
Demystifying Graph Neural Networks with Graph Filter
Assessment

Yewen Wang

University of California, Los Angeles

wyw10804@cs.ucla.edu

Ziniu Hu

University of California, Los Angeles

bull@cs.ucla.edu

Yusong Ye

University of California, Los Angeles

yusongye@ucla.edu

Yizhou Sun

University of California, Los Angeles

yzsun@cs.ucla.edu

ABSTRACT
Graph Neural Networks (GNNs) have recently received tremendous

attention due to their power in handling graph data for different

downstream tasks across different application domains. Many GNN

models have been proposed, which mainly differ in their graph

filter design with the hope to find the best filter for all the graph

data. However, there still lack studies on graph filter assessment

from a data perspective. In particular, we raise the following three

questions: (1) Whether there exists an optimal filter that performs
the best on all graph data; (2) Which graph properties should be con-
sidered for finding the optimal graph filter; and (3) How to design
appropriate filters that adapt to a given graph. In this paper, we

focus on addressing the above questions, using semi-supervised

node classification task as a case study. We propose a novel assess-

ment tool: Graph Filter Discriminant Score (GFD), for evaluating

the effectiveness of graph filters for a given graph in terms of node

classification. Using this tool, we find out that there is no single

filter that performs the best on all possible graphs, and graphs with

different properties are in favor of different graph filters. Based on

these findings, we develop Adaptive Filter Graph Neural Network

(AFGNN), a simple but powerful model that can adaptively learn

data-specific filters. For a given graph, AFGNN leverages graph

filter assessment as an extra loss term and learns to combine a set

of base filters. Experiments on both synthetic and real-world bench-

mark datasets have demonstrated that our proposed model has

the flexibility in learning a data-specific filter and can consistently

provide competitive performance across all the datasets.

1 INTRODUCTION
Graph Neural Networks (GNNs) are a family of powerful tools for

representation learning on graph data. They can obtain informative

node representations for a graph of arbitrary size and attributes,

and has shown great effectiveness in graph-related down-stream ap-

plications, such as semi-supervised node classification [12], graph

classification [26], graph matching [1, 16], recommendation sys-

tems [28], and knowledge graphs [20].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD’20 workshop, August 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

As GNNs have superior performance in graph-related tasks, the

question “what makes GNNs so powerful?” is naturally raised. Note

that GNNs adopt the concept of the convolution operation into

graph domain. To obtain a representation of a specific node with

GNN, the node aggregates representations of its neighbors with a

graph filter. For a task related to graph topology, the graph filter

decides how the information is propagated among nodes, and can

help GNN nodes to get better task-specific representations [27].

Therefore, the key to designing robust and effective GNNs should

be designing proper graph filters that can best leverage the graph

topology for a given graph.

Recently, many GNN architectures are proposed [6, 13, 18, 22,

24, 27], with their own graph filter designs. However, none of them

have properly answered the following fundamental questions: (1)
Is there a best filter that works for all graphs? (2) If not, what are the
graph properties that will influence the performance of graph filters?
(3) Can we design an algorithm to adaptively find the best filter for a
given graph? In this paper, we discuss the above questions, using

semi-supervised node classification task as a case study.

Inspired by studies in Linear Discriminant Analysis (LDA), we

propose a Graph Filter Discriminant (GFD) Score metric to measure

the power of a graph filter in discriminating node representations

of different classes on a specific graph. We analyzed some existing

GNNs’ filters with this assessment method to answer the three

aforementioned questions. We found that no single filter design

can achieve optimal results on all possible graphs, which means

we should adopt different graph filters for different graph data.

We then empirically analyze how graph properties influence the

optimal choice of graph filters. Based on our findings, we propose

the Adaptive Filter Graph Neural Network (AFGNN), which can

adaptively learn a good data-specific filter for the given graph. We

also use the negative GFD as a an extra loss term to guide the

learning. We show that the proposed AFGNN can better capture

graph topology and separate features on both real-world benchmark

datasets and synthetic datasets.

We highlight our main contributions as follows:

• We propose an assessment tool: Graph Filter Discriminant

Score (GFD), to analyze the effectiveness of graph filters.

Using this tool, we find that no filter is the best for all graphs,

and the graph filter should be adaptive to the graph data.

• We propose Adaptive Filter Graph Neural Network (AFGNN)

that can adaptively learn a proper filter for a specific graph

using the GFD Score as guidance.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD’20 workshop, August 2020, San Diego, CA, USA Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun

• We demonstrate that the proposed model can find better

filters and achieve better performance compared to existing

GNNs, on both real-word benchmark and synthetic datasets.

2 PRELIMINARIES
2.1 Semi-Supervised Node Classification
We denote an undirected graph by G(V,𝑨), where V is a set of

nodes in this graph, and 𝑨 is the adjacency matrix for this graph.

Some graph data has node feature, for these graphs, let 𝑿 be the

feature matrix, where each row𝑿𝑣 is the feature for node 𝑣 ∈ V. For
semi-supervised node classification, let 𝒀 be the class assignment

vector for all the nodes in V, 𝐶 be the number of classes, and

𝒀𝑣 ∈ {1, · · · ,𝐶} be the class that node 𝑣 belongs to. Then, the goal
is to learn a mapping function 𝑓 : V→ {1, · · · ,𝐶} by leveraging

node features𝑿 , graph structure𝑨 and the labeled nodes, to predict

the class labels for the unlabeled nodes, i.e., 𝒀𝑣 = 𝑓 (𝑣).

2.2 A Review of Existing Graph Filters
Graph Neural Networks are shown to be a promising technique

to solve graph-related tasks including the semi-supervised node

classification task we introduced before. Various GNNs have been

proposed with their own graph filter designs. By examining these

designs, we find that most of the GNN operators can fit into a

unified framework, i.e., for the 𝑙-th layer:

𝑯 (𝑙) = 𝜎 (F (G)𝑯 (𝑙−1)𝑾 (𝑙))
whereH (𝑙)

is the node representation for l-th layer, F (G) is the
graph filter for graph G,𝑾 (𝑙)

is the learnable linear transformation

parameter. This formula describes the three-step process that in-

volves: (1) a graph convolutional operation (i.e. feature propagation

or feature smoothing, denoted as F (G)𝑯 (𝑙−1)
), (2) a linear transfor-

mation (i.e. multiplying𝑾 (𝑙)
), and (3) a non-linear transformation

(i.e. 𝜎 (·)). Clearly, the graph convolutional operation F (G)𝑯 (𝑙−1)

is the key step that helps GNNs to improve performance. Thus, to

design a good GNN, a powerful graph convolutional filter F (G) is
crucial. A summary of some existing filter designs is given in A.1.

Some GNNs use a fixed graph filter. The work of GCN [12] first

adopts the convolutional operation on graphs and use the sym-

metrically normalized adjacency matrix as the graph filter. Several

studies propose to use sampling strategy to speed up GNN training

[2, 3, 8]), which can be considered as a sparser version of GCN’s

filter. Some studies such as SGC and GFNN [18, 24] use a higher-

order symmetrically normalized adjacency matrix that includes a

pre-defined exponent. This would help a node to obtain information

from its further neighbors without redundant computation cost.

Another set of GNNs consider using a learnable graph convo-

lutional filter. Some works [4, 27] propose to include a learnable

parameter to augment self-loop skip connection. The filters de-

signed by [9, 14, 17, 23] are polynomials or rational polynomials of

original or transformed graph Laplacian matrices, with learnable

polynomial coefficients. Graph Attention Networks[22] proposes

to assign attention weight to different nodes in a neighborhood,

which can be considered as a flexible learnable graph convolutional

filter that is a parametric attention function of 𝑿 and 𝑨.
Among all these existing graph filters, the fixed filters use the

same propagation strategy for all the graph data, though some of

them noticed the importance to use different propagation rules [6]

and tried to include diverse propagation rules, but their designed

filter is still a fixed combination of all the rules for all graphs and

therefore still lack flexibility. The learnable filters are adaptive to

the graph data, but the existing learnable filters are either too simple

or too complex, the simple ones is not adaptive enough while the

complex ones would have huge computation cost and are easy to

overfit for simple graphs.

2.3 Graph Generator
To systematically analyze the performance of different GNN filters,

we test their performance under different graph data with different

properties, i.e., graphs with different 𝑿 , 𝑨, 𝒀 . Usually, the node

classification task requires node features (𝑿) and the graph struc-

ture (𝑨) to be correlated to the intrinsic node labels (𝒀), so taking

both correlations into consideration may enhance the performance

of this task. To better understand the roles played by each com-

ponent, we assume the graphical model to generate a graph data

is as described in Fig. 1(a). To disclose the relationship between

diverse graph filters and properties of graphs, we further make

assumptions on how X and A are generated when Y is given. The

generation of 𝒀 , 𝑿 |𝒀 , and 𝑨|𝒀 are introduced as follows.

Generating 𝒀 : Each node is randomly assigned with a class

label with probability proportional to its class size. We assume each

class 𝑐 is associated with 𝑛𝑐 nodes.

Generating 𝑿 |𝒀 : We assume that node features are sampled

from a distribution determined by their labels. For example, we can

sample node features of class 𝑐 from a multivariate Gaussian distri-

bution with the parameters conditioned on 𝑐 :𝑿 (𝑐) ∼ N(𝝁 (𝑐) , 𝚺(𝑐)).
We may also sample node features of class 𝑐 from a circular distri-

bution with radius 𝑟𝑐 and noise 𝑛𝑜𝑖𝑠𝑒𝑐 conditioned on c.

Generating 𝑨|𝒀 : We use the classic class-aware graph gener-

ator: stochastic block model (SBM [10]), to generate graph struc-

ture conditioned on labels. SBM has several assumptions: (1) edges

are generated via Bernoulli distributions independently and (2)

the parameter of the Bernoulli distribution is determined by the

classes of the corresponding pair of nodes 𝑣𝑖 and 𝑣 𝑗 , i.e.,𝐴𝑖 𝑗 |𝒀𝑖 , 𝒀𝑗 ∼
𝐵𝑒𝑟 (𝑝𝒀𝑖𝒀𝑗

), where 𝑝𝒀𝑖𝒀𝑗
is a parameter determined by the two

corresponding classes. In the simplest case, if a pair of nodes (i,j)

belong to same class, then the probability that this pair is linked

is 𝑝𝒀𝑖𝒀𝑗
= 𝑝 , otherwise, 𝑝𝒀𝑖𝒀𝑗

= 𝑞. We call 𝑝 internal density and

𝑞 external density. We assume 𝑝 ≥ 𝑞, both 𝑝 and 𝑞 should be the

input of the SBM model. Degree Corrected SBM (DCSBM, [11]) is

a variation of SBM, it adds a parameter 𝛾 to control the “power-
law” exponent of degree distribution among nodes. Figure 1(b-e)

demonstrates examples of synthetic graphs generated by SBM and

DCSBM with different graph structure properties.

Plus, we investigate key properties of graph data to characterize

different graphs in A.2.

3 THE ASSESSMENT TOOL: GRAPH FILTER
DISCRIMINANT SCORE (GFD)

In this section, we introduce a novel assessment tool for analyzing

graph filters. We first review the Fisher score [7], which is widely

used to quantify the linear separability of two sets of features. With

the Fisher score, we propose the GFD metric to evaluate the graph

2

Demystifying Graph Neural Networks with Graph Filter Assessment KDD’20 workshop, August 2020, San Diego, CA, USA

X

Y

A

(a) 𝒀 ,𝑿 ,𝑨 dependency

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) SBM: 𝑝=0.3,𝑞=0.05
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(c) SBM: 𝑝=0.1, 𝑞=0.02
0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(d) DCSBM: 𝑝=0.3,𝑞=0.05,𝛾 =−0.9
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) DCSBM:𝑝=0.1,𝑞=0.02,𝛾 =−0.6

Figure 1: (a) shows dependency between 𝒀 , 𝑿 and𝑨. (b), (c) are dense and sparse graph generated by SBM, which have uniform
degree distribution. (d), (e) are dense and sparse graph generated by DCSBM, which have power-law degree distribution.

filter on how well it can separate nodes in different classes.

Fisher Score. Given two classes of features 𝑿 (𝑖)
, 𝑿 (𝑗)

, the Fisher

Score is defined as the ratio of their inter-class distance to inner-

class distance under the best linear projection𝒘 of the raw feature:

𝐽 (𝑿 (𝑖) ,𝑿 (𝑗)) = max

𝒘∈R𝑑
(𝒘⊤ (𝝁 (𝑖) − 𝝁 (𝑗)))2

𝒘⊤ (𝚺(𝑖) + 𝚺
(𝑗))𝒘

where 𝝁 (𝑖)
and 𝝁 (𝑗)

are the mean vector of𝑿 (𝑖)
and𝑿 (𝑗)

, 𝚺
(𝑖)

and

𝚺
(𝑗)

are the co-variance matrix of 𝑿 (𝑖)
and 𝑿 (𝑗)

respectively,𝒘 is

the linear projection vector which we can understand as a rotation

of the coordinate system, and the max𝒘 operation is to find the

best direction in which these two class of nodes are most separable.

A larger value of 𝐽 indicates higher separability. Given features,

we can get rid of the max𝒘 , the derivation is given in Appendix

A.3.1. We expand Fisher Score to multiple classes by considering a

weighted sum of Fisher Score of each pair of classes as follows:

𝐹𝑆 (𝑋) =
∑
𝑖≠𝑗

𝛽𝑖 𝑗 𝐽 (𝑋 (𝑖) , 𝑋 (𝑗)), 𝛽𝑖 𝑗 =
𝑛𝑖 + 𝑛 𝑗

(𝐶 − 1)∑𝑘 𝑛𝑘

where 𝑛𝑐 is the number of nodes in class 𝑐 . In the implementation,

when the correlation between most pair of features are weak, i.e.

most non-diagonal entries in the co-variance matrix are 0, we can

keep only the diagonal entries to reduce the huge computation cost

brought by the inverse operation.

The Fisher Score can be extended to evaluate non-linearly sep-

arable data in addition to linearly separable data. We claim the

rationale of such measure by showing that the graph convolution

can actually help non-linearly separable data to be linearly separa-

ble if the graph filter is chosen properly for a given graph. We give

examples on graphs with circular feature distributions to demon-

strate this conclusion in Appendix A.3.2. We find that if the graph

structure (G) is correlated with the task (𝒀), a proper filter alone is
powerful enough to empower GNNs with non-linearity, without

any non-linear activation. This phenomenon is also supported by

the promising result of SGC [24], which removes all the non-linear

activations in the original GCN architecture.

Graph Filter Discriminant Score. As mentioned before, the

key component that empowers GNNs is the graph filter F (G).
Intuitively, based on the above empirical results and since we use a

linear classifier in the end for node classification task, an effective

filter should make the representations of nodes in different classes

more linearly separable. Therefore, we propose to use Fisher Scores

of the node representations before and after applying the graph

filter in order to evaluate this filter. We define the GFD Score for

the filter F (G) with respect to feature matrix 𝑿 as:

𝐺𝐹𝐷

(
F (G),𝑿

)
= 𝐹𝑆 (F (G)𝑋) − 𝐹𝑆 (𝑋)

=
∑
𝑖≠𝑗

𝛽𝑖 𝑗 𝐽
((
F (G)𝑿

) (𝑖)
,
(
F (G)𝑿

) (𝑗)) − 𝐽
(
𝑿 (𝑖) ,𝑿 (𝑗))

The proposed GFD would be a reasonable metric to evaluate a

graph filter’s effectiveness, and a better graph filter for a given

graph should have a higher GFD score on that graph.

4 CASE STUDY: ASSESSING GRAPH FILTER
WITH GFD

The GFD Score we introduced in the above section can be applied

to any filter on any given graph. With the help of this assessment

tool, we now examine some existing filters and try to answer the

two fundamental questions: (1) Is there a best filter that works for
all graphs? (2) If not, what are the properties of graph data that will
influence the performance of graph filters?

We find that most of the current GNNs fall into the following

filter family: {(ˆ𝑨)𝑘 }, where the base ˆ𝑨 is a normalized adjacency

matrix, and 𝑘 is the order of the filter. We provide a case study by

empirically analyzing how the aforementioned graph properties

can affect the optimal choice among this family of graph filters.

Note that for other variants of GNN filter, the analysis is similar.

For simplicity, we study the roles of the normalization strategy (
ˆ𝑨)

and the order to use (𝑘) separately, using our assessing tool to show

if there exists an optimal choice of
ˆ𝑨 and 𝑘 for different graph data.

If not exist, we determine the factors that will influence the choice.

Through the analysis, we use the SBM and DCSBM to generate

the structures of synthetic graphs, and use multivariate Gaussian

distributions to generate the node features. Without lost of gener-

ality, we focus on the two-class classification. We generate graphs

with different properties introduced in Section 2 that are controlled

by the following hyper-parameters: mean 𝜇 (𝑐) and covariance ma-

trix Σ(𝑐)
for node feature in class 𝑐 , class size 𝑛𝑐 , internal density

𝑝 , external density 𝑞 and the power-law coefficient 𝛾 . Our gener-

ated synthetic graphs can cover a large range of possible graph

properties, and are representative for analyzing different filters.

Analyzing Filter’sNormalization StrategyWe consider three

normalization ways, including row normalization 𝑫−1𝑨, column

normalization 𝑨𝑫−1
, and symmetric normalization 𝑫−1/2𝑨𝑫−1/2

.

We calculate GFD scores of these three graph filters for graphs

generated with different parameters. As shown in Fig. 2, each nor-

malization strategy may outperform others for some graphs, thus,

3

KDD’20 workshop, August 2020, San Diego, CA, USA Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun

Figure 2: How power law coefficient and label ratio influence the choice of normalization strategy. Parameters of graph gen-
erator are given in A.4.3

Figure 3: How density and density gap influence the choice of order. Parameters of graph generator are given in A.4.3

we have the conclusion that no single normalization strategy is
optimal for all graphs.1

Note that, with the same order, each filter has the same receptive

field, and different normalization strategies affect only on how to as-

sign weights to the neighboring nodes. The row normalization strat-

egy simply takes the mean of features of the node’s neighbors. For

node 𝑣 , its representation after the filter is (F (G)𝑿)𝑣 =
∑
𝑢∈N𝑣

𝑿𝑢

𝑑𝑣
.

Clearly, this would help to keep every node’s new representations

in the same range. Using a column-normalization strategy is similar

to the PageRank algorithm. While a node propagates its features to

neighbors, this normalization strategy takes its degree into account,

andmay keep a larger representation for higher-degree nodes. Thus,

column normalization can be helpful when the when node degree

plays an important role for classification. Symmetric normalization

combines the properties from both the row and the column nor-

malization. Even in the case where row and column normalization

do not perform well, symmetric normalization may still lead to

promising performance. We then examine which graph properties

influence our choice of the optimal normalization strategy.

Power-law Coefficient (𝛾) is an important factor that influences

the choice of optimal normalization strategy. As shown in Fig.

2, when power-law coefficient 𝛾 decreases, row normalization’s

performance gradually exceed the performance of others. This is

because row normalization helps to keep node representations in

the same range, so that large representations of high degree nodes

can be avoided. Therefore, it prevents nodes with similar degrees

getting closer to each other and avoids messing the classification

tasks where node degrees are not important.

Label Ratio (𝑛1

𝑛2

) also has big effects. According to Fig. 2, we

conclude that when the size of each class becomes more imbalanced,

column normalization tends to be helpful. This is because column

normalization better leverages degree property during representa-

tion smoothing, the representations obtained after propagation are

1
We also provide examples in A.4 to illustrate that each normalization and order will

outperform others in some specific graph data.

no longer within a same range, and the higher-degree nodes may

have larger representations. With column normalization, nodes

in large-size classes tend to have larger representation since they

are more likely to have higher degree. This can help nodes within

different classes become more separable.

Analyzing Filter’s Order We then analyze what would be the

best order for filters. With a high-order filter, a node can obtain

information from its further neighbors, and thus the amount of

information it receives during the feature propagation increases.

But do we always need more information under any circumstances?

The answer is no. We find that, for different graphs, the order that
results in the best performance would be different, but should be in a
reasonable range1. We then explore the factors that influence the

choice of order. As pointed out in [15], when the order is too big, all

the node representations will converge after feature propagation

and the classification would be even more difficult, so we only

consider orders within a small range in the following.

Density ((𝑛
2

1
+𝑛2

2
)𝑝+2𝑛1𝑛2𝑞

(𝑛1+𝑛2)2) influences the choice of optimal order

a lot. As shown in Fig. 3, for orders within reasonable range, when

the density grows, filters with higher order tend be better. Note

that the feature propagation scheme is based on the assumption

that nodes in the same class have a closer connection. So, when

the density increases, the connections between nodes get closer.

Therefore, high-order filters can help gather richer information and

thus reduce the variance of the node’s new representations in same

class, i.e. it helps same-class nodes get smoother representations.

Density Gap (𝑝/𝑞) also has a big impact. According to Fig. 3,

for orders within reasonable range, when the density gap increases,

higher-order filters tend to be preferred. This is because when the

density gap decreases, for a node, the size of same-class neighbors

becomes similar to the size of different-class neighbors. Thus high-

order graph convolution operations will mix the representations of

all nodes regardless of classes and make node classification more

difficult. So for graphs with a small density gap, low-order filters

are preferred. An extreme case would be when the density gap is

4

Demystifying Graph Neural Networks with Graph Filter Assessment KDD’20 workshop, August 2020, San Diego, CA, USA

close to 1, it indicates the graph structure and node class are nearly

independent, then, we should use identity matrix (i.e. order=0) as

graph filter and depend fully on the node features instead of both

graph structure and node features.

5 LEARNING TO FIND THE OPTIMAL GRAPH
FILTER

Now we know that using different graph filters for different graphs

is important, then let’s consider: Can we design an algorithm to
adaptively find the appropriate filter for a given graph? We develop a

simple but powerful model: Adaptive Filter Graph Neural Network

(AFGNN). For a given graph, AFGNNs can learn to combine an

effective filter from a set of filter bases, guided by GDF Scores.

Adaptive Filter Graph Neural Network (AFGNN). For sim-

plicity, we only consider finding the optimal filter for one fam-

ily of graph convolutional filters: F(G) = {𝑰 , 𝑫̃−1/2 ˜𝑨𝑫̃−1/2, · · · ,
(𝑫̃−1/2 ˜𝑨𝑫̃−1/2)𝑘 , 𝑫̃−1 ˜𝑨, · · · , (𝑫̃−1 ˜𝑨)𝑘 , ˜𝑨𝑫̃−1, · · · , (˜𝑨𝑫̃−1)𝑘 }, where
𝑘 is the maximum order. Note that, we also include the identity

matrix, which serves as a skip-connection, to maintain the origi-

nal feature representation. We denote the above 3𝑘 + 1 filters as

F𝑏𝑎𝑠𝑒
1

(G), · · · , F𝑏𝑎𝑠𝑒
3𝑘+1 (G), the 𝑙-th layer of AFGNN is defined as a

learnable linear combination of these filter bases:

F𝐴𝐹𝐺𝑁𝑁 (G) (𝑙) =
3𝑘+1∑
𝑖=1

𝛼
(𝑙)
𝑖

F𝑏𝑎𝑠𝑒
𝑖 (G),where 𝛼

(𝑙)
𝑖

=
exp(𝜓 (𝑙)

𝑖
)∑

3𝑘+1
𝑗=1 exp(𝜓 (𝑙)

𝑗
)

where𝜓 (𝑙)
is the learnable vector to combine base filters and 𝛼 (𝑙)

is its normalized version. This formula can also be interpreted as a

polynomial graph spectral filter with diverse graph laplacians [5].

Comparing to GNNs with fixed filters, AFGNN can adaptively

learn a filter based on any given graph. As no single fixed filter

can perform optimally for all graphs, an adaptive filter should have

more capacity to learn better representations. Compared to other

GNNs with learnable filters such as GAT, AFGNN would be compu-

tationally cheaper and can achieve similar or better performance

on most datasets. If adding more complex filters into the filter base

family, AFGNN can be more powerful.

Training Loss. There are three ways for training, which leads

to the following varieties of AFGNN:

AFGNN𝐶𝐸 : We can simply optimize the model via the downstream

tasks, i.e., node classification. But as most of the semi-supervised

node classification datasets only contain limited training data, the

enlarged filter space will make the model prone to over-fitting.

AFGNN𝜆 : We consider including the GFD as an extra loss term:

L = (1 − 𝜆)L𝐶𝐸 + 𝜆L𝐺𝐹𝐷

whereL𝐺𝐹𝐷 = −∑𝐿
𝑙=1

𝐺𝐹𝐷
(
F𝐴𝐹𝐺𝑁𝑁 (G) (𝑙) , 𝐻 (𝑙−1))

is defined as

the cumulative negation of GFD Score for the learned adaptive filter

F𝐴𝐹𝐺𝑁𝑁 (G) (𝑙) at each layer with respect to its input representa-

tion𝐻 (𝑙−1)
, L𝐶𝐸 is the cross-entropy loss of the node classification,

and 𝜆 ∈ [0, 1] trades off the two loss components. For this case, the

model is trained by classification loss and GFD loss simultaneously,

and thus can learn a better filter that combines the base filters. Since

GFD is mainly affected by the feature propagation, so we mainly

want to use GFD as a guidance to optimize the filter weights and

do not count on it much to optimize linear transformation weights.

AFGNN𝑝𝑟 : We can also use the GFD loss to pretrain the graph

filters. Since the main purpose we introduced the GFD loss is to

guide the learning of the combination weight of the graph filters,

we can first leverage only the GFD loss L𝐺𝐹𝐷 to pretrain the graph

filter, then we optimize the linear transformation parameter𝑾 (𝑙)
s

and finetune the graph filter with classification loss L𝐶𝐸 .

6 EXPERIMENTS
In this part, we assess if AFGNN can learn powerful filters and

perform well for node classification.

DatasetsWe first evaluate AFGNN on five widely used bench-

mark datasets: Cora, Citeseer, Pubmed [21], Brazil Air Traffic, and

Europe Air Traffic [19]. Among them, we found Cora, Citeseer and

Pubmed are not sensitive enough to differentiate the models, so we

also generate some synthetic datasets that can better evaluate the

pros and cons of each model. With previous analysis, we generate

two synthetic datasets: SmallGap and SmallRatio. SmallGap is for

the case in which the density gap of the graph is close to 1. This

indicates the graph structure does not correlate much to the task,

thus we should trust the features more. SmallRatio corresponds to

the case in which the dataset is imbalanced, i.e. the size of one class

is clearly smaller than the other, and filter F (G) = (𝑨𝑫−1)2 is the
best. The properties of these two synthetic datasets may widely oc-

cur in real-world datasets, we generate a sampled version of Open

Academic Graph called “OAG Sampled” to justify hard cases may

exist in real-world datasets. Detailed description and statistics of

all the datasets are shown in A.5 .

Baselines and Settings.We compare against 5 baselines, includ-

ing GCN, GIN, SGC, GFNN, and GAT. To make fair comparisons,

for all the baselines, we set the number of layers (or orders) to be 2.

For all the benchmark datasets, we follow the data split con-

vention [12, 25]. For the synthetic dataset and the OAG Sampled

dataset, we conduct 5-fold cross-validation. Each time we pick the

model with highest validation accuracy and record its test accuracy.

For each dataset partition, we run the experiment 10 times and

compute the mean and standard deviation of recorded test accuracy.

Details about data split and experiment settings are provided in A.6

Hyper Parameter Tuning for AFGNN𝜆 For AFGNN𝜆 , we do

a grid search for the best 𝜆 from 0 to 1, details can be found in A.7

and the performance of AFGNN𝜆 is shown in Fig. 7. We denote by

AFGNN𝜆∗ the model with the best 𝜆∗ we found in later parts.

Classification Performance. As is shown in Table 1, our pro-

posed AFGNN model can consistently achieve competitive test

accuracy. On Pubmed, Brazil, Europe, SmallGap, SmallRatio, and

OAG Sampled, AFGNN𝑝𝑟 can achieve the best results among all the

baseline models. On Citeseer , AFGNN𝜆∗ is the best among all the

models. On Cora, though GAT outperforms our proposed model,

however, as shown in Table 5 in A.8, GAT takes a longer time to

train and converge, and has more memory cost. Also, when the

given graph is simple, GAT would suffer unavoidable overfitting.

We further compare AFGNN𝐶𝐸 , AFGNN𝜆∗ , AFGNN𝑝𝑟 to exam-

ine the role of GFD loss. The AFGNN𝐶𝐸 performs quite poorly on all

datasets, implying that the larger search space of the filter without

GFD loss is prone to over-fitting, while AFGNN𝜆∗ and AFGNN𝑝𝑟

perform much better. Also, AGFNN𝑝𝑟 tends to perform better on

most datasets compared to AFGNN𝜆∗ , this indicates pretraining

5

KDD’20 workshop, August 2020, San Diego, CA, USA Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun

Dataset GCN GIN SGC GFNN GAT AFGNN𝐶𝐸 AFGNN𝜆∗ AFGNN𝑝𝑟

Cora 80.85±0.43 76.37±0.75 81.14±0.05 80.42±0.70 82.90± 0.01 60.70±1.86 81.03±0.42 81.54 ±0.70
Citeseer 71.19±0.60 67.85±0.52 71.91±0.01 71.15±0.55 72.20 ±0.07 60.93±0.67 72.57±0.79 71.80±0.01
Pubmed 79.08±0.23 74.23±1.76 78.50±0.00 79.12±0.23 78.50±0.01 74.11±0.80 78.86±0.16 79.20±0.01
Brazil 45.32 ± 8.15 36.63±8.08 58.41±8.42 61.86±6.30 34.80± 10.81 48.00±12.97 60.02±14.20 62.14± 8.39
Europe 49.70 ± 4.60 31.95±5.82 54.29 ± 3.56 56.46 ± 3.66 43.01 ± 5.73 43.86 ± 11.00 55.23 ± 8.30 57.98 ± 4.68
SmallGap 82.78±0.20 76.83±0.87 74.53±0.94 83.38±0.30 85.26±0.07 90.85±3.24 99.91±0.04 99.95±0.01
SmallRatio 87.79±1.05 77.82±3.40 87.14±0.19 83.75±0.20 82.10±0.01 74.45±4.81 85.69±3.69 93.80±1.11

OAG Sampled 91.77±5.67 85.16±4.58 95.6±4.15 91.63±5.74 95.05±4.36 89.82±5.70 87.90±7.19 96.34±0.45

Table 1: Test accuracy of different models. The best result is bold, the second best is underlined

with GFD can help learn a better graph filter so the GFD Score is

indeed a powerful tool for assessing the effectiveness of the filter.

7 CONCLUSION
Understanding the graph filters in GNNs is very important, as it can

help to determine whether a GNN will work on a given graph, and

can provide important guidance for GNN design. In this paper, we

first propose the Graph Filter Discriminant Score as an assessment

tool for graph filter evaluation, and then apply it to analyze a family

of existing filters. We find that no single fixed filter can produce

optimal results on all graphs so an adaptive graph filter would

be more powerful. We then develop a simple but effective model:

AFGNN, which can learn to combine a family of filters and obtain a

task-specific filter. We also propose to add the negative GFD Score

as an extra term to the objective function, it can act as a guidance

for the model to learn a more powerful filter. Experiments show that

our approach outperforms many existing GNNs on both benchmark

and synthetic graphs. Future works can be focused on enlarging

the filter family to further enhance the performance.

REFERENCES
[1] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, andWei Wang. 2019.

SimGNN: A Neural Network Approach to Fast Graph Similarity Computation. In

Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019. 384–392.
https://doi.org/10.1145/3289600.3290967

[2] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph

Convolutional Networks via Importance Sampling. CoRR abs/1801.10247 (2018).

arXiv:1801.10247 http://arxiv.org/abs/1801.10247

[3] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-

tional Networks with Variance Reduction. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018. 941–949. http://proceedings.mlr.press/v80/chen18p.html

[4] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph

Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019. 257–266.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. InAdvances
in neural information processing systems. 3844–3852.

[6] Nima Dehmamy, Albert-László Barabási, and Rose Yu. 2019. Understanding the

Representation Power of Graph Neural Networks in Learning Graph Topology.

In Advances in Neural Information Processing Systems. 15387–15397.
[7] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.

Annals of eugenics 7, 2 (1936), 179–188.
[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[9] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets

on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis 30, 2 (2011), 129–150.

[10] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. 1983. Sto-

chastic blockmodels: First steps. Social networks 5, 2 (1983), 109–137.
[11] Brian Karrer and Mark EJ Newman. 2011. Stochastic blockmodels and community

structure in networks. Physical review E 83, 1 (2011), 016107.

[12] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. https://openreview.net/forum?id=SJU4ayYgl

[13] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Dif-

fusion Improves Graph Learning. In Advances in Neural Information Processing
Systems. 13333–13345.

[14] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2018.

Cayleynets: Graph convolutional neural networks with complex rational spectral

filters. IEEE Transactions on Signal Processing 67, 1 (2018), 97–109.

[15] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[16] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli.

2019. Graph Matching Networks for Learning the Similarity of Graph Struc-

tured Objects. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. 3835–3845.
http://proceedings.mlr.press/v97/li19d.html

[17] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. 2019.

Lanczosnet: Multi-scale deep graph convolutional networks. arXiv preprint
arXiv:1901.01484 (2019).

[18] Takanori Maehara. 2019. Revisiting Graph Neural Networks: All We Have is

Low-Pass Filters. arXiv preprint arXiv:1905.09550 (2019).
[19] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:

Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
385–394.

[20] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In European Semantic Web Conference. Springer, 593–607.
[21] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[22] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. https://openreview.net/forum?

id=rJXMpikCZ

[23] WOK Asiri Suranga Wijesinghe and Qing Wang. 2019. DFNets: Spectral CNNs

for Graphs with Feedback-Looped Filters. In Advances in Neural Information
Processing Systems. 6007–6018.

[24] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,

and Kilian QWeinberger. 2019. Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153 (2019).

[25] Jun Wu, Jingrui He, and Jiejun Xu. 2019. Net: Degree-specific graph neural

networks for node and graph classification. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 406–
415.

[26] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

[27] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-

erful are Graph Neural Networks?. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. https:

//openreview.net/forum?id=ryGs6iA5Km

[28] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 974–983.

6

https://doi.org/10.1145/3289600.3290967
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1801.10247
http://proceedings.mlr.press/v80/chen18p.html
https://openreview.net/forum?id=SJU4ayYgl
http://proceedings.mlr.press/v97/li19d.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Demystifying Graph Neural Networks with Graph Filter Assessment KDD’20 workshop, August 2020, San Diego, CA, USA

A APPENDIX
A.1 Summary of Graph Filters for Some

Existing GNNs.
Thework of GCN [12] use the filter F (G) = 𝑫̃−1/2 ˜𝑨𝑫̃−1/2

where
˜𝑨

=𝑨+𝑰 is the self-augmented adjacencymatrix, and 𝑫̃ = diag(˜𝒅1, ..., ˜𝒅𝑛)
is the corresponding degree matrix with

˜𝒅𝑖 =
∑𝑛

𝑗=1
˜𝑨𝑖 𝑗 .

SGC and GFNN [18, 24] use the filter F (G) = (𝑫̃−1/2 ˜𝑨𝑫̃−1/2)𝑘
that includes a pre-defined exponent 𝑘 .

Some works such as GIN [27] propose to use F (G) = 𝑨 + 𝜖𝑰
with a learnable parameter 𝜖 to augment self-loop skip connection.

GAT[22] proposes to assign attention weight to different nodes

in a neighborhood, which can be considered as a flexible learnable

graph convolutional filter that is a parametric attention function of

𝑿 and 𝑨.
Table 2 summarized the graph filters for some existing GNNs.

Those GNNs are regard as baselines for our work.

Table 2: A Summary of Graph Filters of Baseline GNNs. 𝜖 is
a learnable scaler, k is a pre-defined hyper parameter, N𝑖 is
the neighborhood of node 𝑖, 𝛼 is a learnable weight vector,
and | | indicates concatenation.

GNNs Graph Convolutional Filters

GCN [12] F(G) = ˜𝑫−1/2 ˜𝑨 ˜𝑫−1/2

SGC [24] F(G) = (˜𝑫−1/2 ˜𝑨 ˜𝑫−1/2)𝑘
GFNN [18] F(G) = (˜𝑫−1/2 ˜𝑨 ˜𝑫−1/2)𝑘
GIN [27] F(G) = 𝑨 + 𝜖𝑰

GAT [22] ∀𝑖, 𝑗 , F(G)𝑖 𝑗 =
𝑒𝑥𝑝 (𝜎 (𝜶 [𝑾𝑿𝑖 | |𝑾𝑿 𝑗]))∑

𝑘∈N𝑖 𝑒𝑥𝑝 (𝜎 (𝜶 [𝑾𝑿𝑖 | |𝑾𝑿𝑘])) 𝑨𝑖 𝑗

A.2 Graph Properties
We then investigate some key properties of graph data to charac-

terize different graphs as follows.

Density of Graph. The “density of graph” is the ratio of the

number of existing edges and the number of node pairs in a graph:

(𝑛2

1
+𝑛2

2
)𝑝+2𝑛1𝑛2𝑞

(𝑛1+𝑛2)2 , it controls the overall connectivity of the graph.

Density Gap.We call 𝑝/𝑞 the “density gap”, which controls how

closely the graph generated by SBM correlates with labels.

Power-lawCoefficient.The “power-law coefficient” 𝛾 in DCSBM
is to control the degree distribution among nodes, it usually is

within range (−1, 0). With a small 𝛾 is, the exponent of power-law

would be big. When 𝛾 = 0, DCSBM is exactly same as SBM.

Label Ratio. Given a pair of classes (𝑖, 𝑗), we care about its

label ratio, which is defined as 𝑛𝑖/𝑛 𝑗 , without lost of generality,
we assume the class size satisfies 𝑛 𝑗 ≥ 𝑛𝑖 , then the label ratio

should be within range (0, 1], the smaller the label ratio is, the more

imbalanced the classes are.

Feature Statistics. Given a class of nodes, we care about the

“mean” and “co-variance matrix” of node features. These feature
statistics would also be important for our later analysis.

Among them, density of graph, density gap, and power-law

coefficient are closely related to 𝑨, label ratio is closely related to

𝒀 , and feature statistics is closely related to 𝑿 .

A.3 Details About GFD
A.3.1 Closed Form Solution of Fisher Score.

Proof. According to the conclusions in linear discriminant anal-

ysis, themaximum separation occurswhen𝒘 ∝ (𝚺(𝑖)+𝚺(𝑗))−1 (𝝁 (𝑖)−
𝝁 (𝑗)). Note that, when we want to apply this fisher linear discrim-

inant score in our problem, the linear transformation part in our

classifier an in GNN will help to find the best𝒘 . Thus, we can di-

rectly plug the optimum solution𝒘∗ = 𝑐 (𝚺(𝑖) +𝚺(𝑗))−1 (𝝁 (𝑖) −𝝁 (𝑗))
into this formula, here 𝑐 is a scalar. Then, we’ll have:

𝐽 (𝑿 (𝑖) ,𝑿 (𝑗)) = max

𝒘∈R𝑑
(𝒘⊤ (𝝁 (𝑖) − 𝝁 (𝑗)))2

𝒘⊤ (𝚺(𝑖) + 𝚺
(𝑗))𝒘

=

(
(𝑐 (𝚺(𝑖) + 𝚺

(𝑗))−1 (𝝁 (𝑖) − 𝝁 (𝑗)))⊤ (𝝁 (𝑖) − 𝝁 (𝑗))
)
2

𝑤⊤ (𝚺(𝑖) + 𝚺
(𝑗)) (𝑐 (𝚺(𝑖) + 𝚺

(𝑗))−1 (𝝁 (𝑖) − 𝝁 (𝑗)))

=

(
(𝝁 (𝑖) − 𝝁 (𝑗))⊤ (𝚺(𝑖) + 𝚺

(𝑗))−1 (𝝁 (𝑖) − 𝝁 (𝑗))
)
2

(𝝁 (𝑖) − 𝝁 (𝑗))⊤ (𝚺(𝑖) + 𝚺
(𝑗))−1⊤ (𝝁 (𝑖) − 𝝁 (𝑗))

= (𝝁 (𝑖) − 𝝁 (𝑗))⊤ (𝚺(𝑖) + 𝚺
(𝑗))−1⊤ (𝝁 (𝑖) − 𝝁 (𝑗))

□

Thuswe have 𝐽 (𝑿 (𝑖) ,𝑿 (𝑗)) = (𝝁 (𝑖)−𝝁 (𝑗))⊤ (𝚺(𝑖)+𝚺(𝑗))−1⊤ (𝝁 (𝑖)−
𝝁 (𝑗)).

A.3.2 Fisher Score for Non-linearly Separable Data Evaluation. As
shown in Figure 4(a)∼(d), if we use a proper filter, the convolutional
operation can transform three circular distributions, which are non-

linearly separable, into three linearly separable clusters. Moreover,

as shown in Figure 4(e)∼(h), even if the original features of different

classes are sampled from the same distribution, the proper graph

filter can help to linearly separate the data. This phenomenon shows

that if the graph structure (G) is correlated with the task (𝒀), a
proper filter alone is powerful enough to empower GNNs with

non-linearity, without any non-linear activation.

A.3.3 Illustration of Graph Generator for Figure 4. For Figure 4,
both graphs include three classes of the same size and has structure

generated by SBM with 𝑝 = 0.6 and 𝑞 = 0.03. The first graph’s fea-

ture follows a circular distribution with radius 1,0.9,0.8 and Gauss-

ian noise 0.02 for each class. The second graph’s feature follows a

circular distribution with radius 1 and Gaussian noise 0.02 for the

three classes.

A.4 No Best Filter for All Graphs
A.4.1 Examples of “No Best Normalization Strategy for All”. Figure
5 provides two examples to show there is no best normalization

strategy for all graphs. For both examples, we fix the order to be 2.

The first row shows a case in which row normalization is better

than the other two. The corresponding graph contains 2 classes of

nodes with size 500. The graph structure is generated by DCSBM

with 𝑝 = 0.3, 𝑞 = 0.05, power law coefficient 𝛾 = −0.9. The features
for two classes satisfy multivariate distribution with an identity

co-variance matrix, and with mean (0.2,0.2) and (0,0) respectively.

In this example, we can clearly see that with other two normaliza-

tion strategy, some high-degree hubs show up in the upper right

corner from both class, which is harmful for classification. We gen-

erate this example to illustrate the benefit of row normalization

7

KDD’20 workshop, August 2020, San Diego, CA, USA Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

class1
class2
class3

(a) 𝐹𝑆 (𝑿)=7.77e-06
0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15

class1
class2
class3

(b) 𝐹𝑆 ((F(G))𝑿)=0.02
0.02 0.01 0.00 0.01 0.02

0.02
0.01
0.00
0.01
0.02
0.03 class1

class2
class3

(c) 𝐹𝑆 ((F(G))2𝑿)=0.91
0.0125

0.0100
0.0075

0.0050
0.0025

0.0000
0.0025

0.0050

0.010
0.005
0.000
0.005
0.010
0.015 class1

class2
class3

(d) 𝐹𝑆 ((F(G))3𝑿)=36.4

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

class1
class2
class3

(e) 𝐹𝑆 (𝑿)=2.02e-05
0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20 class1

class2
class3

(f) 𝐹𝑆 ((F(G))𝑿)=0.02
0.02 0.01 0.00 0.01 0.02 0.03

0.03
0.02
0.01
0.00
0.01
0.02
0.03 class1

class2
class3

(g) 𝐹𝑆 ((F(G))2𝑿)=1.27
0.0050

0.0025
0.0000

0.0025
0.0050

0.0075
0.0100

0.0125
0.0150

0.005
0.000
0.005
0.010
0.015
0.020 class1

class2
class3

(h) 𝐹𝑆 ((F(G))3𝑿)=51.7

Figure 4: Each row corresponds to a graph, F (G) = 𝑫̃−1/2 ˜𝑨𝑫̃−1/2. The Fisher Score is provided in each sub-figure’s caption. The
graph generator parameters are given in A.3.3

4 3 2 1 0 1 2 3 4
3
2
1
0
1
2
3

class1
class2

(a) Initial Feature.FS=0.0212

0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16 class1

class2

(b) Row-nomalized.FS=12.3234

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0
class1
class2

(c) Column-nomalized.FS=0.1371

0.0 0.1 0.2 0.3 0.4 0.5
0.00
0.05
0.10
0.15
0.20
0.25 class1

class2

(d) Symmetric-nomalized.FS=0.9342

3 2 1 0 1 2 3
3
2
1
0
1
2
3
4

class1
class2

(e) Initial Feature.FS=0.1267

0.155
0.160

0.165
0.170

0.175
0.180

0.185
0.190

0.195
0.14

0.15

0.16

0.17

0.18 class1
class2

(f) Row-nomalized.FS=0.5820

0.10 0.12 0.14 0.16 0.18 0.20
0.08

0.10

0.12

0.14

0.16

0.18 class1
class2

(g) Column-nomalized.FS=32.6436

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18 class1

class2

(h) Symmetric-nomalized.FS=24.1008

Figure 5: Examples of “No Best Normalization Strategy for All”

because row normalization would be very helpful for a graph with

power law degree distribution, which contains some nodes with

unusually large degree (those nodes are called hubs), since it can

help avoid those hubs obtaining larger representations and thus be

mis-classified.

The second row shows a case in which column normalization

is better than the other two. The corresponding graph contains

2 classes of nodes with size 900 and 100 respectively. The graph

structure is generated by SBM with 𝑝 = 0.3, 𝑞 = 0.2. The features

for two classes satisfy multivariate distribution with an identity

co-variance matrix, and with mean (-0.2,-0.2) and (0.2,0.2) respec-

tively. We generate this example to illustrate the benefit of column

normalization because under this case, we should consider taking

more degree information into consideration. Therefore, column

normalization would be more helpful.

A.4.2 Examples of “No Best Order for All”. Figure 6 provides two
examples to show there is no best order for all graphs. For both

examples, we fix the normalization strategy to be row normalization,

and varies order to be 2, 4, 6.

The first row shows a case in which small order is better than

the large ones. The corresponding graph contains 2 classes of nodes

with same size 500. The graph structure is generated by SBM with

𝑝 = 0.215, 𝑞 = 0.2. The features for two classes satisfy multivariate

distribution with an identity co-variance matrix, and with mean

(0.5,0.5) and (0,0) respectively.

8

Demystifying Graph Neural Networks with Graph Filter Assessment KDD’20 workshop, August 2020, San Diego, CA, USA

The second row shows a case in which large order is better than

the smaller ones. The corresponding graph contains 2 classes of

nodes with same size 500. The graph structure is generated by

SBM with 𝑝 = 0.75, 𝑞 = 0.6. The features for two classes satisfy

multivariate distribution with an identity co-variance matrix, and

with mean (0.5,0.5) and (0,0) respectively.

A.4.3 Illustration of Graph Generator for Curves in Section 4. For
the curves indicating how powerlaw coefficient influence the choice

of normalization in Figure 2, we generate the graph structure by

DCSBM with fixed 𝑝 = 0.3, 𝑞 = 0.2 (so the density and density gap

are also fixed) and with power-law coefficient 𝛾 varies from -0.4 to

0. The graph contains two classes of nodes, with size 300 and 700

for each class respectively. The feature for each class satisfies mul-

tivariate normal distribution with identity co-variance matrix, and

with mean (0,0) and (0.2,0.2). We compare the filters with different

normalization strategy but with same order 2.

For the curves indicating how label ratio influence the choice of

normalization in Figure 2, we generate a set of graphs with graph

structure generated by SBM with fixed density

(𝑛2

1
+𝑛2

2
)𝑝+2𝑛1𝑛2𝑞

(𝑛1+𝑛2)2 =

0.4 and density gap 𝑝/𝑞 = 0.2, note that the corresponding 𝑝 and 𝑞

for each graph would be different when 𝑛1/𝑛2 changes. The graph
contains two classes of nodes, with total size 1000, but the label

ratio varies from 0 to 1. The feature for each class satisfies multi-

variate normal distribution with identity co-variance matrix, and

with mean (0,0) and (0.5,0.5). We compare the filters with different

normalization strategy but with same order 2.

For the curves indicating how density influence the choice of

normalization in Figure 3, we generate a set of graphs with the

graph structure generated by SBM with fixed density gap 𝑝/𝑞 = 1.5

and with density varies from 0.0025 to 0.5. The graph contains

two classes of nodes, both with size 500. The feature for each class

satisfies multivariate normal distribution with identity co-variance

matrix, and with mean (0,0) and (0.5,0.5). We compare the filters all

with row normalization but with different orders.

For the curves indicating how density gap influence the choice

of normalization in Figure 3, we generate a set of graphs with the

graph structure generated by SBM with fixed density 0.25 and with

density gap varies from 1 to 3. The graph contains two classes

of nodes, both with size 500. The feature for each class satisfies

multivariate normal distribution with identity co-variance matrix,

and with mean (0,0) and (0.5,0.5). We compare the filters all with

row normalization but with different orders.

A.5 Details About Dataset
A.5.1 Benchmark Dataset. We use five benchmark dataset: Cora,

Citeseer, Pubmed, Brazil Air Traffic, and Europe Air Traffic for the

node classification task.

Cora, Citeseer, Pubmed are the most widely used benchmark

dataset for node classification. They are citation networks, where

each node represents a document, each edge is a citation link, and

the node feature is a sparse bag-of-words feature vector. The class

of a node is the field that this document belongs to.

Brazil and Europe are two Air-Traffic networks that are also

popular for node classification task. Each node represents an airport,

and each edge indicates the existence of commercial flights between

Table 3: Statistics of Benchmark Dataset

Dataset Cora Citeseer Pubmed Brazil Pubmed
Nodes 2708 3327 19717 131 399

Edges 5429 4732 44338 1038 5995

Classes 7 6 3 4 4

Feature 1433 3703 500 - -

the airports. The class of a node is given based on the level of activity

measured by flights or people that passed the airports. These two

datasets do not have node attributes, so follow the work of [25], we

use the one-hot encoding of node degrees.

The detailed statictics of theses datasets are shown in table3.

A.5.2 Synthetic Dataset. We also generated two synthetic datasets:

SmallGap and SmallRatio. For SmallGap, we use SBM to generate a

two class network with 𝑝 = 0.2 and 𝑞 = 0.199. The density gap 𝑝/𝑞
is very small in this case. They have the same number of nodes and

both have 64 dimension features sampled from gaussian distribu-

tions with different mean and same variance. For SmallRatio, we use

SBM to generate a two class network, which has 200 nodes for one

class and 800 nodes for the other. This dataset is called SmallRatio

because 𝑛1/𝑛2 = 0.25 is small. Their 64 features are sampled from

gaussian distributions with different mean and different variance.

The detailed parameters are given in our code.

A.5.3 OAG Small Ratio Dataset. We generate a real-world dataset

with imbalanced classes to justify hard cases may exist in real-world

datasets. We download a large scale academic graph called Open

Academic Graph (OAG), and choose two fields that have a large

disparity in the number of papers: (1) “History of ideas”, which

consists of 1041 papers; (2) “Public history”, which consists of 150

papers. Obviously this two classes are imbalanced, and fall in the

large label ratio gap problem. We run supplementary experiment

on the generated OAG graph, the experiment setting remains the

same as experiment settings for synthetic graphs.

A.6 Details About Experiment Setting
A.6.1 Data Split. For Cora, Citeseer and Pubmed, follow the data

split convention in the work of [12], we take 20 nodes in each class

to form the training set, take 500 nodes to form validation set, and

take 1000 nodes to form test set.

For Brazil and Europe, follow the data split convention in the

work of [25], the training, validation and test sets are randomly

assigned with equal number of nodes. We generate 10 different

partitions for each dataset.

For the synthetic dataset and the OAG Sampled dataset, we

conduct 5-fold cross-validation. we randomly split the nodes into 5

groups of the same size, take one group as the training set, one as

the validation set and the remaining three as the test set.

We run the experiment 10 times for each partition of each dataset,

and record the mean and standard deviation for each dataset.

A.6.2 Model Configuration and Hyper Parameters. For GCN, SGC,
GFNN, GAT, we follow their public implementations. For GIN, the

initial code is not for node classification task, so we implement the

model following [27] to conduct experiments.

9

KDD’20 workshop, August 2020, San Diego, CA, USA Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun

3 2 1 0 1 2 3
3
2
1
0
1
2
3
4 class1

class2

(a) Initial Feature.FS=0.3493

0.150
0.175

0.200
0.225

0.250
0.275

0.300
0.325

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325

class1
class2

(b) Order=2.FS=0.4358

0.235
0.240

0.245
0.250

0.255
0.260

0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240

class1
class2

(c) Order=4.FS=0.3639

0.2400
0.2425

0.2450
0.2475

0.2500
0.2525

0.2550

0.210
0.215
0.220
0.225
0.230 class1

class2

(d) Order=6.FS=0.2889

2 1 0 1 2 3

2

1

0

1

2

class1
class2

(e) Initial Feature.FS=0.3691

2 1 0 1 2

2

1

0

1

2 class1
class2

(f) Order=2.FS=4.6346

2 1 0 1 2

2

1

0

1

2 class1
class2

(g) Order=4.FS=11.5741

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.0

0.5

0.0

0.5

1.0 class1
class2

(h) Order=6.FS=14.7328

Figure 6: Examples of “No Best Order for All”

Table 4: Baseline’s Accuracy on Benchmark Dataset Re-
ported by Literature

Cora Citeseer Pubmed Brazil Europe

GCN 81.5 70.3 79.0 43.2±6.4 37.1± 4.6

GIN − − − − −
SGC 81.0±0.0 71.9±0.1 78.9±0.0 − −
GFNN 80.9±1.3 69.3±1.1 81.2±1.5 − −
GAT 83.0±0.7 72.5±0.7 79.0±0.3 38.3±12.6 42.4 ± 7.3

We tune the number of epochs based on convergence perfor-

mance. For learning rate and weight decay, we follows the parame-

ter setting provides by the corresponding public implementations

unless we find better parameters. The tuned parameters can be

found in our code resource.

A.7 Hyper Parameter Tuning for AFGNN𝜆

For AFGNN𝜆 , we do a grid search for the best 𝜆 from 0 to 1, we take

0.05 as interval. We take Cora, Citeseet and Pubmed as examples

to show the grid search results. For each dataset with a certain 𝜆,

we follow the datasplit convention, run the experiment 10 times,

and record the mean and standard deviation of the classification

accuracy. The results are shown in Figure 7. We denote the best 𝜆 as

𝜆∗, and use the corresponding AFGNN𝜆∗ in the later classification

performance comparison.

A.8 Baseline Accuracy on Benchmark Dataset
We report the accuracy of node classification task for baseline

models on Cora, Citeseer, Pubmed, Brazil, and Europe provided by

corresponding literature. Since GIN [27] is not originally evaluated

on node classification task, we do not have the reported number

here. The results is in Table 4.

Table 5: Time Cost

Cora Citeseer Pubmed

time num total time num total time num total

AFGNN0 0.055 96.5 5.309 0.116 117.5 13.579 0.376 137.0 51.456

AFGNN1 0.086 129.3 11.1 0.136 155.4 21.177 0.379 136.1 51.62

AFGNN∞(filter) 0.106 53 5.593 0.146 48 7.023 0.377 200 75.456

AFGNN∞(classification) 0.005 200 0.914 0.006 400 2.293 0.006 400 2.246

AFGNN∞(overall) - - 6.507 - - 9.315 - - 77.702

GAT 0.156 382.8 59.625 0.168 379.3 63.462 - - -

Table 6: Memory(MB) Cost

Cora Citeseer Pubmed

AFGNN0 861 1369 1351

AFGNN1 863 1369 1351

AFGNN∞ 863 1369 1351

GAT 1733 2345 -

A.9 Time and Memory Cost Comparison
Both our AFGNN model and GAT model have a learnable filter. We

provide time and memory complexity comparison on benchmark

datasets here to compare these two models.

As shown in Table 5, GAT’s time cost is at least three times of

AFGNN’s time cost on both Cora and Citeseer dataset. As shown

in Table 6, AFGNN’s memory cost on both Cora and Citeseer are

half of GAT’s memory cost. GAT does not have recorded time and

memory cost for Pubmed dataset because it requires too much

memory cost and is not able to run on GPU. Therefore, AFGNN

needs less time and memory cost than GAT.

A.10 Graph Filter Discriminant Analysis.
We are also interested to see if the proposed method can indeed

learn the best combination of filters from the base filter family. To do

so, we take 3 benchmark dataset and 2 synthetic dataset as examples,

calculate the GFD Score of filter learned by AFGNN𝐶𝐸 , AFGNN𝜆∗ ,

10

Demystifying Graph Neural Networks with Graph Filter Assessment KDD’20 workshop, August 2020, San Diego, CA, USA

0.0 0.2 0.4 0.6 0.8 1.0
10
20
30
40
50
60
70
80

ac
cu

ra
cy

(a) Cora

0.0 0.2 0.4 0.6 0.8 1.0

20
30
40
50
60
70

ac
cu

ra
cy

(b) Citeseer

0.0 0.2 0.4 0.6 0.8 1.0
40
45
50
55
60
65
70
75
80

ac
cu

ra
cy

(c) Pubmed

Figure 7: Performance of AFGNN𝜆 with different 𝜆. For Cora, the best 𝜆 is 0.05, for Citeseer, it is 0.7, and for Pubmed, it is 0.5.

Filters Cora Citeseer Pubmed SmallGap SmallRatio

𝑰 0 0 0 0 0

˜𝑫−1 ˜𝑨 20.53 23.19 10.3 -33.16 2.63

(˜𝑫−1 ˜𝑨)2 45.24 42.26 25.95 -15.96 6.88

˜𝑨 ˜𝑫−1
15.20 18.94 0.69 -33.16 7.05

(˜𝑨 ˜𝑫−1)2 36.40 36.88 10.99 -17.86 76.75
˜𝑫−1/2 ˜𝑨 ˜𝑫−1/2

18.72 22.15 8.34 -33.16 4.89

(˜𝑫−1/2 ˜𝑨 ˜𝑫−1/2)2 41.52 40.23 22.86 -16.55 46.07

AFGNN𝐶𝐸 5.08 6.33 0.72 0.16 4.88

AFGNN𝜆∗ 45.00 42.32 26.56 0.46 74.19

AFGNN𝑝𝑟 45.00 42.63 26.56 0.55 76.75

Table 7: GFD after applying different filters on benchmark
and synthetic datasets.

I
D

1 A

(D
1 A)2

AD
1

(AD
1)2

D
1/2 AD

1/2

(D
1/2 AD

1/2)2

Cora

Citeseer

Pubmed

SmallGap

SmallRatio

0.001 0.001 0.79 0.001 0.17 0.001 0.044

0 0.001 0.8 0 0.2 0 0.002

0 0 0.69 0.001 0.003 0 0.38

0.24 0.13 0.13 0.13 0.13 0.13 0.1

0 0 0 0 1 0 0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Base filter combination Learned by AFGNN𝑝𝑟

AFGNN𝑝𝑟 and the seven base filters on the test set for each of these

datasets. The results shown in Table 7 and Figure ?? show that our

proposed method can indeed learn a powerful combined filter on all

the datasets. Specifically, our proposed adaptive filter not only can

pick out the best base filter but can even learn a better combination.

We thereby conclude that the proposed GFD loss can help find an

appropriate filter for a given dataset.

11

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Semi-Supervised Node Classification
	2.2 A Review of Existing Graph Filters
	2.3 Graph Generator

	3 The Assessment Tool: Graph Filter Discriminant Score (GFD)
	4 Case Study: Assessing Graph Filter with GFD
	5 Learning to Find the Optimal Graph Filter
	6 Experiments
	7 Conclusion
	References
	A Appendix
	A.1 Summary of Graph Filters for Some Existing GNNs.
	A.2 Graph Properties
	A.3 Details About GFD
	A.4 No Best Filter for All Graphs
	A.5 Details About Dataset
	A.6 Details About Experiment Setting
	A.7 Hyper Parameter Tuning for AFGNN
	A.8 Baseline Accuracy on Benchmark Dataset
	A.9 Time and Memory Cost Comparison
	A.10 Graph Filter Discriminant Analysis.

