
Knowledge Graph Embedding using Graph Convolutional
Networks with Relation-Aware Attention

Nasrullah Sheikh
∗

IBM Research - Almaden

San Jose, CA

nasrullah.sheikh@ibm.com

Xiao Qin
∗

IBM Research - Almaden

San Jose, CA

xiao.qin@ibm.com

Berthold Reinwald

IBM Research - Almaden

San Jose, CA

reinwald@us.ibm.com

Christoph Miksovic

IBM Research - Zurich

Switzerland

cmi@zurich.ibm.com

Thomas Gschwind

IBM Research - Zurich

Switzerland

thg@zurich.ibm.com

Paolo Scotton

IBM Research - Zurich

Switzerland

psc@zurich.ibm.com

ABSTRACT

Knowledge graph embedding methods learn embeddings of entities

and relations in a low dimensional space which can be used for

various downstream machine learning tasks such as link predic-

tion and entity matching. Various graph convolutional network

methods have been proposed which use different types of informa-

tion to learn the features of entities and relations. However, these

methods assign the same weight (importance) to the neighbors

when aggregating the information, ignoring the role of different

relations with the neighboring entities. To this end, we propose a

relation-aware graph attention model that leverages relation infor-

mation to compute different weights to the neighboring nodes for

learning an embeddings of entities and relations. We evaluate our

proposed approach on link prediction and entity matching tasks.

Our experimental results on link prediction on three datasets (one

proprietary and two public) and results on unsupervised entity

matching on one proprietary dataset demonstrate the effectiveness

of the relation-aware attention.

CCS CONCEPTS

• Computing methodologies → Knowledge representation

and reasoning;Learning latent representations;Unsupervised

learning.

KEYWORDS

Knowledge Graphs, Embedding, Graph Attention

ACM Reference Format:

Nasrullah Sheikh, XiaoQin, Berthold Reinwald, ChristophMiksovic, Thomas

Gschwind, and Paolo Scotton. 2020. Knowledge Graph Embedding using

Graph Convolutional Networks with Relation-Aware Attention. In San Diego
’20: 2nd International Workshop on Deep Learning on Graphs: Methods and

∗
Both authors contributed equally

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

San Diego ’20, August 23–27, 2018, San Diego, CA
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/1122445.1122456

Applications, August 23–27, 2020, San Diego, CA. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Knowledge Graphs (KG) represent facts in the form of entities and

relations between them. A fact is represented by a triplet (ℎ, 𝑟, 𝑡)
where ℎ, 𝑡 represent the head and tail entities respectively, and 𝑟

represents the relation between ℎ and 𝑡 . Furthermore, entities and

relations may have some additional information such as attributes

associated with them. Data from different domains such as enter-

prises, gene ontology, etc. can be modeled as KGs which is useful in

different applications. KGs are critical to enterprises as they enable

an organization to view, analyze, derive inferences, and build up

knowledge for competitive advantage; for example, discovering

new links between entities is useful in many scenarios such as dis-

covering new side effects of a drug, or establishing new corporate

relationships. One of the biggest challenges is to extract the data

from various structured and unstructured sources and build it in

a KG such that it can be used effectively in various tasks such as

search and answering, entity matching, and link prediction. An ex-

ample of an enterprise knowledge graph is shown in Figure 1. The

graph shows companies, subsidiaries, products, industry types, and

product types represented as entities; produces, in_industry, sub-
sidiary_of, acquired, and is_a represent the relationships between
the entities.

Often these KGs are sparse and have missing information. For

example, in Figure 1, the relation between Tesla Inc and Automo-
tive is missing (<Tesla Inc, ?, Automotive>). In general, the miss-

ing information in KGs can be of the form (ℎ, 𝑟, ?), (?, 𝑟 , 𝑡), and
(ℎ, ?, 𝑡). Towards this end, various methods have been proposed

such as [4, 6, 11, 14, 21] which learn embeddings of entities and

relations, and use a scoring function to determine if a triplet (ℎ, 𝑟, 𝑡)
is valid or not. Models such as DistMult [21] process each triplet

independent of other triplets, and hence do not exploit the neighbor-

hood information in learning. Graph convolution based methods

overcome this problem by aggregating the features from the neigh-

boring entities and applying a transformation function to compute

the new features. But these graph-basedmethods give equal weights

to each of the neighboring entities, ignoring that the neighbors

have different significance in computing new features [15]. This

attention mechanism considers edges having the same type, thus,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

San Diego ’20, August 23–27, 2018, San Diego, CA Nasrullah, et al.

Company Product Industry

Tesla Inc Tesla S

Solar City

Energy Production

Solar Roofs

BMWAutomotive

in_industry

subsidiary_of produc
es

produces

produces

in_industry

?

Electric Car

iNext

is_a

is_a

product type

acquired

Figure 1: An example of an enterprise Knowledge Graph

having 3 entity types and 5 link types. The red dotted arrow

is the missing link information.

it cannot be directly extended to knowledge graphs which have

multiple relation types between entities.

In a knowledge graph, relation types between entities determine

the semantics of an edge. This semantic information is crucial in var-

ious downstream tasks such as link prediction and entity matching.

Therefore, the relationship types cannot be ignored in computing

the importance of neighbors. Towards this end, we introduce Re-

lAtt– a relation aware masked attention mechanism in knowledge

graphs which includes the features of relation for computing the

attention. This attention is applied to the messages from neighbors

during the propagation phase of graph neural networks to learn

the embedding of entities and relations. The learning is optimized

through a scoring function which scores a valid triplet higher than

an invalid triplet based on the representation of entities and rela-

tions. Moreover, our proposed model is inductive, i.e., the learned

model can be used to infer embeddings of unseen nodes. We eval-

uate our proposed approach on link prediction using two public

datasets and one proprietary dataset against the state-of-the-art

baselines. We also evaluate the embeddings on unsupervised entity

linking task on the proprietary dataset.

The rest of the paper is organized as follows: Section 2 presents

the related work, and Section 3 provides a brief description of Graph

Neural Networks. In Section 4, we describe our proposed model,

Section 5 describes the procedure to train the model. In Section 6,

we describe the evaluation on link prediction task (Subsection 6.1)

and entity matching task (Subsection 6.2) which includes details of

datasets, experimental settings and results respectively. Finally, we

conclude in Section 7.

2 RELATEDWORK

Knowledge graph embedding methods have drawn a lot of attention

due to recent advancements in representation learning. KG embed-

ding methods learn a representation of entities and relations, and

these representations are used for various downstream machine

learning tasks such as KG Completion [18] and entity classifica-

tion [11]. Knowledge graph embedding methods for link prediction

can be classified into two groups: translational and semantic models
and neural network models. Moreover, these methods either use

only the observed facts or exploit additional information to learn

better embeddings such as entity types [19] and logical rules [17].

Translational and Semantic Models. use a different parameteriza-

tion of entities or relations, and scoring functions to determine the

plausibility of a fact in a knowledge graph. Given a triplet (ℎ, 𝑟, 𝑡),
translation-based methods [1, 8, 18] use relation as a translational

vector and apply a translation by relation on ℎ. For a fact to hold,

the embedding of translated entity ℎ should be close to 𝑡 i.e, the

distance between these two should be minimum. TransE [1] rep-

resents entities and relations in same embedding space and uses a

margin-based distance scoring function. TransE cannot handle one-

to-many and many-to-many relations. To overcome this, various

other translation-based methods have been proposed such as [8, 18].

TransR [8] represents each relation in a different relational space

and both entities (ℎ, 𝑡) are first translated into the relation space

and then distance function is applied to check the validity of a

triplet. On the other hand, semantic-based models [10, 14, 21] clas-

sify triplets based on a similarity function. These models fail to

capture the complex relationships and are also limited to learn

expressive features due to their shallow structure.

Neural Models. - use neural network models [3, 4, 6, 9, 11] to

learn better embeddings of entities and relations which are then

subsequently used in downstream tasks. Dong et al. [6] proposed a

multi-layer perceptron based approach where embeddings of ℎ, 𝑟, 𝑡

are concatenated at the input layer and non-linear transformation is

applied to classify the triplets. Convolutional Neural Network-based

approaches have been proposed such as ConvKB [9] and ConvE [4].

The entities and relations in ConvKB and ConvE are represented in

1D and 2D respectively, and both employ a convolutional operation

to learn embeddings of entities and relations, which are used by a

scoring function for classification of triplets. Schlichtkrull et al. [11]

proposed RGCN - a relational graph convolutional neural network

model which uses a message-passing approach to aggregate the

features from neighboring entities to learn the embedding of entities

and relations to use in entity classification and link prediction tasks.

These models give equal weights to the neighbors of a node which

limits the learning of quality embeddings because the neighborhood

nodes have different relationships and significance.

3 BACKGROUND

For the sake of completeness, in this section we provide a brief de-

scription of message passing based Graph Neural Networks (GNNs).

For each node, a message passing GNN [20] iteratively aggregates

representation from its neighbors. Each iteration defines a layer of

GNN, and 𝑙 iterations (layers) encode the structural information of

the graph within its 𝑙-hop neighborhood. The 𝑙-th layer of a GNN

is described as:

𝑎
(𝑙+1)
𝑣𝑖 = Agg

({
ℎ
(𝑙)
𝑢 |𝑢 ∈ N (𝑣𝑖)

})
, (1)

where ℎ
(𝑙+1)
𝑣𝑖 is the vector representation of the node 𝑣𝑖 at the 𝑙-th

iteration. The N(.) function returns neighbors of a node, and Agg

Knowledge Graph Embedding using Graph Convolutional Networks with Relation-Aware Attention San Diego ’20, August 23–27, 2018, San Diego, CA

h2

h3

h4

hʹ1

r1
r2

r2 r4

r1
r3

r3

h1

aggregate

𝛂211

𝛂221

𝛂321

𝛂331

𝛂341

𝛂411

𝛂431

𝛂431= a(h1, r3, hʹ4)

Figure 2: The attention mechanism of RelAtt.

is the aggregation function which is defined as per the modelling

approaches of different methods [7, 11].

4 METHODOLOGY

In this section, we describe RelAtt (Relation-aware Attention),

model that exploits the relation between two entities to learn the

importance of neighboring nodes by using the idea of [15], and

then recursively propagates node features in the graph. Our model

has two components: embedding layer, and knowledge graph convo-
lutional layer with relation-aware attention

4.1 Embedding Layer

The additional information such as attributes associated with en-

tities in the KG contain semantic information and thus, can be

leveraged in learning. For each entity, we concatenate the various

textual attributes and use a pre-trained BERT [5] model to obtain

their embeddings. These embeddings form an initial feature vector

of entities to be used in the training. In case of datasets which do

not have attributes, the embedding layer is initialized randomly.

4.2 Knowledge Graph Convolutional Layer

with Relation-Aware Attention

This layer is defined as a single neural network layer which per-

forms relation-aware attention, feature propagation and aggrega-
tion. The input to this layer is set of 𝑁 node features from em-

bedding layer, h = {h1, h2, · · · , h𝑁 } where h𝑖 ∈ R𝑑 represents

the 𝑑-dimensional features of 𝑖𝑡ℎ node; a set of relation types 𝑅 =

{𝑟1, 𝑟2, · · · , 𝑟𝑘 }; and a set of relation features m = {𝑚1,𝑚2, · · ·𝑚𝑘 },
where𝑚𝑟 ∈ R𝑑 is the feature vector of 𝑟𝑡ℎ-relation type of dimen-

sion 𝑑 .

4.2.1 Relation-Aware Attention. In a Knowledge Graph, nodes have
different types of relationships, thus the importance of neighbors

is not only dependent on their features but also on the features

of relationships. To this end, we follow [15] and apply a shared

linear transformation on triplets (ℎ, 𝑟, 𝑡), parameterized by a weight

matrix W. Then, we perform self-attention with respect to a shared

relation between entities to compute attention coefficients: 𝑎 : R𝑑 ×
R𝑑 × R𝑑 → R. The attention mechanism is shown in Figure 2. The

attention coefficient of a triplet (ℎ, 𝑟, 𝑡) is computed as:

𝑒 (ℎ,𝑟,𝑡) = 𝑎(Wℎℎ,W𝑚𝑟 ,Wℎ𝑡) (2)

The attention mechanism 𝑎 is a trainable function parameterized

by a weight vector a ∈ R3𝑑 , which is given as:

𝑒 (ℎ,𝑟,𝑡) = a𝑇 [Wℎℎ | |W𝑚𝑟 | |Wℎ𝑡] (3)

where .𝑇 and | | are transpose and concatenation operations re-

spectively. Moreover, the attention is masked i.e, the attention is

computed for directly connected neighbors only given by Nℎ . We

apply softmax to make attention coefficients comparable across the

neighborhood as given in Eq. 4

𝛼 (ℎ,𝑟,𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒 (ℎ,𝑟,𝑡)) =
𝑒𝑥𝑝 (𝑒 (ℎ,𝑟,𝑡))∑

(𝑟 ′,𝑡 ′) ∈Nℎ
𝑒𝑥𝑝 (𝑒 (ℎ,𝑟 ′,𝑡 ′))

(4)

4.2.2 Feature Propagation and Aggregation. Knowledge graph con-

volutional network architectures such as RGCN [11] consider the

heterogeneity of the edges and use a message passing framework

to compute a new representation of a head node by applying some

relation-specific transformation on representation of neighbors

before aggregating at the head node. Following Equation 1, a gen-

eralized framework for knowledge graphs can be expressed as:

ℎ′
ℎ
= 𝜎

(
Agg(𝑟,𝑡) ∈Nℎ

𝑓 (ℎℎ, 𝑟 , ℎ𝑡)
)

(5)

where 𝑓 is a relation-specific transformation on representation of

immediate neighborhood nodes given by Nℎ , Agg is an aggregator

function such as SUM, MEAN that combines these transformed

messages from neighbors before passing it to an activation function

(𝜎), and ℎ′
ℎ
is the new hidden features of entity ℎ.

Combining Equation 5 and Equation 4 describes a single neu-

ral layer for knowledge graph convolution with relation-aware

attention.

h′
ℎ
= 𝜎

(
Agg(𝑟,𝑡) ∈Nℎ

𝛼 (ℎ,𝑟,𝑡) 𝑓 (hℎ, r, ht)
)

(6)

The Equation 6 is agnostic to the underlying knowledge graph

convolution message passing paradigm. However, in this work we

use RGCN [11] as the underlying convolutional message passing

method. Following RGCN which uses SUM as aggregation function,

we can extend Equation 6 to 𝐿-layers as:

h(𝑙+1)
ℎ

= 𝜎
©­«
∑
𝑟 ∈𝑅

∑
𝑡 ∈N𝑟

ℎ

𝛼 (ℎ,𝑟,𝑡)
1

N𝑟
ℎ

W(𝑙)
𝑟 ℎ

(𝑙)
𝑡 +W(𝑙)

0
ℎ
(𝑙)
ℎ

ª®¬ (7)

where W(𝑙)
𝑟 is the weight matrix corresponding to relation 𝑟 in

𝑙𝑡ℎ-layer, and N𝑟
ℎ
gives the set of neighbors which share relation 𝑟

with entity ℎ.

5 TRAINING

The objective of the knowledge graph based embedding methods

is to learn embeddings of entities and relations which are fed into

a scalar output producing scoring function(𝑔) which scores true

triplets much higher than false triplets. Various methods such as

DistMult [21], NTN [12] have proposed different scoring functions.

San Diego ’20, August 23–27, 2018, San Diego, CA Nasrullah, et al.

Our proposed method given above is limited to use only scoring

functions which describe relation in R𝑑 space. Therefore, we use

DistMult [21] scoring function given as:

𝑔(ℎ, 𝑟, 𝑡) = ℎ𝑇
ℎ
M𝑟 ℎ𝑡 (8)

We train the model using a negative sampling [11, 21] approach. For

each positive triplet 𝜏 ∈ 𝑇 +
, we generate a set of negative samples

by either corrupting ℎ or 𝑡 which produces a set of negative triplets

𝑇−
. Given the set of positive and negative triplets𝑇 = 𝑇 +⋃𝑇−

, we

optimize the model on cross entropy loss so as to learn entity and

relation embeddings.

L =
1

|𝑇 |
∑
𝜏 ∈𝑇

𝑦 log 𝑙
(
𝑔(𝜏)

)
+ (1 − 𝑦)log

(
1 − 𝑙 (𝑔(𝜏))

)
(9)

where 𝜏 is training example (ℎ, 𝑟, 𝑡); 𝑙 is logistic sigmoid function;

𝑦 is 1 or 0 for positive or negative triplet respectively.

6 EXPERIMENTAL SETUP AND EVALUATION

In this section, we provide the details of datasets, baseline methods

for comparison, and training settings and evaluation protocol for

link prediction and entity matching tasks.

6.1 Supervised Task: Link Prediction

First, we evaluate RelAtt with the link prediction task in a su-

pervised learning setting. That is, the RelAtt is trained using a

large portion of the original knowledge graph, and the goal is to

predict the missing ℎ or 𝑡 in the omitted triplets. Link prediction

is a common task for evaluating a knowledge graph embedding

method and is typically measured by Mean Reciprocal Rank (MRR)

and Hits@K. For each test triplet, we obtain a set of all possible

triplets and score them through the model. The triplets are ranked

on the score, and the position of true test triplet in a sorted list is its

rank(𝑐), and 1/𝑐 is reciprocal rank. The mean of reciprocal ranks of

all true test triplets is called Mean Reciprocal Rank. Hits@K gives

the number of times the test triplets occur in top 𝑘 rankings in the

ranked list. The higher values of MRR and Hits@K indicate the

better performance of the model.

6.1.1 Datasets. Weevaluate our proposed approach on three datasets

- two widely used public datasets (FB15k-237 and WN18) and one

proprietary dataset (Comp). FB15k-237 [13] is obtained from FB15k

by removing inverse relations; which is a subset of relational data-

base FreeBase, containing general facts. WN18 [2] is a subset of

WordNet and contains lexical relations between words. It mostly

contains hyponym and hypernym relations. Comp is a proprietary

dataset and is extracted from the relational database of compa-

nies which include different branches, subsidiaries, headquarters,

and products manufactured/produced by companies located in two

countries. The companies, products and cities are the entities, and

there are 6 different relationships between these entities
1
. The train,

test and validation splits are from DistMult [21] and in case of

Comp dataset, we used 80% triplets for training, and 10% of triplets

each for validation and test. The statistics of the datasets are given

in Table 1.

1manufactures, category_of, parent_category, owns, in_city, in_country

Table 1: Dataset statistics.

Dataset WN18 FB15k-237 Comp

Entities 40943 14,541 11,585

Relations 18 237 6

Features - - 768

Train Triplets 141,442 272,115 60,177

Valid Edges 5000 17,535 7,522

Test Edges 5000 20,466 7,522

6.1.2 Baselines. We compared our approach with two methods:

DistMult [21] and RGCN [11]. DistMult is a factorization based

method which represents entities in a 𝑑 dimensional vector space

and each relation is represented by a diagonal matrix . RGCN is a

graph convolutional based approach to learn embeddings of entities

and relationships. For experimental evaluation we used DGL[16] of

RGCN, and HNE[22] implementation of DistMult. For the dataset

with attributes, we used a variant RGCN that includes an embed-

ding layer for attributes. Since, DistMult does not use attribute

information, therefore we omitted the attributes for learning on

the Comp dataset .

6.1.3 Experimental Setup and Results. We selected hyperparame-

ters of our model and baselines on their respective validation sets

by grid search and early stopping on the filtered Mean Reciprocal

Rank (MRR) metric using full-batch optimization. For fairness of

comparison, we used the same hyperparameter search space for

our model and the baselines, and trained models for a minimum of

6000 epochs. The hyperparameter space is given as - learning rate

{0.01, 0.001}, number of hidden layers {1,2}, hidden layer dropout

{0.0,0.1,0.2, 0.3}, attention dropout {0.0,0.1,0.3,0.6}, embedding size

{100, 200,400}, number of bases {2,3,5,10,50,100}, and negative sam-

ples {10}. We used basis decomposition [11] for regularization and

optimized the loss function using Adam optimizer.

After training the models, we follow the evaluation protocol of

Yang et.al [21] for link prediction and report results on two widely

used and standard metrics:Mean Reciprocal Rate andHits@k (1,3,10).
Both metrics are obtained using filtered approach i.e, for each test

triplet, we generate all potential triplets but ensuring that none of

the generated triplet appears in training, validation or test triplets,

and rank the test triplets to obtain MRR and Hits@K.

The results of link prediction on all datasets are shown in Table 2.

Our model RelAtt consistently shows performance improvements

in all three datasets across all baselines. Our model (RelAtt) shows

an average improvement of 2.8% in MRR in all three datasets. We

attribute this to the attention mechanism, that helps in learning

weights for the messages from the neighbors. This suggests that all

neighbors are not equal, and have different roles.

6.2 Unsupervised Task: Entity Matching

Next, we demonstrate the effectiveness of RelAtt on learning a

useful graph representation in an unsupervised setting. We evalu-

ate RelAtt with an entity matching task which aims to find data

instances that refer to the same real-world entity. In particular,

our defined task is to match entities across two knowledge graphs

Knowledge Graph Embedding using Graph Convolutional Networks with Relation-Aware Attention San Diego ’20, August 23–27, 2018, San Diego, CA

Table 2: Results of link prediction on FB15k-237, WN18 and

Comp dataset.

Dataset Method DistMult RGCN RelAtt

FB15k-237

MRR 0.201 0.226 0.234

Hits@1 0.130 0.126 0.139

Hits@3 0.219 0.252 0.258

Hits@10 0.363 0.421 0.428

WN18

MRR 0.745 0.750 0.767

Hits@1 0.592 0.612 0.639

Hits@3 0.892 0.882 0.889

Hits@10 0.934 0.939 0.940

Comp

MRR 0.081 0.110 0.113

Hits@1 0.046 0.073 0.073

Hits@3 0.082 0.107 0.113

Hits@10 0.142 0.173 0.178

Table 3: Statistics of the query graphs

Property Measurement

of graphs 1,426

avg nodes 20.90

avg edges 39.76

of node types 4

of relations 3

of features 768

of labels 1,426

avg node degree of the matching entity in R 19.88

avg node degree of the matching entity in Qs 12.89

at a time. One graph is referred as a reference graph which usu-

ally captures the full knowledge of a database. Given an entity in

another graph referred as a query graph, the task is to find the

corresponding entity in the reference graph.

We approach the above task in the following way: (1) we train

RelAtt on the full reference graph with the optimization goal to

minimize the link prediction error; (2) we obtain the embeddings

of the query entities by applying the trained RelAtt on the query

graphs; (3) we then perform matching, i.e. finding the most similar

entities to the given entities in the query graphs by comparing the

cosine similarity.

6.2.1 Dataset. The dataset consists of a reference graph and a set

of query graphs. We use the full Comp as the reference graph to

train RelAtt. The query graphs are extracted from a proprietary

relational database and the ground truth of the correct matching

are manually labeled. The statistics of the dataset is reported in

Table 3. From the query graph, we obtained multiple variations of

query graphs by sampling neighbors of a matching entity based

on their average node degree. We used a threshold (𝑡ℎ) to filter out

the neighbors. For example, at 𝑡ℎ = 0.2 we select 20% of neighbors

and the average node degrees of query graphs reduce to 9.8. These

variations also limit the contextual information. A lower value of

threshold produces query graphswith lesser contextual information.

Table 4: Results of entity matching on Comp dataset.

th Model Hits@1 Hits@5 Hits@10 Hits@30

- BERT 0.7373 0.8200 0.8440 0.8759

0.2

RGCN 0.6248 0.7061 0.7446 0.7845

RelAtt 0.7380 0.8425 0.8766 0.9231

0.3

RGCN 0.6270 0.7170 0.7685 0.8324

RelAtt 0.7540 0.8549 0.8846 0.9253

0.4

RGCN 0.6567 0.7888 0.8440 0.8977

RelAtt 0.7627 0.8621 0.8875 0.9209

0.5

RGCN 0.7250 0.8520 0.8861 0.9202

RelAtt 0.7736 0.8665 0.8919 0.9245

The idea is to test the model behaviour when query graphs have

less contextual information present.

6.2.2 Baseline. We evaluate our model against two methods. The

first baseline uses only textual attributes present in the nodes of

the query graphs. These textual features are fed into pre-trained

BERT [5] model to obtain the embeddings of entities. Second, base-

line RGCN ingests both attributes and query graph structure to

obtain the embeddings.

6.2.3 Experimental Setup and Results. We followed the same train-

ing protocol described in subsection 6.1.3 to train RelAtt and

RGCN models. We use this trained model to infer the embeddings

of entities in query graphs. Now having the embeddings of entities

in knowledge graph and inferred embedding of query node, we

use cosine similarity metric to find a similar entity to the query

node in the knowledge graph, and report the results on Hits@K
in Table 4. The results show that using only textual attributes is

not sufficient for entity matching as it does not use any contextual

information. It can be seen in the case of RGCN, as value of 𝑡ℎ in-

creases from 0.2 to 0.5, the performance of RGCN improves because

of the increased amount of context information. At lower values

of contextual information (0.2), RGCN performance gets worse as

compared to BERT, possibly because RGCN does not differentiate

between neighbors. This disadvantage is overcome by RelAtt as

it employs an attention mechanism that helps in learning better

representations. RelAtt performs better even when less contextual

information is present.

7 CONCLUSION

In this work, we proposed a relation-aware masked attention mech-

anism that leverages the relation and neighborhood information

to compute the importance of neighbors. Using this attention, the

features are propagated from the neighbors of an entity to update

its embedding. We evaluated the proposed model on the link predic-

tion task on three datasets and entity matching task on one dataset

which showed that the attention mechanism helps in learning a

better representation.

This work uses the KG structure and attributes present on the

entities, and treats the entities as homogeneous types. This opens

San Diego ’20, August 23–27, 2018, San Diego, CA Nasrullah, et al.

up the future direction to exploit the heterogeneity of entities in

learning. Another exciting direction is to explore the sampling

strategies on KGs such that the computational costs of training on

large graphs can be reduced without losing the quality of learned

embeddings.

REFERENCES

[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In Advances in neural information processing systems. 2787–2795.
[2] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. 2011. Learn-

ing Structured Embeddings of Knowledge Bases. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI’11). AAAI Press, 301–306.

[3] Liwei Cai and William Yang Wang. 2018. KBGAN: Adversarial Learning for

Knowledge Graph Embeddings. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). Association for Computational

Linguistics, New Orleans, Louisiana, 1470–1480.

[4] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2017.

Convolutional 2D Knowledge Graph Embeddings. CoRR abs/1707.01476 (2017).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Association for Computational Linguistics, 4171–4186. https:

//doi.org/10.18653/v1/N19-1423

[6] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge Vault:

A Web-Scale Approach to Probabilistic Knowledge Fusion. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 601–610.

[7] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In NIPS.
[8] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2181–2187.

[9] Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Q. Phung.

2017. A Novel Embedding Model for Knowledge Base Completion Based on

Convolutional Neural Network. CoRR abs/1712.02121 (2017).

[10] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way

Model for Collective Learning on Multi-Relational Data. In Proceedings of the
28th International Conference on International Conference on Machine Learning
(ICML’11). Omnipress, Madison, WI, USA, 809–816.

[11] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,

Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convo-

lutional Networks. In The Semantic Web - 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings. Springer.

[12] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013.

Reasoning with Neural Tensor Networks for Knowledge Base Completion. In

Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 1 (NIPS’13). 926–934.

[13] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features for

knowledge base and text inference. In Proceedings of the 3rd Workshop on Continu-
ous Vector Space Models and their Compositionality. Association for Computational

Linguistics, Beijing, China.

[14] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceed-
ings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48 (ICML’16). JMLR.org, 2071–2080.

[15] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Confer-
ence on Learning Representations (2018).

[16] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,

Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin

Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. 2019. Deep

Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019). https:

//arxiv.org/abs/1909.01315

[17] Quan Wang, Bin Wang, and Li Guo. 2015. Knowledge Base Completion Using

Embeddings and Rules. In Proceedings of the 24th International Conference on
Artificial Intelligence (IJCAI’15). AAAI Press, 1859–1865.

[18] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowl-

edge Graph Embedding by Translating on Hyperplanes. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI’14). AAAI Press,
1112–1119.

[19] Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016. Representation Learning of

Knowledge Graphs with Hierarchical Types. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence (IJCAI’16). AAAI Press,
2965–2971.

[20] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In Proceedings of the ICLR 2019, May 6-9, 2019, New
Orleans, LA, USA.

[21] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-

bedding Entities and Relations for Learning and Inference in Knowledge Bases.

In 3rd International Conference on Learning Representations, ICLR San Diego, CA,
USA, May 7-9,.

[22] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-

neous Network Representation Learning: Survey, Benchmark, Evaluation, and

Beyond. arXiv preprint arXiv:2004.00216 (2020).

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	4.1 Embedding Layer
	4.2 Knowledge Graph Convolutional Layer with Relation-Aware Attention

	5 Training
	6 Experimental Setup and Evaluation
	6.1 Supervised Task: Link Prediction
	6.2 Unsupervised Task: Entity Matching

	7 conclusion
	References

