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ABSTRACT
Effectively detecting the fraudulent invitations is valuable for many
online Internet enterprises such as iQIYI to promote good prod-
ucts and improve the user experience. However, it remains highly
non-trivial to address, which mainly lies in two challenging data
characteristics. First, the invitation graph structure is globally large
yet locally small, as a large number of invitations usually occur in
a very small local graph, making the global and local consistency
difficult to achieve simultaneously. Secondly, the user associations
are heterogeneous and diverse, as the user associations are from
multiple different data resources, making the effects of multiple
user associations difficult to use effectively. To this end, this paper
proposes a novel heterogeneous graph neural network HmGnn,
to detect fraudulent invitations at iQIYI platform. To the best of
our knowledge, this is the first attempt to study fraud invitation
detection via graph neural networks. HmGnn handles the homo-
geneity and heterogeneity of networks simultaneously. Specifically,
the proposal constructively introduces links between homogenous
mini-graphs based on the similarity of mini-graphs, facilitating
the impact of local mini-graphs to the global graph structure. In
addition, this paper presents a heterogeneous attention convolu-
tion network to accurately optimize the contribution of multiple
heterogeneous user associations. Extensive experiments conducted
on real-world business data validate the excellent effectiveness and
improvement on risk management of our method.

KEYWORDS
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1 INTRODUCTION
Data with relationships is often represented in the form of graphs,
such as social networks, economic networks and chemicalmolecules.
Besides, a mass of users are active on large-scale graph-structure-
based Internet platforms and applications, who often contain rich
yet diverse relationships. In particular, nowadays, Internet com-
panies often offer incentives, such as monetary rewards/discount
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coupons/membership cards, encouraging regular subscribers to in-
vite new users to promote the products. The invitation relationship
consequently forms a natural link between inviters and invitees.
However, due to the lucrative rewards of successful invitations,
there are often fraudulent users to invite fake people that never
carry out any meaningful activity after the invitation procedure is
finished. Such inviters and invitees pursue excess profits, and may
even cash out for ill-gotten gains, which are inherently harmful to
the platform’s ecosystem. Effectively detecting the fraudulent users
is valuable, for many online Internet enterprises such as iQIYI to
promote good products and improve the user experience.

Traditional methods based on analyzing abnormal behavior and
detecting suspicious patterns are mainly spread in three directions.
First, rule-based methods [18] directly generate complicated rules
which requires expensive human resources and lacks generaliz-
ability. Second, social connectivity based approaches reformulate
the problem by considering the connectivities among accounts
[8, 15]. This approach requires domain knowledge of the whole
social graph, which is very hard to generalize for many realistic
scenarios. Third, machine learning based classifiers learn statistic
models by exploiting a large amount of historical data to infer fake
users [1, 5]. Feature selection plays a critical role for most of these
methods, which would be annoying and cumbersome in practice.

However, none of the above methods are appropriate to well
address the difficulties occurred in fraud invitation detection. On
one hand, the invitation graph structure is globally large yet locally
small, as a large number of user invitation relationships usually
occur in a very small local part. We call this kind of small graph
structure as mini-graph. That is to say, the whole invitation graph
has many disconnected components and each component is con-
nected and defined as mini-graph. Besides, mini-graphs are in a
long-tailed distribution, as illustrated in the first and third sub-
graphs of Figure 1. On the other hand, the user associations are
heterogeneous and diverse, as the user association comes from var-
ious types of information resources, such as IP address, device ID,
etc, as illustrated in the second subgraph of Figure 1. Such data char-
acteristic makes the effects of multiple user associations difficult to
explore effectively and lightly.

To tackle above situations, a novel graph neural network method
HmGnn (Heterogeneous Mini-Graphs Neural Network) is pro-
posed, which is verified on the iQIYI platform, an innovativemarket-
leading online entertainment service. HmGnn first constructively
introduces links between mini-graphs based on the similarity of
mini-graphs. Along with this strategy, the structural information
about different mini-graphs is shared, which increases the correla-
tion between mini-graphs and facilitates the impact of mini-graphs
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Figure 1: Illustration of the situations in fraud invitation detection based on the real data at iQIYI platform. The left figure
shows the homogeneity of mini-graphs which are typically small. A connected component of 36 users linked via heteroge-
neous associations is visualized in the middle figure. Different colors of nodes and edges indicate different class labels and
relationships. The distribution of mini-graph size plotted in the right figure shows it meets a long-tailed distribution.

to the global graph structure. To effectively exploit the hetero-
geneity of user associations, we present an attention mechanism
to accurately optimize the contributions of multiple associations
adaptively, where the attention coefficients reveal the reliability in
identifying fraudulent users. Extensive experiments on the iQIYI
platform are conducted to evaluate the superiority of the proposed
model compared with state-of-the-art supervised baselines and
GNNs. The results demonstrate that the new method consistently
achieves performance gain under various criteria and effectively
reduces the actual economic loss caused by fraudulent invitations.

2 BACKGROUND
Graph neural networks (GNNs) [6] aim to extend the deep neural
networks to deal with non-Euclidean data with complex relation-
ships and interdependency. In particular, there are two types of
GNNs that are highly related to the work of this paper. One is
Graph Convolutional Network (GCN) [10], which is good at han-
dling graph structured data with a small number of labels; the
other is heterogeneous GNNs [2, 17], which is used to handle het-
erogeneous graph structures. Specifically, GCN constructs node
embeddings by mixing the embeddings of neighbors which is a
localized first-order approximation of spectral graph convolutions.
The (l+1)-th layer embedding is defined as:

Hl+1 = σ
(
ÃHlWl

)
(1)

where Ã is a symmetric normalization of adjacency matrix A with
self-loops, i.e., Ã = D̂− 1

2 ÂD̂− 1
2 , Â = A + I, D̂ is the diagonal node

degree matrix of Â,Wl is a free parameter and σ (·) is the activation
function. Despite its simpleness, GCN achieved state-of-the-art
results on various tasks. However, previous study [19] has shown
that GCNs are incapable of distinguishing different types of data
associations. Treating different types of relationships as the same
would be sub-optimal or even harmful.

Heterogeneous graphs examine scenarios with nodes and/or
edges of various types. GATNE [2] considers self-attention mech-
anism to aggregate heterogeneous neighborhood information to
generate node embeddings in the recommendation system. GEM

[13] adaptively learns discriminative embeddings from heteroge-
neous account-device graphs for malicious account detection. DRL
[14] proposes a deep reinforcement learning based approach to
study the problem of curriculum learning for node representation
in heterogeneous star networks. As can be seen that the construc-
tion of heterogeneous GNNs is oriented to a certain graph structure,
e.g., neighborhood, account-device graph, star network, to design
the representation fusion mechanism. To the best of our knowledge,
the exploration of designing a heterogeneous fusion mechanism
for the graph structure such as mini-graph has not been studied.

3 METHODOLOGY
In this section, we formally present HmGnn which first generates
hyper-graphs and optimizes the generation by their similarities. A
heterogeneous graph network is adopted to utilize multiple rela-
tionships and finally we present model training with analysis.

3.1 Hyper-Graph Generation
It is well known that users interact with others when they surf the
Internet, such as inviting friends to use the same app or playing
together on the same online platform. Due to the limitation of the
user’s social ability, however, the graphs are usually very small, as
shown in the right figure of Figure 1. Existing study [19] shows
that common GNNs are incapable of distinguishing different graph
structures, not to say sharing label and feature information among
naturally separated mini-graphs.

To solve this challenge, we need to address two sub-tasks: the
representation of the connected mini-graphs and the generation
of their links. For the former, we introduce hyper-nodes to repre-
sent mini-graphs and use the associations of hyper-nodes to tackle
the latter. For simplicity and distinction, we call the nodes in origi-
nally connected graphs as normal nodes and the generated graph as
hyper-graph which contains normal nodes and hyper-nodes. Specif-
ically, for a mini-graph Go = (Vo ,Eo ), its representation (hyper-
node) is generated by the mean feature of all its internal normal
nodes and fixed during the training process:

xGo =
1

|Vo |

∑
v ∈Vo

xv (2)
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Figure 2: Hyper-graph generation. There are three types of
hyper-graph edges, namely, between hyper-nodes (in red),
betweennormal nodes (in gray), betweenhyper- and normal
node (in green).

To this end, there are three types of edges, as shown in Fig-
ure 2. Normal nodes are connected to the hyper-node generated
by its mini-graph, to ensure the fair and unbiased transmission of
information. The purpose of the link between hyper-nodes and
hyper-nodes is to share the structural information of the mini-
graphs, thus realizing the label propagation from local to global.
The following theorem provides theoretical support and shows that
even if the hyper-nodes are connected randomly and the number of
edges of the hyper-nodes is only a logarithm level of hyper-nodes,
the connected components can be effectively reduced.

Theorem 1. Suppose there are h hyper-nodes each of which is
connected to exactly k other randomly chosen hyper-nodes to build
graph Gh . Graph Gh is connected if there exists at least one path
between any two nodess in Gh . If k = λ lnh

2 where λ > 1, for large h,

P(Gh is disconnected) → 0

Proof. Due to the randomness and independence of construct-
ing edges in the graph, for large h, the probability that any two
points have edges is p = 2k

h−1 =
λ lnh
h−1 which is a special instance

of Erdós-Rényi Graph [4]. Let bi be a Bernoulli random variable
defined as:

bi =

{
1 if node i is isolated,
0 otherwise.

The probability of an individual node being isolated is:

P(bi = 1) = (1 − p)h−1 (3)

The event “graph is disconnected” is equivalent to the existence of
i nodes without an edge to the remaining nodes, for some i ≤ h/2.
LetAi denote the event that there are i nodes that are not connected
to the rest. The likelihood of Gh being disconnected is determined
by union bound of all events Ai

P(Gh is disconnected) ≤
h/2∑
i=1
P(Ai happens) =

h/2∑
i=1

(
h
i

)
(1 − p)i(h−1)

Using Stirling’s formula x ! ∼
( x
e
)x
= exp(x lnx − x) and the

convergence (1 + 1
x )

x ≈ e to approximate two multipliers, we have

P(Gh is disconnected) ≤
h/2∑
i=1

exp
(
hfh (

i

h
)

)
≈ Co exp

(
h max

1
h ≤x ≤ 1

2

fh (x)

) (4)

where Co is a constant that is independent of h, fh (x) = −x lnx −

(1−x) ln(1−x)−λx(1−x) lnh. It can be checked that the maximum
over [ 1h ,

1
2 ] of fh (x) is achieved at x

⋆ = 1
h and fh (x

⋆) ≈ (1−λ) lnhh

P(Gh is disconnected) ≤ Coh
1−λ λ>1

−−−→ 0

□

Theorem 1 shows that after the construction of connecting each
hyper-node to k = o(lnh) other randomly chosen hyper-nodes,
the generated graph is connected in a large probability, which
is conducive to share information between naturally separated
mini-graphs. According to specific graph structure, we can also
use the value of k to control the degree of connection. Because
random connection will introduce many irrelevant edges, we can
further improve the construction of graph by constructing the edges
between hype-node through k-nearest neighbors via the feature
representation as shown in Eq. (2). Experiments show that such
an approach is effective, and it is not difficult to determine the
hyperparameter k .

3.2 Heterogeneous Graph Convolution
We firstly separate the graphG = (V ,E) into |D| subgraphs: {Gd =

(V ,Ed ) | d ∈ D} each of which preserves all the vertices in G,
but only the dth-type edges. As a result, there are |D| adjacency
matrices {Ad | d ∈ D} and different types of edges have different
influences for hidden representation. Similar to the work in [13], the
attention mechanism and residual style connection [7] that embeds
vanilla feature into the hidden state are introduced to adaptively
estimate the importance of different relationships. Before taking the
heterogeneous graph convolution, as introduced in Section 3.1, we
construct the hyper-graphsGd

h = {Vh ,E
d
h } where Vh (E

d
h ) includes

normal nodes(edges) set V (Ed ) and hyper-nodes(edges). Then the
l th layer convolution is defined as:

Hl+1 = σ

(
XhU

l +
∑
d ∈D

attd

(
Ãd
hH

lWl
d + b

l
d

))
(5)

where attd = softmax(αd ) = exp(αd )/Z is the attention coefficient
for graphGd

h withZ =
∑
i exp(αi ),α = [α1,α2, · · · ,α |D |],Ul ,Wl

d
and bld are free parameters that need to be estimated. The above
vanilla feature embedding at each layer is shared among different
subgraphs which is beneficial to reduce computational complexity
and the risk of overfitting.

Specifically, H0 = Xh = [X;X1
h ; · · · ;X

|D |

h ] is the universal rep-
resentation of the whole graph which concatenates the feature
matrix of normal- and hyper- nodes. In order to aggregate the rep-
resentation of one node itself and its neighbors based on Xh , we
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Figure 3: The overall architecture of our proposal. The left part illustrates hyper-graph generation given normal node features
and their natural links.We concatenate the featurematrix of the generated hyper-nodes from different subgraphs to the input
featurematrix to form thefinal feature representation and it is fed into themiddle procedure to obtain the prediction.Different
colors of nodes and edges indicate different types of nodes and relationships.

use reindex trick to construct the adjacency matrix of graph Gd
h :

Ad
h =



Ad · · · Ad
nh · · ·

...
. . .

...
. . .

Ad
hn · · · Ad

hh · · ·

...
. . .

...
. . .


∈ R(n+n

′)×(n+n′)

where n′ =
∑
d hd is the total number of hyper-nodes, Ad ∈

Rn×n , Ad
nh=(A

d
hn )

T ∈ Rn×hd and Ad
hh ∈ Rhd×hd are the adjacency

matrix of normal-normal, normal-hyper and hyper-hyper nodes,
respectively, as illustrated in Fig. 2. For other elements in Ad

h , they
are all zero values which means that there is an offset in repre-
senting the hyper-nodes from different subgraphs. Finally, Ãd

h is
obtained from Ad

h by the renormalization transformation [10] to
make the learning process more steady.

3.3 Model Training and Analysis
For the semi-supervised node classification task, we stack multiple
heterogeneous graph convolution layers as defined in Eq. (5) with
a softmax(·) activation function on the output of the last layer to
obtain the final inferred labels Ỹ . We minimize the cross-entropy
loss over all labeled examples andmodel complexity simultaneously.

min
W ,U ,α ,b

L(W ,U ,α , b) = −
1

|VL |

∑
v ∈VL

C∑
c=1

Y cv ln(Ỹ cv )+β ∥Θ∥2 (6)

where VL is the labeled node set, Θ = {W ,U ,α , b} indicates the
parameters, C is the number of distinct classes and β is a hyperpa-
rameter to trade-off the generalization and complexity of the model.
A schematic description of our model is given in Fig. 3.

Suppose that there are n nodes andm edges in the graph. Since
the hyper-graph generation is conducted on each of |D| subgraphs,
this operation will generate additional n′ =

∑ |D |

d=1 hd nodes and

m′ = |D|n+
∑ |D |

d=1 khd edges respectivelywherehd is the number of

generated hyper-nodes in the dth subgraph. The time and memory
complexity areO(T (m+m′)dim +|D|T (n+n′)dim2) andO(|D|T (n+
n′)dim+Tdim2)whereT is the number of layers and the dimensions
of hidden representation denoted by dim.

4 EXPERIMENTS
In this section, we report the comparison results of HmGnn1 with
several competitors on the real data of iQIYI platform 2 and give
some discussions and conclusions. We also verify the effectiveness
of several sub-routines and study parameter sensitivity, time cost.
Finally, we analyze the contribution of different types of edge and
its practical intuition and give the conclusion of the online test.

4.1 Dataset
A two-month data from some experimental businesses of iQIYI
platform in 2019 from April to June is used to evaluate various
machine learning models. The connection between users can be
invitations and shared devices, such as IP addresses and physical
devices. We use two device identifiers (DID1 and DID2) to identify
the same physical devices. There are 4 kinds of user associations in
total. If two users share the same device (IP, DID1, DID2), one edge
with weight one is built. For invitation relationship, the weights
of edges between inviters and invitees are equal to the invitation
frequency. All edges are undirected for universality and multiple
edges between two users may exist due to multiple associations.
The whole data includes 82,767 nodes and 152,818 edges, of which
17,346 are labeled samples and 8,446 are fraudulent users (positive
samples). In addition, 8,900 normal users are selected as negative
samples3. Note that the business data is preprocessed anonymously
and cryptographically to protect user privacy.

1The source code is available at https://github.com/iqiyi/HMGNN.
2https://www.iqiyi.com/
3In Internet companies such as iQIYI, different users have different VIP levels. In the
experiment, the users with higher level are selected as the normal samples due to their
long participation time and high participation frequency.

https://github.com/iqiyi/HMGNN
https://www.iqiyi.com/
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Table 1: Quantitative results (mean ± std) of our proposal and competing methods. The best results are bolded.

Methods Precision Recall F1 AUC
LR 0.8681 ± 0.0078 0.8120 ± 0.0108 0.8390 ± 0.0070 0.9123 ± 0.0044

XGBoost 0.8987 ± 0.0057 0.8182 ± 0.0084 0.8566 ± 0.0049 0.9296 ± 0.0023
MLP 0.8687 ± 0.0105 0.8572 ± 0.0083 0.8628 ± 0.0031 0.9312 ± 0.0026
GCN 0.8054 ± 0.0296 0.8649 ± 0.0266 0.8332 ± 0.0055 0.9033 ± 0.0067
GAT 0.8828 ± 0.0128 0.8096 ± 0.0218 0.8443 ± 0.0092 0.9114 ± 0.0054

ASGCN 0.8705 ± 0.0099 0.8418 ± 0.0101 0.8558 ± 0.0027 0.9040 ± 0.0021
mGCN 0.8948 ± 0.0107 0.8639 ± 0.0146 0.8789 ± 0.0059 0.9435 ± 0.0023
HmGnn 0.9058 ± 0.0079 0.8844 ± 0.0069 0.8949 ± 0.0031 0.9554 ± 0.0015

4.2 Experimental Setting
4.2.1 Competitors. We consider several representative methods
for the classification task, including both supervised baselines and
state-of-the-art graph neural networks: Logistic Regression (LR),
XGBoost [3], Multi-Layer Perceptron (MLP), GCN4 [10], GAT5 [16],
ASGCN6 [9] and mGCN which is a modified version of GCN [10].
For mGCN, we separate the graph into four different graphs by edge
type and it propagates information according to Eq. (5) without
generating hyper-nodes and introducing attention mechanism and
residual connection.

For supervised methods, including LR, XGBoost, and MLP, we
use both training and validation datasets to learn the classifier. For
GNNs, including GCN, GAT, ASGCN, mGCN and our proposal, the
training dataset is used to learn the model while the model selection
is based on the performance on the validation dataset. The final
performance is tested on the testing dataset for all methods. For
XGBoost, the number of estimators is 100 and the learning rate is
0.01. For GNNs and MLP, we stack three layers of neural network
with the same embedding size which is 32 except for the first layer
whose size is 128. We use 16 heads per hidden layer in GAT to make
a trade-off between efficiency and effectivity. The ratio of variance
reduction in ASGCN is set to 0.5. For our proposal, k and β are
set to 10 and 0.0005, respectively. We conduct 10 independent and
random runs of all methods on a 32-core Intel Xeon CPU (3.20 GHz)
server with 64GB RAM and report their average performance.

4.2.2 Evaluation Metrics. We mainly consider two measures: F1
and AUC. which play a key role in evaluating different models in
risk management for Internet companies. We also report Precision
and Recall to make a more comprehensive presentation.

4.3 Performance Analysis
4.3.1 Comparison Results. Table 1 shows the comparison results.
As for why the phenomenon that supervised models outperform tra-
ditional semi-supervised GNNs happens, the heterogeneous graph
structure introduces great difficulties to learn a better hidden repre-
sentation from both vanilla features and structure input with only
roughly one in eight supervised information. However, if the hetero-
geneity is taken advantage of in a more appropriate way to learn a
model, more promising results are obtained while comparing GCN
with mGCN. This finding emphasizes the difficulty and importance

4https://github.com/tkipf/gcn
5https://github.com/PetarV-/GAT
6https://github.com/huangwb/AS-GCN

Table 2: Quantitative results (%) of ablation study. The abbre-
viation “wo” stands for “without”. The values in the brackets
indicate the ratio of performance degeneration.

Metrics wo_hyper wo_residual wo_attention
F1 89.00 (-0.49) 88.90 (-0.59) 89.15 (-0.34)

AUC 95.24 (-0.30) 95.08 (-0.46) 95.17 (-0.37)

of utilizing the heterogeneous graph simultaneously. Besides, our
proposed method still achieves the best performance considering
all evaluation metrics which shows the potential of robustness and
effectivity of our approach. Overall, HmGnn achieves performance
improvement over the best baseline by 0.71%, 1.95%, 1.6% and 1.19%
on the four metrics, respectively.

4.3.2 Ablation Study. HmGnn is a joint learning framework for di-
verse heterogeneous graphs with sparse and high-dimensional fea-
ture representation which consists of three major modules: hyper-
graph generation, residual style connection and attention mech-
anism that learns the importance of heterogeneous relationships.
How does these modules impact model performance? To answer
this question, we conduct ablation studies to evaluate the perfor-
mances of three model variants and Table 2 shows the experimental
results. As can be seen, missing any of the three collaborators leads
to performance degeneration.

4.3.3 Parameter Sensitivity and Runtime. The hyperparameter k ,
the number of nearest neighbors selected to be connected for gen-
erating hyper-graphs, influences the connectivity and the degree
to which information is shared in the whole graph. Figure 4 shows
trends in model performances as k changes. On the one hand, when
k is too small, e.g., k = 1, the performance is unsatisfactory since
the generated hyper-nodes bring about difficulties in accurate mod-
eling and the edges between hyper-nodes do not afford to handle
the issue. On the other hand, if we connect each pair of hyper-nodes
and build the complete graph among them, the newly increased
edges are in the majority which results in both bad performance
and high cost for training as shown in Figure 4(c). When k is tens
of orders of magnitude, we do not find significant differences in
terms of both F1 score and AUC indeed.

4.3.4 Attention Coefficients. We further study the influence of
different types of edges and the attention coefficients of invita-
tion/IP/DID1/DID2 relationships are 0.1954/0.1048/0.4461/0.2537,
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(a) F1 Performance (b) AUC Performance (c) Epoch Training Time

Figure 4: The influence of k in the procedure of hyper-graph generation. Note that k = 1000 indicates connecting each hyper-
node with all the left hyper-nodes which results in complete graph among hyper-nodes.

respectively. The empirical studies show that the edges identified
by the same physical device play the most significant role for fraud
detection and the attention coefficient is 0.6998 in total. This is con-
sistent with the fact that the fraudulent samples in the dataset are
obtained mainly through the specific rules on the physical device.

4.3.5 Online Results. In practice, there are tens of thousands of
newly registered users attracted by invitation in one business at
iQIYI. We have deployed our method in the online production
environment to detect fraudulent users. To make a more reliable
prediction and minimize disruption to normal users, the threshold
of identifying a user as a fraudster is set to 0.995. Online results
show that it can cover 18.33% more suspicious accounts at the cost
of a few customer complaints compared with the previous rule-
based method. This improvement in the ability of risk management
can bring into thousands and thousands of decrease of economic
loss according to the business experience.

4.3.6 Further Discussion. As shown in Table 1 and discussed in Sec-
tion 4.3.1, supervised methods sometimes outperform traditional
GNNs. However, considering the practical issues in real businesses,
GNNs are more reliable because the researchers usually need ex-
plaining the model predictions for either offline testing or con-
sumers, especially when customer complaints come. Our model is
a variant of GNNs and it not only shows safe predictions [11, 12]
in a variety of performance metrics but also is more easily to give
such explanations by mining the users in the connected subgraphs
based on the relative domain knowledge.

5 CONCLUSION
This paper proposes HmGnn, a novel heterogeneous graph neural
network, to detect fraudulent invitations at iQIYI platform. To the
best of our knowledge, this is the first attempt to study fraud invi-
tation detection via graph neural networks. HmGnn handles the
homogeneity and heterogeneity of networks simultaneously. The
proposal constructively introduces edges between homogenous
mini-graphs based on the similarity of mini-graphs and a hetero-
geneous attention convolution network is then adopted to fuse
the newly generated heterogeneous graphs. Extensive experiments
conducted on real-world business data validate the excellent effec-
tiveness and improvement on risk management of our method. In

future, we are interested in extending our method to more practical
applications, especially in the dynamic graph scenarios.
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