
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Robust Network Enhancement from Flawed Networks
Anonymous Author(s)

ABSTRACT
Real-world networks are often noisy or error-prone, which may
harm the performance of network analysis or modeling. This pa-
per solves the problem of reliable network reconstruction from a
flawed network, namely network enhancement. Specifically, it aims
to detect the noisy links and predict the missing links in a network
simultaneously. We propose E-Net, an end-to-end graph neural net-
work, to leverage the mutual influence of the two tasks to achieve
both the goals more effectively. Because on one hand, detecting
noisy links can benefit the accuracy of predicting missing links;
and on the other hand, the performance of predicting missing links
can provide indirect supervision for detecting noisy links when the
labeled noisy links are unavailable. Besides, the model can be scaled
up to large networks and can preserve the local and global struc-
tural characteristics following a proposed lazy subgraph extraction
mechanism. The experimental results on several genres of large
networks demonstrate the superiority of our model. Our implemen-
tation is available at: https://github.com/anonymous-Enet/E-Net.

KEYWORDS
network enhancement, robust model, social network

ACM Reference Format:
Anonymous Author(s). 2020. Robust Network Enhancement from Flawed
Networks. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Networks are ubiquitous in domains including social network anal-
ysis, bioinformatics, chemistry, etc. They offer rich generic connec-
tivity patterns that can help us understand the relational data. How-
ever, most real networks are error-prone and structurally flawed
due to incomplete sampling [6], imperfect measurements [2], indi-
vidual non-response and dropout [19], etc. Generally, the flawed
structures can be caused by two kinds of flawed links: noisy links
and missing links. Specifically, noisy links are those that are ob-
served in the constructed networks but do not really exist in the
real world (false positives). For example, in a mobile network, an
occasional call between a delivery driver and a customer is more
likely to be a noisy link than a actual "social" relationship. Miss-
ing links are indeed in the real world yet they are unobserved in
the constructed network (false negatives). For example, if building
links in a mobile network according to calling interactions, some
infrequently interactive but actual “social" relationships will be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Input: Flawed network

Subgraph extraction

(a) Traditional subgraph extraction

(b) Lazy subgraph extraction

(c) Effect of noisy links on missing links

(d) Effect of missing links on noisy links

(e) Link Prediction

Without
denosing training

Independent Joint
training

0.68

0.66

0.66

0.62

0.60

0.58

0.56

F1 score

A

B

C

D

E

F

A

B

C

D

F

A

B

C

D

E

F

A

C

E

F

A

C

E

F

？

？

？

Enhancement

0.631

0.589

0.651

B D

B D

Figure 1: Illustration of predicting missing links and detect-
ing noisy links in a unified framework. The dashed lines de-
note themissing links to be predicted or the noisy links to be
detected given the existing links denoted by the solid lines.

discarded. The flawed networks may harm the performance of net-
work analysis and modeling, which demands an effective way to
reconstruct reliable networks from them—i.e., removing the noisy
links and completing the missing links.

One straightforward way to deal with the problem is to adopt the
heuristic metrics, such as Common Neighbors, Jaccard Coefficient,
Preferential Attachment, Adamic-Adar, etc. [15, 17, 28], to predict
missing links and detect noisy links simultaneously, i.e., complete
a missing link if the score measured by one of the above metrics
is quite high and remove a noisy link if the score is significantly
low. Some existing works proposed additional metrics such as node
correlation [18] and link reliability [7] to identify the missing and
noisy links in one framework. However, such unified measurement
ignored the mutual influence of the two kinds of links. Take an ex-
ample in Figure 1 to illustrate the necessity of this mutual influence.
Figure 1(c) explains the influence of noisy links on the missing links.
When predicting the missing link between node B and D, if the
links A-D and B-C are detected as noisy links and removed before-
hand, the connections between B and D will be weakened. Thus
the likelihood of creating a link between B and D will be reduced.
Figure 1(d) explains the influence of missing links on the noisy links.
When detecting whether the link A-D or B-C is noisy or not, if the
link B-D is predicted as a missing link and added beforehand, the
connection between A and D or the connection between B and C
will be strengthened according to the structural homophily, which

1

https://github.com/anonymous-Enet/E-Net
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

will decrease the likelihood of removing the link A-D or B-C. The
example indicates that the mutual influence between the two tasks
can boost the performance of each other. Thus, how to capture the
mutual influence of the missing links and the noisy links is the main
challenge to be addressed in the paper.

In addition, super large networks prevent us from leveraging
the whole network to infer the missing or noisy links. Existing
works directly extracted subgraphs consisting of one-hop or two-
hop neighbors of queried nodes [3, 23, 25]. Such subgraphs may
still be too large when hub nodes are traversed. For example in
Figure 1(a), a large number of neighbors will be expanded when
node B is traversed. In addition, the exactly expanded one-hop or
two-hop neighbors lose global structural characteristics. As we
can see, if A-D and B-C are detected as noisy links and removed
before predicting the relationship between B and D, B and D will be
disconnected in the one-hop subgraph. However, if node E which
carries more global structure evidence is included in the subgraph
(Cf. Figure 1(b)), there will be a path B-A-E-F-D that connects B
and D even if A-D and B-C are removed. Thus, how to extract a
small-sized subgraph but carries both the local and graph structural
characteristics together is another challenge to be dealt with.

Our contributions can be summarized as follows:
• We propose to jointly identify the noisy links and the missing
links in one framework. Specifically, we propose an end-to-end
graph neural network model, named as the Enhanced Network
model (abbreviated as E-Net) which can capture the mutual influ-
ence between the two tasks.
• We propose a lazy subgraph extraction approach, which enables
our model to scale up to large networks while capture both the
global and local structure characteristics.
• Extensive experiments on several networks demonstrate that
our model can obtain 10.5% improvement in terms of F1 comparing
with the model without denoising the networks, and obtain 3.1%
improvement comparing with the method identifying the missing
links and noisy links independently (Cf. Figure 1(e) for details).

2 PROBLEM FORMULATION
Here we introduce some definitions and formulate the problem.

Definition 1. Flawed Network. In practice, we often obtain a
network by sampling nodes and edges from a complete network or
creating a network following some heuristic rules. Thus, it is inevitable
that the obtained network will contain incorrect information, espe-
cially at the edge level (as obtaining a reliable node set is much easier)1.
We define this kind of incomplete network as a flawed network, mainly
containing two kinds of flawed links: noisy links which are observed
in the network but do not exist in the real world, and missing links
which indeed exist in the real world but are unobserved in the network.

Formally, we represent a flawed network as G = (V, E), where
V is the set of nodes with |V| nodes, and E is the set of edges with
|E | edges. We denote A as the adjacency matrix of G and D as
the degree matrix of A. We also augment G with a node attribute
matrix X. Based on the above definitions, we define the problem of
network enhancement as follows:

1We target at flawed links and leave flawed nodes in the future.

Problem 1. Network Enhancement. Given a flawed network
G = (V, E) and a state matrix Y = [Yi j]i, j=1... |V | , where Yi j ∈

{1, 0, ?} denote s confirmed existing, confirmed absent and uncertain
links, our goal is to infer the uncertain links (Yi j =?) inY, i.e., predict
the missing links (ϵi j < E and Yi j =?) and detect the noisy links
(ϵi j ∈ E and Yi j =?). The two tasks of missing link prediction and
noisy link detection comprise the network enhancement problem.

When solving network enhancement problem, even though it is
hard to obtain both the labels of missing links and noisy links, it
is not persuasive to learn the missing links and the noisy links in
a complete unsupervised way. To reduce the difficulty of learning,
we suppose the labels of missing links (ϵi j < E and Yi j = 1) can
be obtained in some way (e.g., we hold out some existing links
as the missing links), while the labels of noisy links (ϵi j ∈ E

and Yi j = 0) are not available. Then we leverage the labels of
missing links to supervise both the missing link prediction and
the noisy link detection, i.e., the links satisfy ϵi j < E and Yi j =

1 serve as the training data of our model, where the noisy link
detection is encapsulated as an component in the model without
direct supervisions. Formally, we use q to denote two queried nodes
with observed label which indicates whether the two nodes should
be linked or not, and use Q = {q(m)}Mm=1 to denote all the labeled
queries in G. In the following parts, a symbol with superscript (m)

denotes that it corresponds to them-th query.

3 OUR APPROACH
In this section, we first introduce the proposed subgraph extrac-
tion mechanism, which paves the way for the subsequent network
enhancement model. Then given a queryq and its corresponding ex-
tracted subgraphG , we encapsulate the missing link prediction and
noisy link detection in E-Net, an end-to-end graph neural network,
to capture the mutual influence of the two objectives.

3.1 Lazy Subgraph Extraction
Direct computation on the entire network is costly in general. We
thus aim to extract a local subgraph for each pair of queried nodes.
Some works have verified that computing on local subgraphs can
well approximate a wide range of heuristic network metrics within
a bounded error [1, 23, 25]. However, most of them simply ex-
tracted a fixed-size subgraphs or kept thewhole one-hop or two-hop
neighbors, totally ignored the global structure. Moreover, fixed-hop
subgraphs may still be too large when hub nodes are traversed.
Other sampling methods such as GraphSAGE [8] uniformly sam-
pled neighbors, thus ignored the reliability of links.

We propose a lazy subgraph extraction approach to capture the
reliable local and global structural characteristics through random
walks with restart. Given a pair of the queried nodes, instead of
keeping all the fixed-hop neighbors, we conduct several random
walks with restart from each of the two queried nodes. The proba-
bility transition matrix can be expressed as P = (1 − λ)I + λAD−1,
where D is the degree matrix with diagonal value Dii =

∑
j Ai j , I

is the identity matrix, the teleport (or restart) probability λ ∈ (0, 1]
controls the probability of staying at the current node or jumping
to a random neighbor, which enables preserving both the local
and global topological structures. This is also similar to personal-
ized Pagerank, in which I characterizes the nodes’ personalized
preferences and is filled with some real values [9].

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Robust Network Enhancement from Flawed Networks Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Input: Flawed network (a) Lazy subgraph
extraction

(b) Noisy link
detection layer

(c) Denoising Graph
Convolutional layer

100%

10%

10%

(d) Pooling
layer

Sort

(e) Missing link
prediction layer

1 (link)

0 (non-link)

?
50%

Figure 2: Model structure of E-Net. The dashed lines denote the uncertain links (Yi j =?) and the thickness of links denotes
their reliability.

We also suggest extracting multiple subgraphs for each query
to avoid overfitting. That is, form-th query q(m) ∈ Q , we extract c
subgraphs and form them as a set of <subgraph, query> pair, i.e.,
{<G(m)

1 ,q(m)>, <G(m)

2 ,q(m)>, ...,<G(m)
c ,q

(m)>}. The resultingM × c
pairs for all theM queries constitute our training data, where the
subgraphs can be viewed as a kind of structural evidence. Also, this
kind of extraction can situate our model in an inductive setting,
which can be used to predict links on unseen subgraphs.

3.2 E-Net
In E-Net, we aim to jointly predict the missing link and detect
the noisy links in an extracted subgraph (Cf. Figure 2). The input
subgraph and each layer of E-Net are introduced here.
The Input Subgraph. Let G = (V ,E) be a subgraph of a query
q extracted from G with node set V = {v1, . . . ,vn } and edge set
E = {ei j |vi ,vj ∈ V }. The adjacency matrix is denoted asA ∈ Rn×n .
The attribute matrix is denoted asX, where xi is the attribute vector
of vi . We also record the relative position of each node in G to the
query q as additional features by applying Double-Radius Node
Labeling (DRNL) [25], as the nodes closer to the queried nodes will
provide more important evidence. Specifically, for the two queried
nodes vi and vj , we assign label t = 1 to them respectively. Then,
for any node vk ∈ G with (d(vk ,vi),d(vk ,vj)) = (1, 1), we assign
label t = 2, where d(·, ·) is the shortest path between two nodes.
Nodes with double-radius (1, 2) or (2, 1) get label t = 3 and nodes
with (2, 2) get t = 4. So on and so forth. The position labels ti of all
the nodes in G comprise the relative position matrix T.
Noisy link detection layer. How to efficiently choose heuristic
scores with different properties for unsupervised noisy link de-
tection is a long-standing problem since no supervision can be
given. Thus we tactfully utilize the missing links to provide indi-
rect supervision. We use a noise scoring function, s(·, ·), to measure
link reliability. The lower the score is, the more likely the link will
be noisy. In this paper we instantiate the function as a weighted
average of K heuristic score functions:

s(vi ,vj) =
K∑
k=1

wk · sk (vi ,vj), (1)

where sk (·, ·) is the k-th heuristic score to estimate the node sim-
ilarity and wk is its corresponding learnable weight, which can
be indirectly guided by the objective of predicting missing links.
We use Common Neighbors, Jaccard Coefficient, Preferential At-
tachment, Adamic-Adar, Resource Allocation and cosine similarity
of two nodes’ attributes as these heuristic scores to guarantee the

detection capability. Thus, given the noise scoring function s(·, ·) of
each link, the subgraphG can be transformed into a denoisedweight
matrix A∗ ∈ Rn×n , in which the (i, j)-th entry A∗

i j = s(vi ,vj) ∗Ai j .

Denoising graph convolutional layers. The denoising graph
convolutional layers is a generalization of the classical graph con-
volutional network. The general idea is to reduce or prevent the
messages aggregated from noisy links when performing node ag-
gregation. Although Graph Attention Network (GAT) [21] also
puts different attentions on neighbors, the attention contribution
of node i on node j is different from that of node j on node i . And it
was experimentally verified that GAT performed the same or worse
than GCN in noisy graphs [29]. This is because GAT introduces
too many parameters, which may result in overfitting to noise. In
our problem, the influence of node i on node j is assumed to be
equivalent to that of node j on node i , as noisy links exhibit global
influence on the whole graph. Thus, the denoised weight matrix
A∗ can be considered as a global weight function when conducting
node aggregation. We then define the following denoising graph
convolution layer for calculating the forward-pass update of node:

Z l+1 = f
©«

Ã∗Ã∗

2

ZlW l ª®®¬ , (2)

where Ã∗ = A∗ + I, Z l ∈ Rn×d
l
is the outputs of l-th graph con-

volution layer and Z 0 = [X;T],W l ∈ Rd
l×d l+1

is a layer-specific
graph convolution parameters, and f is a nonlinear activation func-
tion. With A∗, the information flow along the noisy links will be
decreased or prevented, which helps us build more robust model.
Considering the over-smoothing problem [13, 14], we further con-
catenate the outputs of all graph convolution layers to get a high-
quality one, i.e., Z 1:L :=

[
Z 1, ...,ZL] , where L is the number of

graph convolution layers and Z 1:L ∈ Rn×
∑L

1 d l .
Pooling layer. Since our goal is to predict the existence of a link
between the two queried nodes, the graph-level representation
should 1) capture the local structures of the queried nodes and 2)
emphasize the two queried nodes. First, we adopt SortPooling [26]
to get the graph-level representation, where the dimension of the
last denoising graph convolutional layer dL is fixed as 1. We sort
all the nodes in the subgraph according to the continuous output
values ZL ∈ Rn×1 and concatenate the node embeddings of top n̄
nodes as Z ∈ Rn̄×

∑L
1 d l . Since the attributes of queried nodes can

provide additional information, we further add them on and obtain
the final graph embedding as H = [CONV (Z) ;x(1)q ,x

(2)
q], where

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

x(1)q and x(2)q are the node attributes of two queried nodes, CONV
denotes several 1-D convolutional layers and max-pooling layers
applied on the concatenated hidden vectors Z .
Missing link prediction layer. Finally, we predict the link be-
tween the two queried nodes based on the obtained subgraph rep-
resentation, i.e., Ŷq = softmax (MLP (H)), where MLP denotes a
multilayer perceptron followed by a softmax.

3.3 Model Learning
Main objective. We optimzie the cross-entropy loss function
Lmissing = −

∑M
m=1

∑dL
b=1 Yq(m)b · ln Ŷq(m)b , whereYq(m) and Ŷq(m)

are the ground truth and the predicted probability corresponding
to the query q(m) respectively.
Auxiliary denoising objectives. Recall that the denoised weight
matrix A∗ is only guided by Lmissing, which is difficult to learn. So
we add an additional regularization tominimize the graph Laplacian
quadratic form on node attribute X:

Ldenoise = tr (XT L∗X), XT L∗X =
∑
ei j ∈E

(xi − xj)2A∗
i j , (3)

where XT L∗X is the Laplacian quadratic form on signal X, i.e., a
smooth graph signal model. It has been widely used in various
learning problems (e.g., regularization, semi-supervised learning
on graphs) [20, 27]. We explain why we adopt it as follows:
1) Global Smoothing. This objective enables two nodes with similar
attributes close to each other in the denoised networkA∗. According
to Eq.(3), ifvi andvj have similar attributes, the link ei j is less likely
to be a noisy one, which forces A∗

i j to be a large value.
2) Sparsity. In most scenarios, it is desirable that the obtained graph
is sparse [4, 16]. Here, we also want the denoised network A∗ to be
sparse, i.e., some entries of A∗

i j can be reduced to zero if edge ei j is
highly probable to be a noisy one. According to [4], we know that:∑

i,j
A∗
i j = n − tr(A∗) = tr

(
I − A∗

)
= tr(L∗). (4)

Since the node attribute matrix X is observed, minimizing the trace
of graph Laplacian quadratic form tr (XT L∗X) in Eq.(3) is equiva-
lent to minimizing tr (L∗). Thus, Eq.(3) can also be considered as
a sparsity penalty of the denoised weight matrix, which exactly
matches our sparsity objective.
Joint loss function. L = Lmissing + αLdenoise, where α > 0 is a
trade off between Lmissing and Ldenoise.

4 EXPERIMENTS
Datasets. We explain the datasets as below.
1) Mobile network. We use a large-scale mobile network provided by
PPDai Company2, spanning one year from January 1st, 2018, to Jan-
uary 1st, 2019. We create a link if two users (nodes) made a call, and
obtain user’s demographic information (including age, sex, birth-
place, educational level and so on) as user attributes. Fortunately,
PPDai Company provides us some information of anomalous nodes
(i.e., identified as fraudsters, intermediaries or delivery drivers), so
we can intuitively choose those calls from anomalous nodes with

2PPDai, the leading online lending platforms in China.

short call duration or call times as our noisy link ground truth. And
we randomly remove 10% of links to serve as our missing link sam-
ples. The PPDai network containing the simulated missing links
and the identified noisy links is the input flawed network G, and
after removing them, we get a real clean network Gclean.
2) Citation network. Cora, Citeseer and Pubmed are used. These net-
works are well-constructed and widely used; therefore, we assume
that each of them is error-free, which serves as our clean network
Gclean. To quantify the ability to identify flawed links, we generate
observed flawed networks by randomly removing links (creating
the missing link samples), and randomly adding nonexistent links
(constituting the noisy link samples). After adding the simulated
noisy links and missing links, we get the input flawed network G.
Baselines. We compare against several baselines: 1) HEU. A lo-
gistic regression classifier based on five popular heuristics (HEU),
including Common Neighbors (CN), Jaccard Coefficient, Preferen-
tial Attachment (PA), Adamic-Adar (AA) and Resource Allocation
(RA), which only takes graph structure into consideration; 2) ATT.
AMLP classifier based on the attributes of two query nodes without
consideration of graph structures; 3) ENS. An ensemble (ENS) of
node attributes and all heuristic scores, following a MLP classifier;
4) Node2vec [5]. A network embedding method, which learns latent
topological features from network structures; 5) SEAL [25]. A link
prediction method based on GNNs, also applied on the extracted
subgraphs; 6) SEAL (lazy). SEAL using lazy subgraph extraction
for ablation study. 7) GAT (lazy). GAT based on lazy subgraphs. 8)
E-Net (fix). A variant E-Net which removes the mutual influence
between noisy links and missing links. Specifically, we fix allwk as
the same value (averaged of all heuristic scores) rather than train-
ing the noise scoring function s(·, ·); 9) E-Net (s-). Another variant
E-Net, where the auxiliary denoising regularization is removed.

Our flawed link candidates in the test set contains all the links
with Yi j =?, where we control the ratio of real and fake missing
links as well as the ratio of real and fake noisy links as around 1:5.
We set train/validation/test size as 0.8:0.1:0.1. The reported results
are averaged over 10 runs.

4.1 Experimental Results
Missing Link Prediction. Table 1 shows the performance of
missing link prediction on all the datasets. From the results, we can
see that our model consistently achieves the best or the second best
performance on all the datasets (+6.2% in terms of AUC and +9.7%
in terms of F1). Compared with HEU, ATT and ENS that only using
node attributes and heuristics measures, our model can discover
new structural and node-specific attributes. Compared with latent
feature based methods Node2vec and SEAL, our model can prevent
the messages propagated along flawed links. Moreover, SEAL even
fails on PPDai dataset due to its high memory and time cost when
meeting with lots of hub nodes. The performance gain of E-Net
with respect to E-Net (fix) is correlated with the mutual influence
between noisy links and missing links.
Noisy Link Detection. The noisy link detection is conducted
based on a list of observed links ranked according to their noisy
scores s(·, ·). We compare against some unsupervised measures:
1)ATT, a cosine similarity between two query nodes; 2)CN, Jaccard,
PA, AA, RA, five heuristic measures; 3)ENS, the mean of above six

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Robust Network Enhancement from Flawed Networks Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Experimental results with standard deviation on missing link prediction.

PPDai Cora Citeseer Pubmed
AUC F1 AUC F1 AUC F1 AUC F1

HEU 0.593 ± 0.04 0.345 ± 0.08 0.745 ± 0.03 0.561 ± 0.15 0.692 ± 0.06 0.509 ± 0.09 0.639 ± 0.05 0.424 ± 0.14
ATT 0.860 ± 0.04 0.598 ± 0.07 0.570 ± 0.02 0.286 ± 0.02 0.584 ± 0.07 0.286 ± 0.05 0.820 ± 0.03 0.500 ± 0.03
ENS 0.834 ± 0.06 0.603 ± 0.07 0.754 ± 0.05 0.420 ± 0.05 0.720 ± 0.06 0.398 ± 0.07 0.813 ± 0.02 0.489 ± 0.02
Node2vec 0.736 ± 0.05 0.443 ± 0.06 0.741 ± 0.09 0.406 ± 0.09 0.707 ± 0.09 0.389 ± 0.10 0.908 ± 0.07 0.609 ± 0.08
SEAL - - 0.781 ± 0.10 0.496 ± 0.17 0.772 ± 0.03 0.521 ± 0.05 0.962 ± 0.01 0.750 ± 0.03
SEAL (lazy) 0.892 ± 0.03 0.615 ± 0.03 0.808 ± 0.12 0.589 ± 0.18 0.793 ± 0.05 0.552 ± 0.06 0.969 ± 0.02 0.751 ± 0.04
GAT (lazy) 0.884 ± 0.04 0.608 ± 0.03 0.795 ± 0.12 0.535 ± 0.17 0.791 ± 0.06 0.548 ± 0.06 0.932 ± 0.04 0.642 ± 0.05
E-Net (fix) 0.918 ± 0.01 0.697 ± 0.02 0.890 ± 0.02 0.631 ± 0.04 0.871 ± 0.01 0.598 ± 0.03 0.952 ± 0.01 0.762 ± 0.02
E-Net (s-) 0.921 ± 0.02 0.703 ± 0.03 0.898 ± 0.01 0.651 ± 0.04 0.883 ± 0.01 0.607 ± 0.04 0.943 ± 0.01 0.720 ± 0.01
E-Net 0.930 ± 0.03 0.712 ± 0.03 0.891 ± 0.02 0.633 ± 0.03 0.875 ± 0.03 0.614 ± 0.05 0.947 ± 0.01 0.741 ± 0.01

Table 2: Precision score on noisy link detection. Note that
we set the number of selected links (i.e., the denominator)
as the number of real noisy links, which means precision
equals to recall, F1 and accuracy metric under this setting.

PPDai Cora Citeseer Pubmed
ATT 0.173 0.139 0.143 0.166
CN 0.297 0.297 0.267 0.297
Jaccard 0.288 0.288 0.242 0.288
PA 0.218 0.218 0.117 0.218
AA 0.241 0.241 0.271 0.241
RA 0.237 0.237 0.260 0.273
ENS 0.144 0.237 0.117 0.156
NE - 0.117 0.051 0.024
E-Net 0.348 0.319 0.248 0.298

Table 3: Running time (s/epoch) comparison of different sub-
graph extraction approaches.

PPDai Cora Citeseer Pubmed
Enclosing >2days 108.9 354.2 >1days
Lazy 650.0 70.8 170.1 2013.2

Table 4: Experimental results on missing link prediction
with different subgraph extraction approaches.

Cora Citeseer
AUC F1 AUC F1

Enclosing 0.883 0.621 0.858 0.584
Lazy 0.891 0.633 0.875 0.614

scores; 4)NE [22], whose denoised edge weights are taken as noisy
scores. For evaluation, we adopt a standard metric [18], defined as
the ratio of true positive noisy links to the number of selected links.
We pick up the last C links according to s(·, ·) (serve as selected
links) and Cn is the number of truly observed noisy links in them.
Thus precision equals Cn/C . Table 2 shows that our method can
maintain a stable performance across all datasets, while the other
baselines sometimes perform poorly on certain datasets and NE
even can not deal with PPDai due to its computational complexity.
The performance gap between E-Net and ENS suggests that the
missing link objective does provide useful guidance for learning
more reasonable weights rather than the average.

Table 5: Performance of node classification on Cora.

Networks Macro-F1 Micro-F1 Weighted-F1
Flawed network G 0.613 0.629 0.626
Enhanced network G∗ 0.662 0.677 0.676
Clean network Gclean
(Ground Truth) 0.778 0.786 0.785

The Effect of Lazy Subgraph Extraction. We compare with the
Enclosing method [24], which directly extracted 2-hop neighbors
of query nodes. Table 3 presents the running time of two different
subgraph extraction approaches both applied on E-Net. Table 4
shows the effectiveness of two subgraph extraction approaches (we
do not evaluate enclosing version on Pubmed and PPDai due to
their expensive space and time cost), which demonstrates the lazy
version’s superior performance. All of these suggest that in practical
applications, the lazy version is performed as a fast and accurate
approach to extract subgraphs, which is especially advanced for
large graphs and graphs containing lots of hub nodes, as in PPDai.
Node Classification on the Enhanced Network. Given an in-
put flawed network G, we will reconstruct the enhanced network
G∗ via E-Net, and further compare with the real clean network
Gclean by taking node classification as our downstream task. Specif-
ically, when constructing G∗, we first remove the links in noisy link
candidate whose ranking is in last C according to s(·, ·), where we
set C as the number of real noisy links, and then add the missing
links predicted by our model in the missing link candidate set. We
then apply node2vec [5] (adopting their default parameters) to get
node embedding and follow a MLP for label prediction. We set
train:test split as 0.8:0.2. Table 5 reports the comparison between
the performance on different networks constructed based on Cora,
which demonstrates that enhancing the flawed network based on
our model is really helpful for downstream task here.

5 CONCLUSION
In this work, we study the problem of network enhancement, and
propose E-Net, an end-to-end GNNmodel that considers the mutual
influence between noisy links andmissing links.We further propose
a lazy subgraph extractionmethod to reduce computational cost.We
demonstrated the significancy of our methods on various datasets.
Our future directions include analysing the model robustness and
defense strategy under network adversarial attacks on graphs.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

REFERENCES
[1] Ziv Bar-Yossef and Li-Tal Mashiach. 2008. Local Approximation of Pagerank and

Reverse Pagerank. In CIKM. 279–288.
[2] Carter T. Butts. 2003. Network inference, error, and informant (in)accuracy: a

Bayesian approach. Social Networks 25, 2 (2003), 103 – 140.
[3] Yen-YuChen, QingqingGan, and Torsten Suel. 2004. LocalMethods for Estimating

Pagerank Values. In CIKM. 381–389.
[4] Giorgio Gnecco, Rita Morisi, and Alberto Bemporad. 2015. Sparse Solutions to the

Average Consensus Problem via Various Regularizations of the Fastest Mixing
Markov-Chain Problem. IEEE Transactions on Network Science and Engineering 2,
3 (July 2015), 97–111.

[5] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning
for Networks. In Proceedings of the 22th International Conference on Knowledge
Discovery and Data Mining (KDD’16). 855–864.

[6] Kossinets Gueorgi. 2006. Effects of missing data in social networks. Social
Networks 28, 3 (2006), 247 – 268.

[7] Roger Guimerà and Marta Sales-Pardo. 2009. Missing and spurious interac-
tions and the reconstruction of complex networks. PNAS 106, 52 (Dec 2009),
22073–22078.

[8] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31th International Conference on
Neural Information Processing Systems (NIPS’17).

[9] Glen Jeh and Jennifer Widom. 2003. Scaling Personalized Web Search. In WWW.
ACM, New York, NY, USA, 271–279.

[10] Diederik P. Kingma and Jimmy Ba. 2015. Adam: Amethod for stochastic optimiza-
tion. In Proceedings of the 3rd International Conference on Learning Representations
(ICLR’15).

[11] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[12] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In Pro-
ceedings of the 6th International Conference on Learning Representations (ICLR’18).

[13] Qimai Li, Zhichao Han, and Xiao Ming Wu. 2018. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning. In AAAI. AAAI.

[14] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. 2016. Gated
Graph Sequence Neural Networks. In ICLR (proceedings of iclr’16 ed.).

[15] David Liben-Nowell and Jon Kleinberg. 2003. The Link Prediction Problem for
Social Networks. In Proceedings of the 12th ACM International Conference on
Information and Knowledge Management (CIKM’03). 556–559.

[16] F. Lin, M. Fardad, and M. R. Jovanović. 2012. Identification of sparse communica-
tion graphs in consensus networks. In Allerton. 85–89.

[17] Linyuan Lü, Ci-Hang Jin, and Tao Zhou. 2009. Similarity index based on local
paths for link prediction of complex networks. Physical review. E, Statistical,
nonlinear, and soft matter physics 80 (10 2009), 046122.

[18] Liming Pan, Tao Zhou, Linyuan Lü, and Chin-Kun Hu. 2016. Predicting missing
links and identifying spurious links via likelihood analysis. Scientific Reports 6
(03 2016), 22955.

[19] Joseph Schafer and John Graham. 2002. Missing Data: Our View of the State of
the Art. Psychological Methods 7 (06 2002), 147–177.

[20] Alexander J. Smola and Risi Kondor. 2003. Kernels and Regularization on Graphs.
In Learning Theory and Kernel Machines. Springer Berlin Heidelberg, Berlin,
Heidelberg, 144–158.

[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[22] Bo Wang, Armin Pourshafeie, Marinka Zitnik, Junjie Zhu, Carlos D. Bustamante,
Serafim Batzoglou, and Jure Leskovec. 2018. Network enhancement: a general
method to denoise weighted biological networks. Nature Communications (2018).

[23] Jia Xu, Hongyan Liu, Zou Li, Jun He, Xiaoyong Du, and Yuanzhe Cai. 2010. Local
Methods for Estimating SimRank Score. In APWeb. 157–163.

[24] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-Lehman Neural Machine for
Link Prediction. In Proceedings of the 23rd International Conference on Knowledge
Discovery and Data Mining (KDD’17). ACM, New York, NY, USA, 575–583.

[25] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural Net-
works. In Proceedings of the 32th International Conference on Neural Information
Processing Systems. Curran Associates Inc., USA, 5171–5181.

[26] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
End-to-End Deep Learning Architecture for Graph Classification. In AAAI.

[27] Dengyong Zhou and Bernhard Schölkopf. 2004. A Regularization Framework for
Learning from Graph Data. In Proceedings of the 19th International Conference on
Machine Learning (ICML’04).

[28] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. 2009. Predicting missing links via
local information. The European Physical Journal B 71, 4 (Oct 2009), 623–630.

[29] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust Graph
Convolutional Networks Against Adversarial Attacks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’19). Association for Computing Machinery, New York, NY, USA, 1399–1407.
https://doi.org/10.1145/3292500.3330851

6

https://doi.org/10.1145/3292500.3330851

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Robust Network Enhancement from Flawed Networks Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

A APPENDIX
A.1 Notations
In most cases, we use lower-case letters for scalars (e.g., l), upper-case letters for sets (e.g., V and E), bold lower-case letters for column
vectors (e.g., x), and bold upper-case letters for matrices (e.g., A). When indexing the matrices, Ai j denotes the element at the i-th row and
the j-th column, and Ai denotes the vector at the i-th row. The major notations used in our proposed model can be found in Table 6.

Table 6: Description of some major notations

Notation Description

G, G∗ The flawed network and the enhanced network
V The node set of G
E, ϵi j The edge set of G and its corresponding edge
Y,Yi j The true state matrix and state label of ϵi j
Ŷ The predicted state matrix
X The node attribute matrix of G
A The adjacency matrix of G
D The degree matrix of A
G The input local subgraph
V , vi The node set of G and its corresponding node
E, ei j The edge set of G and its corresponding edge
T, ti The relative position matrix and the position label of vi
X, xi The node attribute matrix of G and the attribute vector of vi
A, A∗ The adjacency matrix and the denoised weight matrix of G
L∗ The Laplacian matrix of A∗

P The probability transition matrix of lazy random walk
s(·, ·) The noise scoring function
q,q(m) The query of the two nodes and them-th query
Z l The output of the l-th denoising graph convolution layer
H The subgraph representation
dl The output dimension of the l-th graph convolution layer
L The number of graph convolution layer

A.2 Dataset Details
Detailed dataset statistics can be found in Table 7.

Table 7: Dataset statistics

Dataset Type #Nodes #Edges #Attributes Noisy Rate Missing Rate

PPDai Mobile network 83,286 114,422 776 10.6% 10%
Cora Citation network 2,708 5,429 1,433 10% 10%

Citeseer Citation network 3,327 4,732 3,703 10% 10%
Pubmed Citation network 19,717 44,338 500 10% 10%

A.3 Experimental Details
We implemented all the models in Pytorch with the Adam optimizer for optimization [10]. Early stopping strategy is implemented if the
performance ceases to improve or only improves in a small range (1e-3) for 7 successive epochs on the validation set. All experiments are
conducted on a single machine with an Intel Xeon E5 and one NVIDIA TITAN GPU.

A.4 Visualization of the enhanced network
Figure 3 further visualizes the networks, where the enhanced network exhibits more discernible clustering compared with the input flawed
network, and is more similar to the clean network.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Flawed network (b) Enhanced network (c) Clean network

Figure 3: Visualization of Cora networks, where different colors present different node categories.

A.5 Parameter Analysis
In this section, we analyze four crucial hyper-parameters, which are the number of lazy walks when extracting subgraph nlazy, the sparsity
coefficient α , the hidden dimension of GNN layers dl (here, we let all GNN layers have the same dimension) and the number of GNN layers
L respectively.

In order to further determine the optimal parameters settings, we vary the values of nlazy, α , dl and L to better observe how the
performance of missing link prediction will change. In detail, we study nlazy ∈ {10, 20, 30, 40, 50}, α ∈ {1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3},
dl ∈ {8, 16, 32, 64, 128}, L ∈ {1, 2, 3, 4, 5} respectively. It should be noted that the the number of lazy walks nlazy remains at 30 while studying
α , dl and L, the sparsity coefficient α remains at 1e-4 while studying nlazy, dl and L, the hidden dimension of GNN layers dl remains at 32
while studying nlazy, α and L, and the number of GNN layers L remains at 4 while studying nlazy, α and dl . Here, we present some suitable
values of these parameters for reference. We report the F1 score on Cora dataset in the task of missing link prediction in Figure 4. As shown,
remarkably, we can see that E-Net can achieve relatively good performance regardless of parameters changing (still better than the baseline
methods), which answers the question Q5.

More specifically, from Figure 4(a), we observe that our model yields good results when nlazy equals to 30. It can be explained that few local
structural information is captured when nlazy is set to be small, thus can not provide us enough information, while too many observations
would in turn prevent us from capturing the most important part of graph structure. From Figure 4(b), we can see that we can maintain our
results greater than 0.61 when α is set to be larger than or equal to 1e-6, which suggests the necessity of our auxiliary denoising objective.
From Figure 4(c), the results seem less sensitive to the hidden dimension of GNN layers. From Figure 4(d), the performance becomes better
on the whole if more GNN layers are used, and it only slightly drops after stacking 5 layers. This makes intuitive sense, since GNN with
deeper layers give the model more capacity to represent graphs. However, when the layer number is too much (equals to 5), the performance
starts to drop slightly. This observation is due to the fact that GNN tends to be over smoothing after stacking too many layers, which is
consistent with many conclusions in previous works [11–13]. Since we concatenate all the outputs of each GNN layers to generate final
high-quality node representation, which avoids this problem to some extent.

(a) nlazy: # of lazy walks (b) α : sparsity coefficient (c) d l : hidden dimension of GNN (d) L: # of GNN layers

Figure 4: Hyper-parameter analysis, where the y-axes are fixed in the same range.

8

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Our Approach
	3.1 Lazy Subgraph Extraction
	3.2 E-Net
	3.3 Model Learning

	4 Experiments
	4.1 Experimental Results

	5 Conclusion
	References
	A Appendix
	A.1 Notations
	A.2 Dataset Details
	A.3 Experimental Details
	A.4 Visualization of the enhanced network
	A.5 Parameter Analysis

