NoiGAN: Noise Aware Knowledge Graph
Embedding with Adversarial Learning

Kewei Cheng
Department of Computer Science, University of California,
Los Angeles
viviancheng@cs.ucla.edu

Ming Zhang
Department of Computer Science, Peking University
mzhang@net.pku.edu.cnt

ABSTRACT

Although knowledge graphs (KGs) have gained increasing atten-
tion in recent years for their successful applications in numerous
applications across different domains, the extensive power of KGs
is severely limited by the incompleteness of the real-world data
and the inevitably involvement of various kinds of errors. On one
hand, although knowledge graph embedding (KGE) methods show
strong reasoning ability in inferring missing facts, they usually lack
the capability to handle noise. On the other hand, even though
several attempts have been made to automatically remove noisy
triples from KGs, they treat error detection as an orthogonal task
to KGE methods. However, intuitively, embedding and error de-
tection tasks are inter-dependent and can mutually enhance each
other. Error detection is extremely useful to prepare clean KG for
KGE model while high quality embedding learned by KGE model
is powerful for identifying noisy data. In this paper, we propose a
unified adversarial learning-based model, called NoiGAN, to jointly
train these two tasks. Extensive experiments have demonstrated
that our approach is superior to existing state-of-the-art algorithms
in regard to both KG completion and error detection.
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1 INTRODUCTION

Although knowledge graphs (KGs) have gained increasing attention
in recent years for their successful applications in numerous applica-
tions across different domains, such as web search [7] and question
answering [9, 29], the extensive power of KGs is severely limited
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by the incompleteness of the real-world data and the inevitably
involvement of various kinds of errors [17].

Knowledge graph embedding-based (KGE) methods currently
hold the state-of-the-art in KG completion for their strong reason-
ing ability and good scalability [1, 11, 13, 20, 21, 25, 28]. However,
they usually lack the ability to handle noisy data. In practice, the
automatic construction process of KGs inevitably introduces many
kinds of errors, including conflicting, erroneous, and ambiguous
information [17]. To remove the noise from KGs, various KG error
detection methods can be utilized to provide clean KGs for KGE
models by identifying and remove incorrect triples in the KGs auto-
matically [5, 26]. The main challenge for KG error detection is the
scarcity of labeled noisy triples since samples of noisy triples is usu-
ally costly and labor intensive to obtain in real-world. As a result,
most of existing methods [17] utilize the ontology information and
human defined logical rules to detect error in KGs. They measure
the correctness of a triple by determining whether it violates the
ontology structure or logical rules.

Although existing KG error detection methods treat itself as or-
thogonal task to KGE methods, intuitively, KG embedding methods
could be potentially useful for KG error detection task. Considering
the strong power of KGE in capturing network structure, high-
quality embeddings could reveal global structure information of
KGs. Despite the difficulty in collecting noisy triples, as long as
KGE provides deep understanding of network structure of KGs, we
can generate the noise instead. In addition, recent studies on the
memorization effects of deep neural networks show that neural
networks would first memorize training data of clean labels and
then those of noisy labels [8]. Thus, KGE is also useful to select
credible correct triples from noisy KGs. With both selected reliable
true triples and generated noisy triples, KG error detection can be
easily achieved by training a classifier to distinguish noisy triples
from the correct triples.

Despite the potential benefits brought by the mutual interaction
between KGE and error detection, a vast majority of existing works
fail to capture it by treating KGE and KG error detection as orthog-
onal tasks. To address the limitation of existing works, in this paper,
we propose a novel framework NoiGAN to jointly combine KGE
and error detection with a unified generative adversarial network
(GAN) [6]. In general, NoiGAN consists of two components: (1) a
noise-aware KGE module to learn robust representations of entities
and relations, and (2) an adversarial learning module to distinguish
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noise from normal data. During the training, the noise-aware KGE
model takes the confidence score computed by GAN, which indicate
the degree of trustworthiness of a triple fact, as the guidance to
eliminate the noisy data from the training data whereas the GAN
requires the noise-aware KGE model to continuously provide high
quality embedding as well as credible correct triples to train a clas-
sifier which can distinguish noise from normal data. Cooperation
between these two components drives both to improve their ca-
pability. The main contributions of this paper are summarized as
follows:

e We propose a unified framework, known as NoiGAN, to lever-
age the mutual interaction between KGE and error detection
for noise-aware KG embedding learning. Under the framework,
KGE and error detection could alternately and iteratively boost
performance of each other.

e Our proposed framework can be easily generalized to various
KGE models to enhance their ability in dealing with noisy knowl-
edge graph.

e We experimentally demonstrate that our new algorithm is su-
perior to existing state-of-the-art algorithms in terms of both
knowledge graph completion and noise detection.

2 PROBLEM STATEMENT

In this section, we formally define our problem in order to clarify
the differences between our setting and previous work. Notation
wise, we use bold lowercase letters to denote vectors (e.g., h), and
regular lowercase letters to denote single variables (e.g., h).

Given a knowledge graph G = {E,R, 7}, which consists of a
set of entities E, a set of relations R and a set of observed facts
T =A{(hr,t) | ht € E, r € R}, where a fact is represented by a
triple (h, r,t), and h, t, and r denotes its head entity, tail entity, and
relation, respectively.

Let G = {E,R, 7} be a knowledge graph, which consists of a
set of entities E, a set of relations R and a set of observed facts
T = {(h,r,t) | hit € E, r € R}, where a fact is represented by
a triple (h,r,t), and h, t, and r denotes its head entity, tail entity,
and relation, respectively. Their corresponding embedding vectors
are denoted as h, t and r accordingly. Existing KGE models assume
that every triple (h,r,t) € 7 is correct, which is not true in real
world. To take the potential noise in KGs into consideration, we
divide the observed triples into two disjoint sets according to their
correctness, 7 and 7¢, where 7g denotes the collection of noise
while 7¢ denotes the collection of correct triples. Note that the
partition of 7g and 7¢ is unknown for us. To predict the degree of
trustworthiness of a triple, each triple (h, r,t) is associated with
a confidence score C(h,r, t), which can be either a binary value
0 or 1, or a soft value from [0, 1], indicating how likely the corre-
sponding triple is true. Then, the problem of learning noise aware
KG embedding can be stated as follows:

Given: A noisy knowledge graph G, including both correct
triples 7¢ and noise 7.

Learn: the confidence scores {C(h,r,t)|V(h,r,t) € T} as well
as a corresponding noise aware KGE model under the guidance of
{C(h,r,t)|V(h,rt) €T}
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3 THE PROPOSED METHOD: NOIGAN

In this section, we illustrate our proposed framework, NoiGAN,
in details. NoiGAN aims to learn noise-aware KG embeddings by
jointly training both embedding and error detection tasks under
a unified adversarial learning-based framework. It consists of two
components: (i) Noise aware KGE model, which incorporates confi-
dence scores (i.e., C(h, r, t)) into the KGE model to isolate the impact
of noise over embedding vectors. Meanwhile, it provides high qual-
ity embeddings as well as reliable correct triples (i.e., (h,r,t) € T¢)
to model GAN (Section 3.1); (ii) Adversarial learning framework
(GAN) for noise identification, which can be further divided into
two components: (a) Noise generator (i.e., G((h',r,t")|(h 1, 1);0G)),
which learns to generate the most likely triples to be the noise by
corrupting the correct triple. It aims at providing reliable noise
samples for the discriminator as well as high quality negative
samples for noise aware KGE model (Section 3.2.1); (b) Discrim-
inator (i.e.,D((h,r,t);0p)), which aims to learn confidence score
for each observed triple to distinguish correct triples from noise
(i.e.{C(h,r,t)|V(h,r,t) € T}). The confidence score is utilized by
the noise aware KGE model to eliminate the noise from the learning
process (Section 3.2.2).

3.1 Noise Aware Knowledge Graph Embedding
Model

Most of existing embedding models assume that all observed triples
are completely true in KGs, which is inappropriate. In fact, KGs
contains many kinds of errors due to the automatic construction
process. To isolate the impact of noise over embedding vectors,
following [19], we adopted confidence score to describe whether a
triple fact is noisy. In particular, confidence score can be learned by
a discriminator, which is trained to correctly classify the noise and
the correct triples. We will discuss how to obtain such discriminator
in Section 3.2.2. With the learned confidence score, the objective
function of noise-aware KGE model becomes as follows, which
can be easily adapted to any KGE models by define f; (h, t) using
different scoring functions.

Lxge= ), Clhrt)[(=loga(y— fi(h1)
(hrt)eT

1
F o [Nr] B T RO
(W.rt")eN(hrt) IN(h,7,1)|

where y is the margin, o is the sigmoid function and C(h, r, t) is
the confidence score assigned to each observed triple (h,r,t) € T
To be specific, C(h, r, t) can be both a binary variable or a soft value
from the interval [0, 1]. The closer the value is to 0, the greater
the probability that the triple is noise. We denote the previous
one as the hard version while the later one as the soft version.
To reduce the effects of randomness, we sample multiple negative
triples (h’,r,t’) for each observed triple (h,r,t) € 7. We denote
the negative triples set of a triple (h,r,t) as N (h,r,t). Negative
triples set is constructed by replacing the head or tail entity of the
observed triples with an entity sampled randomly from entity set
E:

N(hrt)={(h,r,t)|h € EyU{(hrt')|t' €E}, (hrt) €T
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Figure 1: Illustration of the proposed NoiGAN framework. It consists of two main components, a noise-aware KGE model for

embedding learning and a GAN for noise identification.

3.2 GAN for Noise Identification

Our adversarial learning framework for noise identification con-
sists of two components, a noise generator and a discriminator.
Unlike traditional GAN whose ultimate goal is to train a good gen-
erator, our proposed GAN aims to produce a good discriminator to
distinguish noise from true triples. The classification probability
predicted by the discriminator will be adopted as the confidence
score by noise-aware KGE in Section 3.1. Considering that samples
of noise is usually costly and labor intensive to obtain in reality,
we thus learn a noise generator to generate the noise instead. In
particular, the generator and the discriminator act as two players
in a minimax game: the generator learns to continually generate
“more confusing" triples and thus provides better quality noise for
the discriminator, whereas the discriminator is trained to draw a
clear distinction between the correct triples and the noise generated
by its opponent generator. Formally, it can be formulated as:

max min V(G, D) = Z E(hr.t)~7z[log D((h, 7, 1);6p)]
D G
(h.r.t)eTc

+E (1 1.t~ (- (hr.t):0) [log(1 = D((R', 1, );0p))]

where 7¢ represents the collection of correct triples whose con-
struction will be discussed in Section 3.2.2.

3.2.1 Noise Generator. The main goal of the generator is to gener-
ator high-quality fake triples that can fool discriminators, which in
return, brings a better classifier to identify error in KGs. In addition,
to enable KGE model learn from the noisy data simultaneously,
the noise generated by the generator can also be taken as negative
samples to train the noise-aware KGE model. Specifically, the gen-
erator takes embedding vectors as well as the collection of correct
triples 7¢ learned by the noise-aware KGE model as input. Given
a correct triples (h,r,t) € 7¢, the generator aims to select the
most likely triples to be the noisy triples (h’, r, ¢") from its negative
samples candidate set N'(h,r,t). To achieve this goal, a two-layer
fully-connected neural network is introduced to model the proba-
bility distribution over the candidate negative samples N (h,r, t).

In particular, this MLP uses ReLU as the activation function for the
first layer and adds Softmax to the second layer. It takes the con-
catenation of the embedding vectors h’, r and t’ of triple (h’,r,t’)
as input and output the probability whether the triple (h’,r,t’) is
the most likely noisy triple. As the output of the generator is a
discrete triple, training for the generator is a little tricky due to
data indifferentiability issue. A common solution is to use policy
gradient based reinforcement learning instead [22]. In particular,
for a generated triple, the reward from discriminator is defined as
fp (K, r,t"), which is exactly the probability of the triple (h’,r, t’)
to be true. Thus, in order to fool the discriminator, the generator is
trained to maximize the expected reward as follows:

RG = D Elr)~G(-|(hrnbo) log fo(W.r. )Ty
hr.t

3.2.2  Discriminator. Discriminator is essentially a noisy triple clas-
sifier, which aims to distinguish the noise from the true triples. Both
correct and noisy triples are required to train the discriminator.
Generator can provide reliable noisy triples for the discriminator
as introduced in Section 3.2.1. To prepare reliable correct triples,
regarding all observed triples in a KG as candidates obviously is
inappropriate. Instead, we leverage memorization effects of deep
neural network to select qualified candidates from 7". According to
memorization effects, when noisy data exist, deep learning mod-
els tend to memorize these noise in the end and thus leads to the
lower prediction score of noisy triples [8]. We therefore take top a%
triples which fit the KGE the best (with lowest f(h, t)) to construct
the correct triples set 7c. Considering discriminator is essentially a
binary classifier, the objective function of the discriminator can be
formulated as minimizing the following cross entropy loss:

Lp=- ), log(fo(hr.)

(h,r,t)eTc

- > log(1 ~ fp (K. r.1)
(.r.t") €G(-|(h.r.t);0G)
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where fp(h,r,t) = o(MLP(h,r,t)) where MLP is a two-layer
neural network with ReLU as activation function and o(x) =
1/(1 + exp(—x)) is the standard sigmoid function. If we use TransE
as our KGE model, the MLP takes the vector h + r — t as input and
output the probability of the triple (h,r,t) being true. fp(h,r,t)
is used to define C(h,r,t) for each observed triple in a KG (i.e.,
{C(h,r,t)|V(h,r,t) € T}). To be specific, C(h, r,t) can be either a
binary value or a soft value. When it is a binary variable, it repre-
sents the classification result regard to whether a triple is a true
triple. When it takes a soft value, it indicates the probability of the
triple (h,r, t) being true.

Algorithm 1 NoiGAN Framework

Require: Observed triples in a knowledge graph 7~
1: Initialize {C(h,r,t) = 1|Y(h,r,t) € T }.
2: Train noise aware KGE model with random N (h, r, t).
3: Update embeddings h, r, t.
4 forn=1:Ndo
5 Take top a% triples with lowest f;(h, t) as 7¢.
6
7
8

Train GAN with 7¢ and h, 1, t.

Update {C(h,r,t)|V(h,r,t) € T} according to Eq. (2) .
KGE model with Update
7} and N(hr,t) generated by

Train noise aware
{C(h,r,t)|[V(h,1r,t) €
generator G.

9: end for

3.3 Joint Training

We train each component of NoiGAN alternately by fixing the
parameters of the others. We start by training the noise aware
KGE model. We initiate the confidence score C(h,r,t) as 1 for all
(h,r,t) € T at the very beginning. Top a% triples which fit the noise
aware KGE the best will be selected to construct 7¢c. Then, with both
learned embedding vectors h, r, t and 7¢, we start the training of
the GAN. Since the generator aims to generate the most likely noisy
triples (h’, r, t’) to fool the discriminator, the reward R given by
the discriminator is taken as guidance for its training. Meanwhile,
the discriminator learns a classifier to distinguish noisy triples by
taking triples generated by the generator as negative examples and
triples in 7¢ as positive examples. Once the training of GAN has
done, the discriminator is utilized to update the confidence score
C(h, r,t) for all observed triples in the KG. After that, the training
of the noise aware KGE model will start again. The process repeats
until convergence. The embeddings learned by the noise aware
KGE model is regarded as the final representation for entities and
relations.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. We evaluate our NoiGAN on three widely used bench-
mark datasets, including FB15K-237, WN18RR and YAGO3-10. To
simulate the real-world noisy knowledge graphs, we modified these
benchmark datasets to include noise. Complete details of injecting
noise to benchmark datasets as well as statistics of the datasets are
summarized in appendix.

Kewei Cheng, Yikai Zhu, Ming Zhang, and Yizhou Sun

Baselines. NoiGAN is compared with the following state-of-the-
art algorithm, including (1) KGE models (e.g., TransE [1],DistMult [28]
and RotatE [20]); (2) robust KGE models ( e.g., attention based
method [15]); (3) KGE models with GAN (e.g., KBGAN [2]) and
(4) noise aware KGE models (e.g., CKRL [27]). As there are three
kinds of triple confidences defined in CKRL, we take CKRL with
local triple confidence, called CKRL (LT), as our baseline. To fairly
compare different methods, the same loss function and negative
sampling strategies are employed for all models.

Experimental Setup of NoiGAN. We evaluate two versions of
our NoiGAN model as mentioned in Section 3.2.2. The soft version
is denoted as NoiGAN (soft) while the hard version is denoted as
NoiGAN (hard). In particular, both TransE [1] and RotatE [20] are
implemented as score function for NoiGAN, which are denoted as
NoiGAN-TransE and NoiGAN-RotatE respectively. The detailed
hyperparameters settings are available in the appendix.

4.2 Results

Knowledge Graph Noise Detection. To verify the capability of
NoiGAN in distinguishing noises in knowledge graphs, we evaluate
NoiGAN in terms of classification performance on the training
set. The experiments are conducted on three benchmark datasets
with injected noisy triples to be the ratio of 40% of true triples.
Two classification evaluation metrics are adopted, including (1)
AUG; (2) Specificity (True Negative Rate), which can be calculated
as TI\T]%, where TN represents true negative while FP represents
false positive.The results can be found in Table 1. We have several
interesting observations from the results: (1) NoiGAN-TransE (hard)
consistently achieves the state-of-the-art performances over all
datasets in almost all cases. (2) Both NoiGAN-TransE and NoiGAN-
RotatE consistently outperform their base model (i.e., TransE and
RotatE) on all datasets with significant performance gain, which
demonstrates the capability of NoiGAN framework in detecting
noises.

Knowledge Graph Completion. To verify the quality of learned
embedding, we evaluate NoiGAN over KG completion task to show
its reasoning ability. We conduct experiments on three benchmark
datasets with noisy triples to be the ratio of 70% of true triples. Dur-
ing evaluation, we mask the head or tail entity of each test triple to
predict the masked entity. The Hit@K (H@K) and Mean Recipro-
cal Rank (MRR) are adopted as the evaluation metrics. Results of
reasoning are shown in Table 2. In particular, as attention based
method exceed the memory capacity of our machines on YAGO3-10
dataset, only the results on the FB15K-237 and WN18RR datasets
are reported. Note that TransE, CKRL (LT) and NoiGAN-TransE
share the same score function, they are comparable with each other
while RotatE and NoiGAN-RotatE share the same score function
RotatE and thus they are comparable with each other. We make
the following observations: (1) NoiGAN consistently outperforms
the baseline methods which share the same score function with
it on noisy dataset sets. The performance gain is significant espe-
cially on datasets with 100% noise; (2) Either NoiGAN-TransE or
NoiGAN-RotatE will achieve the best performance on almost all
noisy datasets. In particular, hard version of NoiGAN performs
better then soft version in most cases; (3) Although attention based
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Figure 2: Robustness Analysis of NoiGAN on FB15K-237 Dataset.

Model FB15K-237 YAGO3-10 WN18RR
AUC  Specificity AUC  Specificity AUC  Specificity

CKRL (LT) .5391 .0812 .5035 .0071 .5540 1236
TransE .6061 .2128 5772 .1607 .5002 .0005
NoiGAN-TransE (soft) .6881 4788 7752 .5989 .6036 .3235
NoiGAN-TransE (hard) .7360 .6154 .8681 7735 .6227 4114
RotatE 5373 1171 .5086 .0176 5001 .0003
NoiGAN-RotatE (soft) .5848 1867 .6550 4372 .5700 4258
NoiGAN-RotatE (hard) .5836 .1868 .6622 .4355 .5860 .4072

Table 1: Evaluation Results on Noise Detection with Noisy Triples to be 40% of True Triples

Model FB15K-237 YAGO3-10 WN18RR
MRR H@l1 H@10 MRR H@!1 H@10 MRR H@l H@10
DistMult 218 .136 .388 .292 .203 470 424 .382 .507
KBGAN .266 .186 427 .071 .041 124 215 .036 .507
Attention 436  .360 .589 - - - - 443 .583
TransE .330 .229 531 410 .299 .620 229 .022 .526
Without Noise CKRL (LT) 330 .229 .529 377 .264 .585 231 .027 .530
NoiGAN-TransE (soft) 318 217 518 .370 .267 567 231 .026 524
NoiGAN-TransE (hard) .308 .209 .502 .345 .248 531 223 .031 .503
RotatE 326 228 521 .380 .269 594 472 429 557
NoiGAN-RotatE (soft) .326 .229 .520 430  .330 .620 466 420 .554
NoiGAN-RotatE (hard) .325 228 518 413 312 .602 465 420 551
DistMult .196 122 342 .074 .030 .160 328 .266 420
KBGAN 123 .040 .288 .026 .016 .040 161 .007 .429
Attention 255 174 414 - - - 192 .012 453
TransE .167 .019 440 .085 .005 242 .169 .005 1439
With Noise CKRL (LT) 171 .021 449 .090 .004 .262 .169 .007 441

NoiGAN-TransE (soft) .189  .037 464 124 .003 .358 166 .002 442
NoiGAN-TransE (hard) .199  .059 .457 .210  .091 443 152 .004 .392

RotatE 254 154 444 .037  .001 .103 357 292 456
NoiGAN-RotatE (soft) .279  .179 475 121 .034 .296 366 .295 473
NoiGAN-RotatE (hard) .282 .184 478 128 .040 310 368 .298 474

Table 2: Evaluation Results on KG Completion with Noisy Triples to be 70% of True Triples
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Figure 3: Distribution of Confidence Score on YAGO3-10.

method claims that they can ensure robust performance, its perfor-
mance drops rapidly once the noise is introduced, which shows that
our NoiGAN significantly outperforms it in terms of robustness.

Robustness Analysis of the NoiGAN. To further analyze the
robustness of the NoiGAN, we investigate how performance change
with noisy triples to be different ratio (e.g., 40%, 70% and 100%) of
original data on YAGO3-10 dataset for both noise detection and
KG completion tasks. We divided the methods into two categories
according to their score functions, including (1) TransE based meth-
ods, which consists of TransE, CKRL (LT) and NoiGAN-TransE; and
(2) RotatE based methods, which consists of RotatE and NoiGAN-
RotatE. The results of KG noise detection and KG completion are
presented in Figure 2 (a) and Figure 2 (b) respectively. We can ob-
served that: (1) For noise detection task, hard version of NoiGAN
consistently outperforms soft version of NoiGAN in all cases. How-
ever, soft version of NoiGAN show better robustness w.r.t the in-
crease of noise. (2) For KG completion task, if we do not introduce
noise, the performance of NoiGAN-RotatE is almost the same as
its baselines while the performance of NoiGAN-TransE is a little
worse than its baseline. As the amount of added noise rises, the
improvement introduced by the NoiGAN becomes more significant,
which further proves the robustness of the NoiGAN.

Case Study. To demonstrate the power of discriminator in dis-
tinguishing noise, we conduct experiments over YAGO3-10 with
40% noise on NoiGAN-TransE (soft) and display confidence scores
of triples in form of histogram. The distribution for correct triples
are shown in Figure 3(a) while the distribution for noise can be
found in Figure 3(b). We can see that confidence scores of the cor-
rect triples are mainly in the region of [0.8, 1]. Instead, confidence
scores of the noise are more evenly distributed, which are more
concentrated in the region of [0, 0.2]. The results indicate that the
task of classifying the correct triples is much easier than the task of
classifying the noise, which also validates our assumption that deep
learning models tend to memorize correct triples at first and thus
leads to the great generalization performance of correct triples.

5 RELATED WORK

Knowledge Graph Completion. Embedding based methods cur-
rently hold the state-of-the-art in KG completion for their promising
results [24]. They aim to capture the similarity of entities by em-
bedding entities and relations into continuous low-dimensional
vectors. Existing methods can be roughly divided into two cate-
gories: translational distance models and semantic matching models.
Translational distance models measure the plausibility of a fact as
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the distance between two entities after a translation carried out by
the relation. Some representative approaches include TransE [1],
TransH [25] and TransR [13]. Semantic matching models measure
plausibility of facts by matching latent semantics of entities and re-
lations embodied in their vector space representations. The typical
models include RESCAL [16], DistMult [28] and ComplEx [21]. To
optimize the KGE model, negative sampling is usually required to
minimize the margin based ranking loss. A conventional method to
construct negative samples is randomly sampling. However, neg-
ative samples generated through a random mode are often too
easy to be discriminated from positive facts and thus make little
contribute towards the training. Some recent work proposed to in-
corporate GAN for better negative sampling to improve the quality
of embeddings [2, 23]. Nonetheless, none of the above methods has
considered the potential involvement of noisy data in KGs, which
leads to their sensitivity to unreliable data [18]. In this paper, we
proposed a novel technique to enable current embedding models
to cope with noisy data.

Error Detection in Knowledge Graph. Due to the lack of
noisy data samples, error detection in knowledge graph is a chal-
lenging task. Existing methods can be broadly divided into two
categories, including ontology based methods and anomaly detec-
tion based methods. Ontology based methods address this problem
by exploring additional ontology information. A larger number of
ontology reasoners are developed to utilize logic programming to
derive uncovering contradictions among observed facts [3, 4, 14].
Rich ontology information is required for such kind of methods and
thus impede its application to real-world knowledge graphs. An-
other kind of methods is anomaly detection based methods [5, 26].
The main drawback of this kind of methods is that they do not
necessarily identify errors, but also natural outliers, which will
compromise the objectivity of its results.

Noise Aware Knowledge Graph Embedding. More recently,
detecting noises while learning knowledge representations simulta-
neously becomes popular. A novel confidence-aware framework [19,
27] proposed to incorporate triple confidence into KGE model to
learn noise aware knowledge graph representations simultaneously.
However, it measures the triple confidence merely based on the
how well the triple fits the model, which is easily affected by model
bias. Recently, another measurement [10] proposed to synthesizes
the internal semantic information in the triples and the global infer-
ence information of the KG to jointly measure the trustworthiness
of triples. In particular, it fusions information from three levels for
trustworthiness measurement.

6 CONCLUSION

In this paper, we propose a novel generative adversarial framework
NoiGAN, to learn noise-aware KG embedding. Under the frame-
work, KGE and error detection tasks are joint trained to mutually
enhance each other. On one hand, error detection model is useful
to provide clean KGs for KGE. On the other hand, KGE can help
prepare both positive and negative data samples to classify noisy
triples. Extensive experiments show the superiority of NoiGAN in
regard to both KG completion task and error detection task.



NoiGAN: Noise Aware Knowledge Graph
Embedding with Adversarial Learning

REFERENCES

(1]

[10

[11

[12]

=
&

[14]

[15

[16]

[17]

=
&

[19]

[20

[21

oo
0

[23

[24]

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787-2795.

Liwei Cai and William Yang Wang. 2017. Kbgan: Adversarial learning for knowl-
edge graph embeddings. arXiv preprint arXiv:1711.04071 (2017).

Kathrin Dentler, Ronald Cornet, Annette Ten Teije, and Nicolette De Keizer. 2011.
Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semantic
Web 2, 2 (2011), 71-87.

Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avancha. 2007. Using
ontologies in the semantic web: A survey. In Ontologies. Springer, 79-113.
Daniel Fleischhacker, Heiko Paulheim, Volha Bryl, Johanna Vélker, and Christian
Bizer. 2014. Detecting errors in numerical linked data using cross-checked outlier
detection. In International semantic web conference. Springer, 357-372.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672-2680.

Jens Graupmann, Ralf Schenkel, and Gerhard Weikum. 2005. The SphereSearch
engine for unified ranked retrieval of heterogeneous XML and web documents.
In Proceedings of the 31st international conference on very large data bases. VLDB
Endowment, 529-540.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural net-
works with extremely noisy labels. In Advances in neural information processing
systems. 8527-8537.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and
Jun Zhao. 2017. An end-to-end model for question answering over knowledge
base with cross-attention combining global knowledge. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 221-231.

Shengbin Jia, Yang Xiang, Xiaojun Chen, and Kun Wang. 2019. Triple Trustwor-
thiness Measurement for Knowledge Graph. In The World Wide Web Conference.
2865-2871.

Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link predic-
tion in knowledge graphs. In Advances in Neural Information Processing Systems.
4284-4295.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artificial intelligence.

Marko Luther, Thorsten Liebig, Sebastian Bohm, and Olaf Noppens. 2009. Who
the Heck is the Father of Bob?. In European Semantic Web Conference. Springer,
66-80.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. 2019. Learn-
ing Attention-based Embeddings for Relation Prediction in Knowledge Graphs.
arXiv preprint arXiv:1906.01195 (2019).

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data.. In ICML, Vol. 11. 809~
816.

Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489-508.

Jay Pujara, Eriq Augustine, and Lise Getoor. 2017. Sparsity and noise: Where
knowledge graph embeddings fall short. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. 1751-1756.

Yingchun Shan, Chenyang Bu, Xiaojian Liu, Shengwei Ji, and Lei Li. 2018.
Confidence-Aware Negative Sampling Method for Noisy Knowledge Graph Em-
bedding. In 2018 IEEE International Conference on Big Knowledge (ICBK). IEEE,
33-40.

Zhiging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
Conference on Machine Learning. 2071-2080.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515-524.

Peifeng Wang, Shuangyin Li, and Rong Pan. 2018. Incorporating GAN for neg-
ative sampling in knowledge representation learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724-2743.

[25

[26

[28

[29

DLG-KDD’20, August 24, 2020, Virtual Conference

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Twenty-Eighth AAAI confer-
ence on artificial intelligence.

Dominik Wienand and Heiko Paulheim. 2014. Detecting incorrect numerical
data in dbpedia. In European Semantic Web Conference. Springer, 504-518.
Ruobing Xie, Zhiyuan Liu, Fen Lin, and Leyu Lin. 2018. Does William Shakespeare
really write Hamlet? knowledge representation learning with confidence. In
Thirty-Second AAAI Conference on Artificial Intelligence.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

Wentau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015. Semantic
Parsing via Staged Query Graph Generation: Question Answering with Knowl-
edge Base. In IJCNLP. Beijing, China, 1321-1331.



DLG-KDD’20, August 24, 2020, Virtual Conference Kewei Cheng, Yikai Zhu, Ming Zhang, and Yizhou Sun

Dataset #Relations  #Entities  #Train  #Valid #Test

FB15K-237 237 14,541 272,115 17,535 20,466
WN18RR 11 40,943 86,835 3,034 3,134
YAGO3-10 37 123,182 1,079,040 5,000 5,000

Table 3: Data Statistics

Model Dataset  Batch Size # Negative Samples EmbeddingDim y a Learning Rate
FB15K-237 1024 256 1000 24 1 0.0001
NoiGAN-TransE ~ WN18RR 512 1024 500 6 0.5 0.00005
YAGO3-10 512 1024 250 12 05 0.001
FB15K-237 1024 256 250 9 1 0.00005
NoiGAN-RotatE ~ WN18RR 512 1024 250 6 05 0.00005
YAGO3-10 1024 400 250 24 1 0.0002

Table 4: The best hyperparameter setting of NoiGAN on several benchmarks.

7 APPENDIX
8 STATISTICS OF THE DATASETS

The statistics of all datasets are summarized in Table 3. These benchmark datasets benefit from human curation that results in highly reliable
facts. To simulate the real-world knowledge graphs extracted automatically from unstructured text data, we modified these benchmark
datasets to include noisy triples. As all kinds of noise might be contained when we construct knowledge graphs, our approach to introducing
noise is to substitute the true head entity or tail entity with any randomly selected entity. Following this approach, we construct three KGs
based on each benchmark dataset with noisy triples to be different ratio (e.g., 40%, 70% and 100%) of original data. All noisy datasets share
the same entities, relations, validation and test sets with the original benchmark dataset, with all generated noisy triples fused into the

original training set.

9 HYPERPARAMETER SETTINGS

Adam [12] is adopted as the optimizer. We set the parameters for all methods by a grid search strategy. The range of different parameters is
set as follows: embedding dimension k € {250, 500, 1000}, batch size b € {256,512, 1024}, and fixed margin y € {6, 9, 12, 24}. Afterwards, we
compare the best results of different methods. Both the entity embeddings and the relation embeddings are uniformly initialized and no
regularization is imposed on them. As mention in Section 3.2, we implement both discriminator and the generator as simple two-layer fully
connected neural networks. The size of hidden states for each of the two networks is set to be 10. The detailed hyperparameter settings can
be found in Table 4.
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