for the de-
velopment of novel methods intersecting ongoing research in graph
theory and distributive modelling through focused development of
the modules.

Consistent input/output interfaces were implemented across
modules to encourage creation of novel methods. For example, one
could create a "novel" unpublished method combining existing mod-
ules on inducing shortest path patterns and learning graph-level
embeddings with PV-DBOW. This form of light experimentation
fosters understanding and control of the various inductive biases in-
volved when building such models. However, in a more far-sighted
view, we hope it would also encourage the creation of custom mod-
ules that can plug and play with the rest of the framework to create
truly novel methods down the line.

Practically, the library is centered around three subpackages
under Geo2DR. The data subpackage, contains modules for trans-
forming data formats used by popular dataset repositories such as
Kersting et al. [12] into consistent formats used by the decomposi-
tion algorithms implemented in Geo2DR. In Geo2DR, we chose to
use the GEXF (Graph Exchange XML Format) as permanent storage
format for individual instances of the graphs. This is because the
format is compatible with network analysis software such as Gephi
and NetworkX for detailed inspection.

The modules within the decomposition subpackage contain
algorithms for inducing the substructure patterns in the graphs and
forming vocabularies. The outputs of these algorithms are directly
compatible with our PyTorch implementations of neural language
models to utilize GPUs as well as those in Gensim [19]. This es-
sentially describes the packages and modules necessary for Step
1 of the process. The final subpackage embedding_methods con-
tains modules for constructing corpus datasets and neural language
models to build the distributed representation learning methods of
Step 2. Several Trainer classes are also included which serve as
battery-included corpus and neural net combinations that can be
used to construct common architecture setups.

Existing methods for learning distributed representations as in
Table 1 and several graph kernels can all be implemented using the
modules and frameworks presented. We have included all these
methods as examples within the repository to get users started on
creating their own variations. A brief code example using Geo2DR
is provided in Appendix B.

4 EMPIRICAL EVALUATION

As a form of validation on the correctness for the various imple-
mented modules, we empirically evaluate re-implementations of
existing models using Geo2DR. Table 1 describes the induced sub-
structure pattern and neural language model driving each method.
We performed a series of common benchmark graph classification
tasks under homogeneous data and evaluation scenarios giving a
fairer picture of how they compare.

All datasets were downloaded from the benchmark dataset repos-
itory by Kersting et al. [12] and processed into the format used by
Geo2DR with the included data formatter. In each of the datasets
the discrete node labels are exposed, but not the edge labels. For
unlabelled datasets such as REDDIT-B, the node was labelled by
their degree following practice of Shervashidze et al. [21] to enable
methods such as the WL rooted subgraph decomposition to induce
patterns in the graphs; this was also applied to methods which can
directly handle unlabelled graphs for conformity. As these datasets
are standard benchmarks we have left specific descriptive details
in Appendix C.

For all experiments, attempts were made to follow the hyperpa-
rameter setups described in the published papers of the original
methods, with best-guess settings where details were unknown. As
we look at several kernels and embedding models specific hyperpa-
rameter ranges can be found in Appendix D. In all cases, the same
off-the-shelf support vector machine implemented in SciKit-Learn
[18] was used with an RBF kernel trick for the supervised classifica-
tion task on the graph embeddings learned. This SVM was chosen
on the basis that all works used SVMs in their downstream classifi-
cation tasks. values were estimated over the set (0.001, 0.01, 0.1,
1, 10, 100). We report the average score of 10 iterations of training
and applying 10 fold cross-validation using the SVM over random
data splits with individual training restarts in all cases. The exact
setups of the experiments can be replicated using the experiment
replication code provided within the Github repository!.

Graph kernels: We start with an experiment suite based on the
substructure patterns alone, using the decomposition algorithms
to construct normalised bag-of-words frequency vectors for each
of the graphs. Table 2 records the mean and standard deviation of
randomly split 10 fold cross-validation using the SVM described
above. The results closely match that of the published methods in
[3, 11, 21, 27]. The fact that different substructure patterns excel
in classifying some datasets and do not perform as well in others

Ihttps://github.com/paulmorio/geo2dr/tree/master/replication

DLG-KDD'20, August 24, 2020, San Diego, CA

Paul Scherer and Pietro Lio

Table 2: Random-split 10 fold cross-validation performance of SVM using RBF kernel on bag-of-words vectors of normalised
frequencies of substructure patterns. Best scores or those within error of best are bolded. OOM denotes out-of-memory.

Substructure pattern MUTAG ENZYMES PROTEINS NCI1 REDDIT-B IMDB-M
WL Rooted Subgraphs88.95 7.96 56.33 6.18 74.29 255 8394 199 77.35 435 48.60 4.33
Shortest Paths 83.687.24 41.67 483 74.73 2.04 70.95 1.95 OOM 50.20 3.84
Graphlets 83.16 6.16 25.33 3.48 70.36 3.59 54.09 7.61 78.252.71 44.40 4.17
Anonymous Walks 80.536.68 27.336.23 71.87 205 66.08 2.21 81.30 249 38.20 3.91

Table 3: Graph classi cation performance over random-split 10 fold cross-validation in each of the re-implemented methods
with standard deviation. Best scores or those within error of best are bolded. OOM denotes out-of-memory.

Method MUTAG ENZYMES PROTEINS NCI1 REDDIT-B IMDB-M
DGK-WL 88.42 8.42 41.00 1.83 72.080.74 7754 3.91 OOM 47.82 0.79
DGK-SP 84.037.16 44.27 226 76.93 256 69.22 529 OOM 49.71 1.18
DGK-GK 84.21 6.74 23.61 3.14 69.77 3.13 53.924.81 78.321.92 44.404.18
Graph2Vec 84.912.79 51.77 175 74.05 2.28 7134212 8125 2.64 47.11 1.42
AWE-DD 79.29 292 23.76 1.74 69.701.29 63.54 182 8146 1.75 40.53 6.42

suggests that topological characteristics which are useful for char-
acterising graphs are not found in just one substructure pattern.
Making the study of other patterns and combinations thereof an
interesting avenue.

Deep graph kernels and graph embeddings: Most of our ex-
periments in Table 3 show a high reproducibility of the results
published by the original proposers. Some discrepancies are to

be expected due to the homogenised data setup, unpublished hy-

perparameter settings, and standardised neural architectures, but
best e ort was made through consulting original source code and
communications with the authors. In particular, for AWE-DD, we
do not use edge-labels for homogeneity of the experiment evalua-
tion whilst the original paper used them if they provided a better
performance.

Runtime experiments and improvements in Geo2DR: Ta-
ble 4 contains the average total training times incurred over 100
epochs, performed ten times with one standard deviation on a sin-
gle quad-core Intel 4690 CPU. Comparison is drawn between the
original reference implementation made available by each of the
original papers and its re-implemented counterpart in Geo2DR.
All methods were trained and compared on the MUTAG dataset
as this was the only common dataset included in the reference
implementations. None of the original reference implementations
have scripts or tools to transform the publicly available datasets
they used into the proprietary formats used by their own imple-
mentations, making reproduction di cult. This is why we have
included data processing tools for popular public datasets directly
into the Geo2DR library within thedata subpackage to address
this common limitation for the future.

5 RELATED WORK

Table 5 provides a summary of the core competencies of existing
graph learning libraries. To brie y elaborate, recent libraries for

Table 4: Total training run time (seconds) over 100 epochs on
MUTAG. Bold text refers to lowest time taken for training
or are within error bounds of being the fastest.

Original Geo2DR with
Method reference Only Geo2DR compatible libraries

. . PyTorch modules)

implementation Gensim/TensorFlow
DGK-WL 3.06 0.15 3.33 0.07 3.19 0.08
DGK-SP 6.95 0.23 6.86 0.27 7.39 0.08
DGK-GK 9.46 0.69 19.41 0.49 9.89 0.74
Graph2Vec 8.86 0.05 10.64 0.11 8.88 0.06
AWE-DD 1231.75 21.81 314.84 8.91

GCNN research such as GraphNet$ DGL [26 and PyTorch Geo-
metric [7] are characterised by a composite construction style of
the message passing neural networks. Each method is constructed
through the composition of convolution or pooling layers in the
neural network and other preprocessing steps by the user. In con-
trast, graph kernel libraries such as GraK@l] and GraphKernels
[23, are API-oriented, with single line calls to speci ¢ implementa-
tions, where GraKel speci cally follows the usage style of SciKit
Learn [1§ for compatibility. The recently released Karate Club
[2Q (its paper released the same week as Geo2DR) is an excellent
API-oriented community detection and graph embedding library
which implements several methods for distributed representations
of graphs such as Graph2Vec and GL2Vec.

Geo02DR's underpinning design philosophy around composition
of modules for method construction di erentiates it from Karate
Club. As stated in Section 3, the core focus is on the exible yet
rapid construction of methods with building blocks inspired by
method creation in PyTorch and recent GCNN libraries. It allows
a greater room for constructing novel methods in a modular fash-
ion to encourage research and exploration. Ultimately, each of the

Learning Distributed Representations of Graphs with Geo2DR DLG-KDD'20, August 24, 2020, San Diego, CA

Table 5: This table is a simpli ed summary of core competencies of existing graph learning libraries. The column on method
construction notes the style in which methods can be created. Composite refers to the creation of methods via composition
of transformations, decompositions, neural network modules in the library by the user. On the other hand API refers to API-
oriented "single-line" calls to speci ¢ implementations of methods, architectures etc. Composite/API* refers to few libraries
exhibiting a composite design philosophy but have some single-line API calls to speci ¢ methods too popular to ignore such
as the inclusion of Node2Vec in GEM and PyTorch Geometric but not as comprehensive as Karate Club or Geo2DR.

. Distributed .
Message passmgGraph Kernels Representations Method Construction
network models Style
of Graphs
GraphNets [1] N Composite
DGL [26] N Composite
GEM [9] v’ * Composite/API*
Pytorch Geometric [7] v~ * Composite/API*
Grakel [22] N API
Graphkernels [23] v’ API
Karate Club [20] v’ API
Geo2DR v’ v’ Composite

libraries cover speci ¢ competencies with their own usage philoso- REFERENCES
phies, and we believe Geo2DR lIs an important gap in supporting [1] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

R iatr H Vinicius Flores Zambaldi, Mateusz Malinowski, and et al. 2018. Relational in-
research of methods capable of learning distributed representations ductive biases, deep learning. and graph neWorgsRRiba/1806.01261 (2018).
of graphs. arXiv:1806.01261 http:/arxiv.org/abs/1806.01261
[2] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral Tech-

niques for Embedding and Clustering. Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural and S{idhetic
couver, British Columbia, Canadé)leurlPS'01MIT Press, Cambridge, MA, USA,
6 CONCLUSION 585 591. http://dl.acm.org/citation.cfm?id=2980539.2980616
Through the characterisation of existing methods, and the repro- [3] Karsten M. Borgwardt and Hans-Peter Kriegel. 2005. Shortest-Path Kernels
ducti f thei Its in Geo2DR h h that the lib on Graphs. InProceedings of the Fifth IEEE International Conference on Data
uction or their resufts in Geo » We have shown that the library Mining (ICDM'05)IEEE Computer Society, Washington, DC, USA, 74 81. https:
is a successful amalgamation of the various components that enable //doi.org/10.1109/ICDM.2005.132

i ictri i i i [4] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schénauer, S. V. N. Vishwanathan,
lear.mng distributed representapons of_graphs. US'”_g .the S|mple Alex J. Smola, and Hans-Peter Kriegel. 2005. Protein Function Prediction via
design methodology, one can quickly re-implement existing models, Graph KemnelsBioinformatic21, 1 (2005), 47 56.

which is becoming an increasingly important part of reproducible [5] Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shus-

S . e _ terman, and Corwin Hansch. 1991. Structure-activity relationship of mutagenic
research and designing novel architectures. By exploiting the modu aromatic and heteroaromatic nitro compounds. Correlation with molecular or-

lar structure and compatibility with other software and libraries the bital energies and hydrophobicitylournal of Medicinal Chemist4, 2 (01 Feb
set of tools for constructing learning methods is broadened without . 5’,9%)3_7'%6 797. gttQSZ/(dO"-BOFQ/lO-10211/120010330:}6 hevnst 2016,

. . . . ichaél De errard, Xavier Bresson, and Pierre Vandergheynst. . Convo-
having to deal with di (—j.‘l‘el_’lt. data_formats' lan_guage paradlgms lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
and work ows used by individual implementations. Using a host Proceedings of the 30th International Conference on Neural Information Processing

i i SystemgBarcelona, Spain(NeurlPS'16Curran Associates Inc., USA, 3844 3852.
of re I.mplemer.]ted methods also allows for m.ore homogems.ed http://dl.acm.org/citation.cfm?id=3157382.3157527
experiment suites that can be used to more fairly compare exist- 7] matthias Fey and Jan E. Lenssen. 2019, Fast Graph Representation Learning with
ing and new methods in future research e orts. Geo2DR is now PyTorch Geometric. IRCLR Workshop on Representation Learning on Graphs and

: ; ; ; ; Manifolds
avgllable W.Ith detal.led dopumentatlon and examples as a starting 8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
point. The library will continue to evolve to add new components, Dahl. 2017. Neural Message Passing for Quantum Chemisti®rdneedings of
compatibility with other libraries, tutorials, and accommodate new the 34th International Conference on Machine Learning - Volu(@ydgey, NSW,

d | tsin th Id Australia) (ICML'17) JMLR.org, 1263 1272. http://dl.acm.org/citation.cfm?id=
evelopments in the eld. 3305381.3305512
[9] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A surveyKnowledge-Based SystetB4 (2018), 78 94. https:
//doi.org/10.1016/j.knosys.2018.03.022
[10] Zellig S. Harris. 1954. Distributional Structur@/ORD10, 2-3 (1954), 146 162.
ACKNOWLEDG E MENTS https://doi.org/10.1080/00437956.1954.11659520
Foremost, we would like to thank Dr. Yanardag{), Dr. Narayanan [11] Sergey lvanov and Evgeny Burnaev. 2018. Anonymous Walk Embeddings. In
f : Proceedings of the 35th International Conference on Machine Learning (Proceedings
[17-| and Dr. Ivanov.EL]J for the.ll’ Correspondence’ and mal.(lng of Machine Learning Research, Vol. &)nifer Dy and Andreas Krause (Eds.).
reference code available publicly. Furthermore we would like to PMLR, Stockholmsmassan, Stockholm Sweden, 2191 2200. http://proceedings.
thank the members of the Al Group at the Computer Laboratory mir.press/v80/ivanov18a.html _ _ _
for their patience and numerous proof readingas of this work. Lastl 12] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion
or p . .p g : : Y, Neumann. 2016. Benchmark Data Sets for Graph Kernels. Datasets available at
we would like to thank all the reviewers for their time and feedback http://graphkernels.cs.tu-dortmund.de.

to improve this work.

DLG-KDD'20, August 24, 2020, San Diego, CA

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi cation with
Graph Convolutional Networks. IfProceedings of the 5th International Conference
on Learning Representatiqiisulon, FranceflCLR'17)

[14] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and

Paul Scherer and Pietro Lio

X = fxpex2* """x=gdescribing the occurrence frequency of substruc-
ture patterns over a shared vocabula¥ V is the set of unique
substructure patterns induced across all of the graphs in the dataset

Documents. IfProceedings of the 31st International Conference on International G,

Conference on Machine Learning - Volum@aging, ChinaICML'14) IMLR.org,

111188 11 1196. http://dl.acm.org/citation.cfm?id=3044805.3045025

Enxhell Luzhnica, Ben Day, and Pietro Lid. 2019. On Graph Classi cation Net-

works, Datasets and Baselines.36th International Conference on Machine Learn-

ing (Long Beach, USAJCML'19)

Tomas Mikolov, Kai Chen, Greg Corrado, and Je rey Dean. 2013. E cient Esti-

mation of Word Representations in Vector Spacelbi International Conference

on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2

Workshop Track Proceedings

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning Distributed

Representations of Graph&oRRabs/1707.05005 (2017). arXiv:1707.05005

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, and et

al. 2011. Scikit-learn: Machine Learning in Pythaleurnal of Machine Learning

Research? (2011), 2825 2830.

Radim eeh-°ek and Petr Sojka. 2010. Software Framework for Topic Modelling

with Large Corpora. IrProceedings of the LREC 2010 Workshop on New Challenge

for NLP Framework&LRA, Valletta, Malta, 45 50.

[20] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. An API Ori-
ented Open-source Python Framework for Unsupervised Learning on Graphs.
arXiv:2003.04819 [cs.LG]

[21] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph KernklMach.
Learn. Red.2 (2011), 2539 2561.

[22] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Kon-
stantinos Skianis, and Michalis Vazirgiannis. 2018. GraKeL: A Graph Kernel
Library in Python. arXiv preprint arXiv:1806.021@318).

[23] Mahito Sugiyama, M. Elisabetta Ghisu, Felipe Llinares-L6pez, and Karsten Borg-
wardt. 2017. graphkernels: R and Python packages for graph compariom-
formatics34, 3 (2017), 530 532. https://doi.org/10.1093/bioinformatics/btx602

[24] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. 2010. Graph Kernelslournal of Machine Learning Reseat&h(2010),
1201 1242.

[25] Nikil Wale, lan A. Watson, and George Karypis. 2008. Comparison of Descriptor

Spaces for Chemical Compound Retrieval and Classi catiénowl. Inf. Systl4,

3 (March 2008), 347 375. https://doi.org/10.1007/s10115-007-0103-5

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, and et al.

2019. Deep Graph Library: Towards E cient and Scalable Deep Learning on

[15]

[16]

[17]

[18]

[29]

[26]

Graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds

(2019). https://arxiv.org/abs/1909.01315

[27] Pinar Yanardag and S.V.N. Vishwanathan. 2015. Deep Graph Kernlsodaed-

Classically one may directly use these pattern frequency vectors
within standard machine learning methods using vector inputs to
perform some task. This is the approach taken by a variety of graph
kernels P4 27). Unvfortunately, as the graphs @& and subtructure
patterns induced become more complex through size or speci city,

Offe number of induced patterns increases dramatically. This, in turn,

causes the pattern frequency vectorsxto be extremely sparse
and high-dimensional. The high speci city of the patterns and
the sparsity of the pattern frequency vectors cause a phenomenon
known as diagonal dominance across the kernel matrices wherein
each graph becomes more similar to itself and dissimilar from
QOthers, degrading the classi cation performance [27].

To address this issue it is possible to learn dense and low dimen-
sional distributed representations of graphs that are inductively
biased to be similar when they contain similar substructure patterns
and dissimilar when they do not. To achieve this, the construction
of a corpus datasdD is required detailing the target-context rela-
tionship between a graph and its induced substructure as in our
example or a substructure pattern to other substructure patterns.
In the simplest form for graph-level representation learning one
can implementD as tuples of graphs and substructure pattern
1Gge?° 2D if 792V and?92 G

The corpus is utilised with a method that incorporates Harris'
distributive hypothesis 14 to learn the distributed representations
of graphs. skipgram, cbow, PV-DM, PV-DBOWM[1€ are a few
examples of neural embedding methods that incorporate this in-
ductive bias and are all present in the Geo2DR library. In skipgram
with negative sampling, as used in Graph2Vdd]| the distributed
representations can be learned by optimizing

ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining(Sydney, NSW, AustraligkDD'15) ACM, New York, NY, USA,
1365 1374. https://doi.org/10.1145/2783258.2783417

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Di erentiable Pooling. InProceedings of the 32nd International Conference on
Neural Information Processing SystéMsntréal, CanaddNeurlPS'18)
Curran Associates Inc., USA, 4805 4815. http://dl.acm.org/citation.cfm?id=
3327345.3327389

[28]

A BRIEF PRIMER ON LEARNING
DISTRIBUTED REPRESENTATIONS OF
GRAPHS

Here we provide a brief and simpli ed primer on learning dis-
tributed representations of graphs. This will not fully describe the
various intricacies of existing methods, but cover a conceptual
framework common to almost all distributed representations of
graphs particularly for learning representations of substructure pat-
terns and whole graphs. Figure 2 is a diagrammatic representations
of this conceptual framework.

Given a set of graph& = fG1°Gp* ""G=g one can induce dis-

(0]

(0]

L jfiGg® 2 Dgjtogf t g S»°
Gg2G 22V

Eo, 29 dogft g 74 %Y

.

over the corpus observations where2 RIGI 3 js the3 dimen-
sional matrix of graph embeddings we desire of the graph dataset
G, and gis embedding forGg 2 G. Similarly,S 2 RiVi 3 are
the 3 dimensional embeddings of the substructure patterns in the
vocabularyV soS-» represents the vector embedding correspond-
ing to substructure patterr?. The embeddings of the substructure
patterns are also tuned but ultimately not used, as we are interested
in the graph embeddings in.: is the number of negative samples
with G being the sampled context pattern, drawn according to the

empirical unigram distributiorfe 170 = 17218 82(;."1j g?2Dgj
The optimization of the above utility function creates the desired
distributed representations of the targets in in this the case graph-

level embeddings. These may be used as input for any downstream

crete substructure patterns such as shortest paths, rooted sub- machine learning task and method that take vector inputs. The
graphs, graphlets, etc. using side-e ects of algorithms such as distributed representations bene t from having lower dimension-
the Floyd-Warshall or Weisfeiler-Lehman Graph Isomorphism test, ality than the pattern frequency vectors, in other word¥j jj 3,

and so on. This can be used to produce pattern frequency vectors being non-sparse, and being inductively biased via the distributive

	Abstract
	1 Introduction
	2 Background
	3 Overview of Geo2DR
	4 Empirical Evaluation
	5 Related Work
	6 Conclusion
	References
	A Brief Primer on Learning Distributed Representations of Graphs
	B Code Example
	C Supplementary: Dataset Details
	D Supplementary: Hyperparameter Selections of Re-implemented Methods
	D.1 Graph Kernels
	D.2 Deep Graph Kernels and Graph Embeddings

