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ABSTRACT
Knowledge graph inference has been studied extensively due to

its wide applications in different domains. There are two main

directions in solving the inference problem, i.e., logical rule rea-

soning and knowledge graph embedding (KGE). Logical rule-based

approaches have shown their effectiveness due to the power of

symbolic reasoning but suffer from low coverage, noise-sensitive,

and scalability issues. KGE methods have demonstrated their good

scalability when coping with large scale real-world KGs but fail

to capture high-order dependency between entities and relations.

Several attempts have been made to combine KG embedding and

logical rules for better knowledge graph inference. Unfortunately,

these approaches employ sampling strategies to randomly select

only a small portion of ground rules or hidden triples, thus only par-

tially leverage the power of logical rules in reasoning. In this paper,

we propose a novel framework UniKER to address this challenge

by restricting logical rules to be Horn rules, which can fully exploit

the knowledge in logical rules and enable the mutual enhancement

of logical rule-based reasoning and KGE in an extremely efficient

way. Extensive experiments have demonstrated that our approach

is superior to existing state-of-the-art algorithms in terms of both

efficiency and effectiveness.
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1 INTRODUCTION
Knowledge Graphs (KGs), such as Freebase [3], DBPedia [2], and

YAGO [29], have grown rapidly in recent years, which provide

extremely useful resources for many real-world applications, e.g.,
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query expansion, information retrieval, and question answering [12,

18, 35, 38]. However, the extensive power of KGs is inevitably lim-

ited by the incompleteness of the real-world data. Consequently,

KG reasoning, which aims at inferring missing knowledge through

the existing facts, has gained increasing attention.

Knowledge graph embedding (KGE) currently hold the state-

of-the-art in KG reasoning for their good scalability and strong

robustness [4, 16, 27, 34, 36]. Despite the excellent performance of

KGE methods, the ignorance of the symbolic compositionality of

KG relations limits their application in more complex reasoning

tasks. In addition, KGE methods highly rely on structure informa-

tion in observed triple facts, which suffer from severe sparsity in

real-world. Gathering more reliable triple facts becomes the key

to improve their performance. An alternative solution is to infer

missing facts via logical rules, which has been extensively explored

by traditional logical rule-based methods [6, 23, 26]. Unlike KGE

methods, logical rule-based methods are able to capture high-order

dependency between entities and relations explicitly. However, a

central challenge of such approach is the high computation com-

plexity. Additionally, logical rule cannot handle noisy data due to

its symbolic nature. Further, the performance of logical inference

highly depends on the coverage of logical rules and the complete-

ness of KGs, which suffer from severe insufficiency in reality.

Although both embedding-based methods and logical rule-based

methods have their own limitations, they are complementary for

better reasoning capability. On one hand, logical rules are useful

to gather more reliable triples for KGE by exploiting symbolic

compositionality of KG relations. On the other hand, high quality

embedding learned by KGE models, in turn, will help to prepare

cleaner and more complete KGs via excluding the noisy triples and

inferringmore facts for logical rule-based reasoning. Despite several

attempts made to combine the advantage of embedding and logical

rules for knowledge graph inference, most of them [8, 13, 24] only

make a one-time injection of logic rules to KG embedding and thus

fail to capture the mutual interaction between KG embedding and

logical rules [13, 24]. Also, all the existing methods model logical

inference as an NP-complete problem by ignoring the fact that only

Horn rules, a special type of logical rules, are used for most time in

reality. As a result, to improve the scalability of logical inference,

they use sampling strategies that select only a small portion of

hidden triples/ground rules to approximate the inference process,

which inevitably causes loss of information from the logical side.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


DLG-KDD’20, August 24, 2020, Virtual Conference Kewei Cheng, Ziqing Yang, Ming Zhang, and Yizhou Sun

To address the above issues, we propose a novel framework,

UniKER, to combine embedding and logical rules for better KG

inference in an iterativemanner. In particular, by leveraging the nice

properties of Horn rules, UniKER can fully exploit the knowledge

contained in logical rules and completely transfer them into the

embeddings. Additionally, UniKER can also tolerate erroneous data

and show robustness to noise and error in the KGs, which previous

methods cannot cope with. The main contributions of this paper

are summarized as follows:

• We investigate the problem of combining embedding and Horn

rules for KG inference.

• A novel unified framework, UniKER, is proposed, which provides

a simple yet effective iterative mechanism to let logical rule

reasoning and knowledge graph embedding mutually enhance

each other in an extremely efficient way.

• Our UniKER also shows robustness to noise in KGs, which previ-

ous methods cannot cope with.

• We experimentally demonstrate that UniKER is superior to ex-

isting state-of-the-art algorithms in terms of both efficiency and

effectiveness.

2 PRELIMINARIES AND RELATEDWORK
Knowledge Graphs in the Language of Symbolic Logic. A
knowledge graph, denoted by G = {𝐸, 𝑅,𝑂}, consists of a set of

entities 𝐸, a set of relations 𝑅, and a set of observed facts 𝑂 . Each

fact in 𝑂 is represented by a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ), where 𝑒𝑖 ∈ 𝐸, 𝑒 𝑗 ∈ 𝐸,
and 𝑟𝑘 ∈ 𝑅 denote subject entity, object entity, and relation, respec-

tively. Every relation 𝑟𝑘 is associated with an |𝐸 | × |𝐸 | matrixM𝑘
,

in which the element M𝑘
𝑖 𝑗

= 1 if the triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) ∈ 𝑂 , and zero

otherwise. In the area of symbolic reasoning, entities can also be

considered as constants and relations are called predicates. Each
predicate in KGs is a binary logical function defined over two con-

stants, denoted as 𝑟 (·, ·). A ground predicate is a predicate whose
arguments are all instantiated by particular constants. For example,

we may have a predicate Friend(·, ·). By assigning constants Alice

and Bob to it, we get a ground predicate Friend(Alice, Bob). A triple

(𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) is essentially a ground predicate, denoted as 𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 )
in the language of logic. In the reasoning task, a ground predi-

cate can be regarded as a binary random variable: 𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) = 1

when the triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) holds true, and 𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) = 0 otherwise.

Given the observed facts and their corresponding ground pred-

icates v𝑂 = {𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) | (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) ∈ 𝑂}, the task of knowledge
graph inference is to predict the truth value of ground predicates

v𝐻 = {𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) | (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) ∈ 𝐻 } for all remaining hidden triples,

where 𝐻 = {(𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) | (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) ∉ 𝑂, 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸, 𝑟𝑘 ∈ 𝑅}.
First Order Logic and Horn Rules. First-order logic (FOL)

rules are constructed over predicates using logical connectives and

quantifiers. FOL rules usually require extensive human supervision

to create and validate, which severely limit their applications. In-

stead, Horn rules, as a special case of FOL rules, can be extracted

automatically and efficiently via modern rule mining systems, such

as WARMR [7] and AMIE [10, 11] with high quality, thus result

in their monopoly in practice. Horn rules are composed a body of

conjunctive predicates and a single head predicate. They are usually

written in the form of implication and an example is shown below:

𝑟0 (𝑥,𝑦) ← 𝑟1 (𝑥, 𝑧1) ∧ 𝑟2 (𝑧1, 𝑧2) ∧ 𝑟3 (𝑧2, 𝑦) (1)

where 𝑟0 (𝑥,𝑦) is called thehead of the rulewhile 𝑟1 (𝑥, 𝑧1)∧𝑟2 (𝑧1, 𝑧2)∧
𝑟3 (𝑧2, 𝑦) is the body of the rule. By substituting the variables

𝑥, 𝑧1, 𝑧2, 𝑦 with concrete entities 𝑒𝑖 , 𝑒𝑝 , 𝑒𝑞, 𝑒 𝑗 , we get a ground Horn

rule as follows:

𝑟0 (𝑒𝑖 , 𝑒 𝑗 ) ← 𝑟1 (𝑒𝑖 , 𝑒𝑝 ) ∧ 𝑟2 (𝑒𝑝 , 𝑒𝑞) ∧ 𝑟3 (𝑒𝑞, 𝑒 𝑗 ) (2)

ABrief Review over Knowledge Graph Inference There are
two main directions in solving the KG inference problem, i.e., tra-

ditional logical inference and knowledge graph embedding (KGE).

Traditional logical inference aims to find an assignment of truth

values to all hidden ground predicates, which results in maximiz-

ing the number of ground rules that can be satisfied. Thus, it

can be mathematically modeled as a MAX-SAT problem, which

is NP-complete [1]. One approach to this problem is stochastic lo-

cal search, exemplified by WalkSAT [26]. Markov Logic Network

(MLN) [23] further provides a probabilistic extension of FOL via

probabilistic graphical models. Unlike traditional logical inference,

which infer missing facts via logical rules, KGE aims to capture the

similarity of entities by embedding entities and relations into con-

tinuous low-dimensional vectors. Scoring functions (SFs), which

measure the plausibility of triples in KGs, is the crux of KGE models.

We denote the score of a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) calculated following SF

as 𝑓𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ). Representative KGE algorithms include TransE [4],

TransH [33], TransR [17], DistMult [36], ComplEx [32], SimplE [16]

and RotatE [30], which differ from each other with different SFs.

Existing work on Integrating Logical Rules and KGE Ex-

isting methods of integrating logical rules and KGE can be broadly

divided into two categories: (1) designing logical rule-based regu-

larization to embedding models and (2) designing embedding-based

variational distribution for variational inference of MLN.

Logical Rule-based Regularization in Embedding Loss. The first
way to combine two worlds is to treat logical rules as additional

regularization to embedding models, where the satisfaction loss of

ground rules is integrated into the original embedding loss. The

satisfication loss of a ground rule is usually computed based on soft

logic, where the probability of each predicate is determined by the

embedding. KALE [13], RUGE [14] and Rocktäschel et al. [24] are

the representative methods. One main drawback is that they have

to instantiate universally quantified rules into ground rules before

learning models, which is extremely time-consuming. Therefore, a

sampling strategy is usually employed by selecting a small portion

of ground rules to approximate the inference process, which in-

evitably leads to the loss of information from the logical rule side. In

addition, most methods in this category make only one-time injec-

tion of logical rules to enhance embedding, ignoring the interactive

nature between embedding learning and logical inference [13, 24].

Embedding-based Variational Inference for MLN.. Several meth-

ods including pGAT [15], ExpressGNN [39] and pLogicNet [22]

propose to leverage graph embedding to define variational distribu-

tion for all possible hidden triples to conduct variational inference

of MLN. Although they provide an elegant approach to integrate

embedding models and logical rules in a single representation by

optimizing MLN using variational inference methods, inference

efficiency is still a central challenge. Given the fact that KGs usually

contain over ten thousand entities, it is impractical to optimize
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over all the hidden triples. Therefore, all approaches in this cat-

egories only sample a small portion of hidden triples to reduce

the computational complexity. This brings in the similar issue of

information loss from the logical rule side, as selecting only a small

portion of hidden triples will inevitably results in the ignorance of

a significant number of ground rules.

3 A UNIFIED FRAMEWORK FOR
KNOWLEDGE GRAPH INFERENCE:
UNIKER

Both types of existing approaches consider logical rule inference

as an NP complete problem by ignoring the fact that in most cases

only Horn rules, a special case of logical rules, are used in reality.

Due to the complexity of NP complete problems, these methods

only partially leverage the power of logical rules in reasoning by

sampling a small portion of hidden triples/ground rules to avoid

infeasible inference time. In this section, we show that by leveraging

the nice properties of Horn rules, there is a much simpler way to

directly derive truth values of all unobserved triples.

3.1 Horn-satisfiability of Knowledge Graph
Inference

Given a set of Horn rules F and their ground Horn rules F𝑔 , if
there exists at least one truth assignment that satisfies all ground

Horn rules F𝑔 , we call it Horn-satisfiable. We will show there exists

a truth assignment to all hidden triples in a KG such that all ground

Horn rules are satisfied, i.e., Horn-satisfiable.

Theorem 1. Knowledge graph inference is Horn-satisfiable.

Proof. A set of ground Horn rules is unsatisfiable if we can de-

rive a pair of opposite ground predicates (i.e., 𝑟0 (𝑒𝑖 , 𝑒 𝑗 ) and¬𝑟0 (𝑒𝑖 , 𝑒 𝑗 ))
from them. It is the case if and only if ¬𝑟0 (𝑒𝑖 , 𝑒 𝑗 ) is defined in KG

as Horn rules can only include one single positive head predi-

cate which results in its incapability in deriving negative triples.

However, a typical KG will not explicitly include negative triples

(i.e., ¬𝑟0 (𝑒𝑖 , 𝑒 𝑗 )). Thus we can never derive such a pair of oppo-

site ground predicates, which confirms that KG inference is Horn-

satisfiable. □

3.2 Truth Value Assignment via Forward
Chaining

According to Theorem 1, it is guaranteed that there exists a truth

assignment that satisfies all ground Horn rules. The next question

is how to conduct such assignment efficiently. We denote the satis-

fying truth assignment as v𝑇
𝐻

∗
and v𝐹

𝐻

∗
, where v𝑇

𝐻

∗
= {𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) =

1 | 𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) ∈ v𝐻 } and v𝐹
𝐻

∗
= {𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) = 0 | 𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) ∈ v𝐻 }.

An existing algorithm called forward chaining [25] has been pro-

posed to derive v𝑇
𝐻

∗
and v𝐹

𝐻

∗
in an efficient way. The basic mecha-

nism is that starting from any ground rule whose bodies are satisfied

in the KG, it keeps adding the inferred head (i.e., the new knowl-

edge represented by a ground predicate) to the KG until no ground

predicate can be added anymore. Unlike other logical inference

algorithms, which require all ground predicates into calculation,

forward chaining adopts “lazy inference" instead. It calculates only

a small subset of “active” groundings of predicates/rules, and acti-

vates more if necessary as the inference proceeds. The mechanism

dramatically improves inference efficiency via avoiding the compu-

tation for a large number of ground predicates/rules that are never

used. Moreover, considering that the conjunctive body of a ground

Horn rule is essentially a path in KGs, which can be extracted effi-

ciently using sparse matrix multiplication, forward chaining can

also be implemented efficiently.

3.3 Enhancement of Logical Inference via
Knowledge Graph Embedding

Although forward chaining can find the satisfying truth assign-

ment for all hidden triples in an efficient way, its reasoning ability

is severely limited by the incompleteness of the KG and the er-

rors contained in KG. Considering its strong reasoning ability and

robustness, KGE models are not only useful to prepare a more com-

plete KGs by including useful hidden triples but also helpful to

eliminate incorrect triples in both KGs and inferred results.

Including Potential Useful Hidden Triples. Since the body
of a Horn rule is a conjunction of predicates, a ground Horn rule

can get activated and contribute to logical inference only if all the

predicates in its body are completely observed. Due to the spar-

sity of real-world KGs, only a small portion of ground Horn rules

can participate in logical inference, which severely limits the rea-

soning ability of Horn rules. A straightforward solution would be

computing the score for every hidden triple and adding the most

promising ones with the highest scores to the KG. Unfortunately,

the number of hidden triples is quadratic to the number of entities

(i.e. 𝑂 ( |𝐸 | × |𝑅 | × |𝐸 |)), thus it is too expensive to compute scores

for all of them. Instead, we adopt “lazy inference" strategy to select

only a small subset of “potential useful" triples. To illustrate what is

a “potential useful" triple, we take the ground Horn rule in Eq. (2) as

an example. If 𝑟1 (𝑒𝑖 , 𝑒𝑝 ) ∈ 𝑣𝑂 , 𝑟3 (𝑒𝑞, 𝑒 𝑗 ) ∈ 𝑣𝑂 , and 𝑟2 (𝑒𝑝 , 𝑒𝑞) ∈ 𝑣𝐻 ,
we would not be able to infer the head (i.e., 𝑟0 (𝑒𝑖 , 𝑒 𝑗 )) as whether
𝑟2 (𝑒𝑝 , 𝑒𝑞) is true or not is unknown. Thus, 𝑟2 (𝑒𝑝 , 𝑒𝑞) becomes the

crux to determine the truth value of the head, which is called “po-

tential useful". In general, given a ground rule whose body includes

only one unobserved ground predicate, this unobserved ground

predicate can be regarded as a “potential useful" triple. We denote

the set of all ‘potential useful" triples as Δ+. According to their po-

sitions, “potential useful" triples can be divided into two categories:

(1) triples that are the first or the last predicate in a ground Horn

rule; and (2) triples that are neither the first nor the last. We pro-

posed algorithms to identify both type of “potential useful" triples

respectively, by taking the Horn rule in Eq. (2) as an example.

• When the “potential useful" triple is the first or the last pred-

icate in a ground Horn rule (i.e., the “potential useful" triple

is 𝑟1 (𝑒𝑖 , 𝑒𝑝 ) or 𝑟3 (𝑒𝑞, 𝑒 𝑗 )), other observed triples still constitute

a complete path, which can be extracted efficiently by sparse

matrix multiplication. For example, to identify the “potential

useful" triple 𝑟1 (𝑒𝑖 , 𝑒𝑝 ), we have to first extract all connected

path 𝑟2 (𝑒𝑝 , 𝑒𝑞) ∧ 𝑟3 (𝑒𝑞, 𝑒 𝑗 ) by calculating M = M(2)M(3) , where
M(2) and M(3) are adjacency matrices corresponding to rela-

tions 𝑟2 and 𝑟3. Each nonzero elementM𝑝 𝑗 indicates a connected

path between 𝑒𝑝 and 𝑒 𝑗 . We denote all indexes correspond to

nonzero rows in M as 𝛿 = {𝑝 | (∑𝑗 M𝑝 𝑗 ) ≠ 0}, which indicates
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that there is always a connected path starting at 𝑝 . For specific

𝑝 ∈ 𝛿 , Δ𝑝 = {(𝑒𝑖 , 𝑟1, 𝑒𝑝 ) |𝑒𝑖 ∈ 𝐸} defines a set “potential useful"
triples. If (𝑒𝑖 , 𝑟1, 𝑒𝑝 ) in Δ𝑝 is predicted to be true via KGE, the

head predicates 𝑟0 (𝑒𝑖 , 𝑒 𝑗 ) can be inferred.

• Otherwise, the path corresponds to the conjunctive body of the

ground Horn rule get broken into two paths by the “potential

useful" triple, which we have to extract separately. For example,

to identify “potential useful" triples 𝑟2 (𝑒𝑝 , 𝑒𝑞) ∈ 𝑣𝐻 , two paths are

essentially two single relations, whose corresponding matrices

are M(1) and M(3) , respectively. We denote all indexes corre-

spond to nonzero columns in M(1) as 𝛿1 = {𝑝 | (∑𝑖 M
(1)
𝑖𝑝
) ≠ 0}

and all indexes correspond to nonzero rows in M(3) as 𝛿2 =

{𝑞 | (∑𝑗 M
(3)
𝑞𝑗
) ≠ 0}. Δ12 = {(𝑒𝑝 , 𝑟2, 𝑒𝑞) |𝑝 ∈ 𝛿1, 𝑞 ∈ 𝛿2} defines a

set “potential useful" triples. If (𝑒𝑝 , 𝑟2, 𝑒𝑞) in Δ12 is predicted to be

true via KGE, the head predicates {𝑟0 (𝑒𝑖 , 𝑒 𝑗 ) |M(1)𝑖𝑝
≠ 0,M(3)

𝑞𝑗
≠ 0}

can be inferred.

Excluding Potential Incorrect Triples. In addition, due to the
symbolic nature, logical rules also lack the ability to handle noisy

data. If the KGs contain any error, based on incorrect observations,

forward chaining will not be able to make the correct inference.

Even worse, it might contribute to the propagation of the error by

including incorrectly inferred triples. Therefore, a cleaner KG is

significant for logical inference. Additionally, although we assume

that logical rules are entirely correct under any circumstance, it is

not true in the real world. Logical rules themselves could also be

uncertain and thus bring potential errors to inference results. To

relieve the uncertainty brought by logical rules, it is necessary to

check the correctness of the inferred triples before add them to the

KGs. Since KGE models show great power in capturing network

structure of KGs, which incorrect triples usually contradict, error

triples usually get lower prediction scores in KGE models com-

pared to correct ones. For each triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) in 𝑂 ∪ V𝑇𝐻
∗
, score

𝑓𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 ) will be computed by KGE model to measure its reliability.

We denote bottom 𝜃% triples with lowest prediction scores as Δ−.
It will be excluded from 𝑂 ∪ V𝑇

𝐻

∗
to alleviate the impact of noise.

3.4 Enhancement of Knowledge Graph
Embedding via Logical Inference

Since v𝑇
𝐻

∗
and v𝐹

𝐻

∗
are the satisfying truth assignment derived by

forward chaining, knowledge contained in Horn rules is guaranteed

to be fully exploited by taking v𝑇
𝐻

∗
and v𝐹

𝐻

∗
as guidance to to

optimize KGE model. Thus, the objective function of KGE model

becomes as follows:

min

{e},{r}

∑
(𝑒𝑖 ,𝑟𝑘 ,𝑒 𝑗 ) ∈(𝑂∪v𝑇𝐻

∗)
max(0, 𝛾 − 𝑓𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 )

+
∑

(𝑒′
𝑖
,𝑟 ,𝑒′

𝑗
) ∈N(𝑒𝑖 ,𝑟 ,𝑒 𝑗 )

1

|N (𝑒𝑖 , 𝑟 , 𝑒 𝑗 ) |
𝑓𝑟𝑘 (𝑒 ′𝑖 , 𝑒

′
𝑗 ))

(3)

where a common margin-based pairwise ranking loss is employed

to define the objective function. When learning the entity and

relation embeddings, we treat triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) in both 𝑂 and v𝑇
𝐻

∗

as positive example while (𝑒 ′
𝑖
, 𝑟𝑘 , 𝑒

′
𝑗
) is its corresponding negative

sample, and 𝛾 is a margin separating them. The score 𝑓𝑟𝑘 (𝑒𝑖 , 𝑒 𝑗 )
of a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) can be calculated following any SFs of KGE

models. To reduce the effects of randomness, we sample multiple

negative triples for each positive sample. We denote the negative

triple set of a positive triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) asN(𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ). Conventional
embedding models follow closed world assumption (CWA) (i.e.,

assuming all facts that are not contained in the knowledge graph are

false) to construct negative triples, which is usually incorrect in real-

world applications. Instead of adopting CWA, we conduct negative

sampling from v𝐹
𝐻

∗
to make sure that true but unseen triples will

not be sampled. As assignment v𝑇
𝐻

∗
and v𝐹

𝐻

∗
is a satisfying truth

assignment regard to the HORN-SAT problem defined over all

ground Horn rules, we can safely regard any hidden triples which

belong to v𝐹
𝐻

∗
as the negative triples without violating any ground

Horn rules.

Algorithm 1 Learning Procedure for UniKER

Require: Observed facts in knowledge bases 𝑂

Require: Threshold used to eliminate noise 𝜃%

Require: A set of Horn rules F
1: while more triples can be derived do
2: Derive v𝑇

𝐻

𝑖∗
from 𝑂 then update 𝑂 ← 𝑂 ∪ v𝑇

𝐻

𝑖∗

3: Train KGE based on 𝑂 .

4: Compute Δ− then update 𝑂 ← 𝑂 − Δ−.
5: Compute Δ+ according to Section 3.3 then update 𝑂 ←

𝑂 ∪ Δ+.
6: end while

3.5 Integrating Embedding and Logical Rules
in an Iterative Manner.

Since logical rules and KG embedding can mutually enhance each

other as discussed above, we propose a unified framework, known

as UniKER, to integrate KG embedding and Horn rules-based infer-

ence in an iterative manner. For each iteration, it is comprised of

two steps. First, following forward chaining algorithm, we derive

a subset of v𝑇
𝐻

∗
as v𝑇

𝐻

𝑖∗
based on current KG (i.e., 𝑂). Then, we

add newly inferred triples v𝑇
𝐻

𝑖∗
to KG by updating 𝑂 = 𝑂 ∪ v𝑇

𝐻

𝑖∗
.

Second, we train a KGE model based on the updated KG (i.e., 𝑂).

With the well trained KGE, we eliminate Δ−, which is the bot-

tom 𝜃% triples with lowest prediction scores, from 𝑂 and add new

triples Δ+, which are potentially useful according to Section 3.3.

The pseudo-code of the iterative learning procedure of UniKER can

be found in Algorithm 1.

4 EXPERIMENTS
4.1 Experimental Setting
Datasets. We implement our experiments on three small scale

datasets (i.e., RC1000, sub-YAGO3-10 and sub-Kinship) and three

large scale real-world KGs (i.e., Kinship, FB15k-237 and WN18RR).

The detailed statistics of the datasets are provided in appendix.

ComparedMethods.We evaluate our proposedmethod against

state-of-the-art algorithms, including basic KGEmodels (e.g., RESCAL [19],

TransE [4], DistMult [31] and SimplE [16]), traditional logical rule-

based algorithms (e.g., MLN [23] and BLP [6]) and both classes of

approaches to combine embedding model with logical rules. For ap-

proaches that design logical rule-based regularization to embedding
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Table 1: Results of Reasoning on Kinship, FB15K-237 and WN18RR Datasets.

Model

Kinship FB15k-237 WN18RR

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

RESCAL 0.489 0.894 0.639 0.108 0.322 0.179 0.123 0.239 0.162

SimplE 0.335 0.888 0.528 0.150 0.443 0.249 0.290 0.351 0.311

KALE 0.433 0.869 0.598 0.131 0.424 0.230 0.032 0.353 0.172

RUGE 0.495 0.962 0.677 0.098 0.376 0.191 0.251 0.327 0.280

BLP
†

- - - 0.062 0.150 0.092 0.187 0.358 0.254

MLN
†

0.655 0.732 0.694 0.067 0.160 0.098 0.191 0.361 0.259

ExpressGNN 0.105 0.282 0.164 0.150 0.317 0.207 0.036 0.093 0.054

pLogicNet
†

0.683 0.874 0.768 0.237 0.524 0.332 0.398 0.537 0.441

pGAT
‡

- - - 0.377 0.609 0.457 0.395 0.578 0.459

TransE
†

0.221 0.874 0.453 0.198 0.441 0.279 0.013 0.531 0.223

UniKER-TransE 0.866 0.968 0.910 0.463 0.630 0.522 0.040 0.561 0.307

DistMult
†

0.360 0.885 0.543 0.199 0.446 0.281 0.390 0.490 0.430

UniKER-DistMult 0.770 0.945 0.823 0.507 0.587 0.533 0.432 0.538 0.485
†
Results on FB15k-237 and WN18RR are taken from [22].

‡
Results are taken from [15].

Figure 1: Performance of KG Completion on Kinship
Dataset w.r.t. #Iterations for Effectiveness Analysis.

Figure 2: Proportion to the Optimal Number of Inferred
Triples w.r.t. #Iterations for Efficiency Analysis.

Model 𝜃 Hit@1 Hit@10 MRR

TransE - 0.026 0.800 0.319

UniKER-TransE 10 0.286 0.776 0.466

UniKER-TransE 20 0.311 0.816 0.503

UniKER-TransE 30 0.322 0.833 0.520

Table 2: Results of Reasoning onKinship Dataset with Noise.
𝜃% is the Threshold Used to Eliminate Noise.

models, we choose two representative methods to compare with,

i.e., KALE [13] and RUGE [14]. For those which design embedding-

based variational distribution for variational inference of MLN, we

compare with pLogicNet [22], ExpressGNN [39] and pGAT [15].

Experimental Setup. To generate candidate rules, we hand-

code logical rules for Kinship and RC1000 datasets, and automati-

cally mine rules on FB15k-237, WN18RR and sub-YAGO3-10 using

AMIE+ [10]. TransE [4] and DistMult [31] are implemented as the

scoring function for UniKER.

4.2 Knowledge Graph Completion
We compare different algorithms on KG inference task. We mask

the head or tail entity of each test triple, and require each method

to predict the masked entity. During evaluation, we use the fil-

tered setting [4] and three evaluation metrics, i.e., Hit@1, Hit@10

and Mean Reciprocal Rank (MRR). More detailed settings are in

appendix. Table 1 shows the comparison results from which we

find that: (1) UniKER consistently outperforms basic KGE models

in almost all cases with significant performance gain, which can

ascribe to the utilization of additional knowledge from logical rules;

(2) UniKER also obtains better performance than both classes of

approaches to combine embedding model with logical rules as it

provides an exact optimal solution to HORN-SAT problem defined

over all ground Horn rules rather than employ sampling strategies
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to do approximation; (3) Traditional rule-based algorithms show

the worst performance among all methods. The major reason is

the insufficient coverage of logical rules, which indicates the po-

tential of using KGE to improve the reasoning ability of traditional

rule-based algorithms.

Impact of Iterative Algorithm on KG Completion. Note
that UniKER is trained in an iterative way. In each iteration, there

are some new triples being derived and added to the observed facts.

To investigate how this iterative process helps improve reasoning

ability of UniKER, we conduct experiments on Kinship dataset and

record the performance of UniKER on test data in terms of Hit@1,

Hit@10 and MRR in every iteration. In particular, iteration 0 repre-

sents the step at the very beginning, where KGE model is trained

based on the original data without any inferred triples included.

As presented in Figure 1, we observed that (1) With the increase of

iterations, the performance is first improved rapidly. Then, the im-

provement slows down gradually; (2) UniKER has a bigger impact

on Hit@1, Hit@10 compared to MRR.

Robustness Analysis. In addition to the strong reasoning abil-

ity, our UniKER also shows robustness for noisy KGs. To investigate

the robustness of UniKER, we compare the reasoning ability of

UniKER with TransE on Kinship dataset with noise. As all kinds of

noise might be contained in the process of constructing KGs, we in-

troduce noise by substituting the true head entity or tail entity with

randomly selected entity. Following this approach, we construct a

noisy Kinship dataset with noisy triples to be 40% of original data.

All generated noisy triples only fused into the original training set

while validation and test sets remain the same. Moreover, to study

the effect of parameter 𝜃 (i.e., the threshold used to eliminate noisy

triples), we vary 𝜃 among {10, 20, 30}. The comparison results are

presented in Table 2. We can observe that (1) UniKER outperforms

TransE on noisy KG with significant performance gain; (2) With the

increase of 𝜃 , the performance of UniKER keeps improving, which

validates that our UniKER can indeed eliminate noise from training

data.

4.3 Efficiency Analysis
Since forward chaining learns the optimal truth assignment for

HORN-SAT problem iteratively, the number of iterations required

to achieve the optimal solution may influence its scalability. We

conduct two experiments on all the six datasets: (1) as presented

in Figure 2, we record the proportion of inferred triples accumu-

lated in every iteration over all inferred triples. The result shows

that forward chaining could achieve the optimal solution within

12 iterations, and achieve majority of correct triples only within 4

iterations; (2) as illustrated in appendix, we evaluate the scalability

of forward chaining against a number of state-of-the-art inference

algorithms for MLN (e.g., MCMC [5], MC-SAT [21], BP [37], lift-

edBP [28] and Tuffy [20]). Forward chaining runs 100 − 100, 000
times faster than them. Some widely used algorithms MCMC and

MC-SAT even cannot handle RC1000 dataset, which indicates the

scalability of UniKER.

Figure 3: Impact of Coverage of Logical Rules on Kinship
Dataset on Triple True/False Classification Task.

4.4 Impact of Coverage of Logical Rules on
Kinship Dataset

We also conduct experiments to analyze the impact of coverage

of logical rules on KG inference. Due to space limitation, we only

show the results on Kinship dataset as we have similar observations

on the remaining datasets. We compare UniKER-DistMult against

its default model DistMult as well as forward chaining algorithm

over different coverage, which is measured by the total number of

triples inferred from the given set of Horn rules. And we evaluate

all methods in terms of triple True/False classification accuracy,

regarding link prediction in KG as binary classification. The num-

ber of triples inferred from different sets of rules are provided in

appendix. As shown in Figure 3, we find that: (1) When the coverage

is not enough, traditional rule-based methods show poor perfor-

mance; (2) Without incorporating with logical rules, DistMult has

already shown pretty good reasoning ability; (3) The performance

of UniKER steadily increases with the increase of the coverage of

logical rules; (4) UniKER has already achieved accuracy close to 1

with only 30 rules, which is much higher than forward chaining.

The small number of logical rules is appealing in practice as it is

costly and labor-intensive to obtain high-quality logical rules.

5 CONCLUSION
In this paper, we proposed a novel framework, known as UniKER,

to integrate embedding and Horn rules in an iterative manner

for better KG inference. We have shown that UniKER can fully

leverage the knowledge from Horn rules and completely transfer

them into the embedding models in an extremely efficient way. In

addition, UniKER also shows robustness to noise and error in KGs,

which previousmethods cannot copewith. The experimental results

demonstrate that UniKER is superior to existing state-of-the-art

algorithms in terms of both efficiency and effectiveness.
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6 APPENDIX
A DATA STATISTICS

Table 3: Data Statistics.

Dataset Type #Entity #Relation #Triple #Rule Rule Generator

RC1000 Citation network 656 4 1006 3 hand-coded

sub-Kinship Kinship network 68 12 412 41 hand-coded

sub-YAGO3-10 YAGO knowledge 55 8 61 5 AMIE+

Kinship Kinship network 3007 12 28356 41 hand-coded

FB15k-237 Freebase knowledge 14541 237 310116 300 AMIE+

WN18RR Lexical network 40943 11 93003 11 AMIE+

The detailed statistics of three small scale datasets (e.g., RC1000, sub-YAGO3-10 and sub-Kinship) and three large scale real-world KGs (e.g.,

Kinship, FB15k-237 andWN18RR) are provided in Table 3. We evaluate UniKER on both small experimental datasets and large scale real-world

knowledge graph. To be specific, we include three small experimental datasets in total, i.e., RC1000, sub-YAGO3-10 and sub-Kinship. Since

sub-Kinship is a subset of Kinship dataset, we will discuss it when we introduce Kinship dataset.

• RC1000 is a typical benchmark dataset for inference in MLN. It involves the task of relational classification.

• sub-YAGO3-10 is a subset of a well known benchmark dataset of knowledge graph, YAGO3-10.

For the large scale knowledge graph, we adopt three commonly used benchmark datasets, including Kinship, FB15k-237 and WN18RR.

• Kinship contains kinship relationships among members of a family [9]. We substract a subset from Kinship dataset and call it

sub-Kinship.

• FB15k-237 is the most commonly used benchmark knowledge graph datasets introduced in [4]. It is an online collection of structured

data harvested from many sources, including individual, user-submitted wiki contributions.

• WN18RR is another widely used benchmark knowledge graph datasets introduced in [4]. It is designed to produce an intuitively

usable dictionary and thesaurus, and support automatic text analysis. Its entities correspond to word senses, and relationships define

lexical relations between them.

B EXPERIMENTAL DETAILS.
B.1 Setting for Knowledge Graph Completion
To compare among the reasoning ability of UniKER and aforementioned baseline algorithms, we mask the head or tail entity of each test

triple, and require each method to predict the masked entity. We use three large-scale datasets including Kinship, FB15K-237 and WN18RR.

During evaluation, we use the filtered setting [4] and three evaluation metrics, i.e., Hit@1, Hit@10 and MRR. We take the results of BLP,

MLN, TransE, DistMult and pLogicNet from the corresponding paper [22] and take the results of pGAT from the corresponding paper [15].

As only the results on the FB15k-237 and WN18RR datasets are reported, we only compare with them on these two datasets. The results of

MLN, TransE, and DistMult on Kinship dataset are reported by us.

B.2 Efficiency Analysis

Table 4: Comparison of Inference Time for Forward Chaining vs. MLN.

Model sub-YAGO3-10 sub-Kinship RC1000 Kinship FB15k-237 WN18RR

MCMC 76433s - - - - -

MCSAT 1292s 25912s - - - -

BP 10s 16343s - - - -

liftedBP 15s 16075s - - - -

Tuffy 0.849s 1.398s 4.899s - - -

Forward Chaining 0.003s 0.034s 0.007s 0.593s 186s 30s

We evaluate the scalability of forward chaining against a number of state-of-the-art inference algorithms for MLN (e.g., MCMC [5],

MC-SAT [21], BP [37], liftedBP [28] and Tuffy [20]) over all the six datasets given in Table 3. Details of each baseline are listed below:

• Markov Chain Monte Carlo (MCMC) [5] is the most widely used method for approximate inference in MLN. The basic idea is to

utilize Markov blanket to calculate marginal probabilities of ground predicates.
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• MC-SAT [21] is an efficient MCMC algorithm that combines slice sampling with satisfiability testing.

• Belief Propagation (BP) [37] is another widely used method for approximate inference in MLN. It is a message-passing algorithm for

performing inference on graphical models.

• lifted Belief Propagation (liftedBP) [28] is a lifted version of belief propagation algorithm.

• Tuffy [20] is an open-source MLN inference engine that achieves scalability compared to prior art implementations.

The results of their inference time are given in Table 4.

B.3 Impact of Coverage of Logical Rules on Kinship Dataset

Table 5: Coverage of Different Number of Rules on Kinship Dataset.

#Rule 5 10 20 30 35 36 38 41

#Inferred Triple 870 6276 7915 10973 15302 18429 19780 21549

To ensure enough coverage of logical rules, we take the whole Kinship dataset as training data while the triples, which can be inferred

from the training data using all 41 logical rules, are regarded as test data. We vary the number of Horn rules among {10, 20, 30, 35, 36, 38, 41}
to investigate the effects of coverage of logical rules and the number of triples that can be inferred from these sets of rules is shown in

Table 5.
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