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ABSTRACT
With the expansion of smartphones, most users are using many
apps (applications) on their smartphones. As the way users use
their apps would reflect their personality, understanding their app
usage is increasingly becoming an interesting problem. In order to
understand their app usage, which consists of time-series data, we
can use sequential models such as N-gram and long short-term
memory (LSTM) for considering sequence characteristics. How-
ever, it is still challenging to reduce the impact of internal fac-
tors (e.g., their feelings) and external factors (e.g., notifications on
their smartphones) on the differences in the order of apps used in
a short term. In this paper, we propose a novel method for rep-
resentation learning of app usage, called Time-aware Graph Con-
volutional Networks (T-GCN), to address the problem mentioned
above. We evaluated the performance of T-GCN with the large-
scale real-world dataset on the app usage prediction task. The re-
sults demonstrate that T-GCN achieves 3.6% higher accuracy than
the LSTM model in accuracy@10.

CCS CONCEPTS
• Information systems → Data mining; • Human-centered
computing →Mobile computing.
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1 INTRODUCTION
Smartphones are rapidly spreading all over the world. As reported
in [1], the number of smartphone users would reach 3.8 billion by
2021. On such prevalent smartphones, most users use numerous
apps in various scenes such as watching videos and communica-
tion. According to [15], the average number of apps installed on
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a user’s smartphone is 56, and some users have 150 apps. Users’
app usage would reflect their personality, lifestyle, and context
when observed for a relatively long-term. We can thus estimate
users’ personality and predict their behavior by using embeddings
reflecting their state. Such estimate and prediction would enable
optimal advertisement delivery and behavioral support for users.
Understanding users’ app usage on their smartphones, therefore,
is increasingly becoming an interesting problem worth studying.

Previous studies have attempted to estimate users’ state and pre-
dict app usage by creating features from app usage records. Ochiai
et al. [19] detected that users have problemswith their smartphones
by app usage records. Shin et al. [22] predicted users’ next app us-
age based on the naïve Bayes model and reported that the last app
has essential influences on next app prediction. Because app us-
age records consist of time-series data, estimating users’ state and
predicting app usage are strongly dependent on the recent data of
sequence. Therefore, it is becoming quite significant to consider
the sequential relationship between app usage records.

For app usage records, which are time-series data, a straightfor-
ward method to represent the records is to use a sequential model-
ing technique such as N-gram [2] and the long short-termmemory
(LSTM) model [9]. However, the short-term order of users’ app us-
agewould be affected by internal factors (e.g., notifications on their
smartphones) and external factors (e.g., their feelings). An exam-
ple of internal factors is someone who looks at Twitter and Face-
book every morning. One day, he/she launches Twitter first and
then Facebook. Another day, he/shemay launch Facebook first and
then Twitter depending on his/her feelings. Users’ long-term app
usage patterns would almost remain unchanged, whereas short-
term app usage patterns would change subject to their feelings. As
for external factors, an example may be someone who has a behav-
ioral pattern of using a news app and a note-taking app in this se-
quential order. Sometimes, however, he/she launches a messaging
app to read a received notification before opening the note taking
app. Many apps have notification functions and would cut in the
sequences of apps. In such cases, the order of short-term app us-
age would be different from users’ intentions. N-gram and LSTM,
therefore, may not be suitable for extracting features of app usage
because they are designed to accurately learn app usage patterns
in the sequential order.

For generating app sequence representations, we assume cooc-
currence within a certain time period is also important. In this pa-
per, we propose a novel representation learning method for app
usage, called Time-aware GCN (T-GCN). This method effectively
extracts cooccurrences from app usage records while alleviating
the short-term difference in the order mentioned above. First, we
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formulate a next app prediction as graph classification, and we ap-
ply GCN to the app usage graph for extracting graph representa-
tions. Next, we propose a method to construct the app usage graph
considering temporal information from app usage records. Finally,
we evaluate T-GCN through a large-scale real-world dataset on a
next app prediction task. The experimental results show that T-
GCN achieves 3.6% higher accuracy than the LSTM model in ac-
curacy@10.

Our contributions are demonstrated as follows:
• We formulate an app usage prediction as graph classifica-

tion.
• We propose a method to construct an app usage graph con-

sidering a time lag from app usage records and propose a
novel representation learning method for app usage, called
Time-aware GCN (T-GCN).

• We evaluate a large-scale real-world dataset of app usage
on a next app prediction task. We demonstrate that T-GCN
achieves 3.6% higher accuracy in accuracy@10 than the LSTM
model, which is widely used in sequence modeling.

2 PROPOSED METHOD
In this section, we introduce T-GCN. We first give out the defini-
tions for key terms used in this paper and then define the problem.
Finally, we describe T-GCN in detail.

2.1 Preliminaries
Definition 1 (AppUsage Sequence)We extract a set of apps over
a sliding window with overlapping from a series of apps for each
user ordered by time. We define 𝑛 apps as the app usage sequence
𝑆 . We can select either or both the number of apps and the time
range for window extraction. Also, we allow the window setting
to be in the same way or to be changed for each user.
Definition 2 (App Usage Graph) We construct the app usage
graph𝐺 = (𝑉 , 𝐸) from 𝑆 . Let𝑉 be the set of apps in 𝑆 , and 𝐸 be the
set of edges. We link the edges between apps within time lag Δ𝑡th.
Definition 3 (Next App prediction as Graph Classification)
Given a set of app usage graphs {𝐺1, · · · ,𝐺𝑁 } ⊆ G and a set of
next app {𝑌1, · · · , 𝑌𝑁 } ⊆ Y, we aim to learn the classifier 𝑓 with
training data (ℎ𝐺 , 𝑌𝐺 ), where ℎ𝐺 denotes the representation of an
entire graph 𝐺𝑁 .

2.2 T-GCN
This subsection describes T-GCN in detail. We first construct an
app usage graph from an app usage sequence. Because the order of
app would change as discussed in Section 1, we deal with the app
usage graph with an undirected graph. We link apps temporally
close to each other in order to capture temporal usage features.
Ochiai et al.[20] set an edge for two consecutively used apps. How-
ever, we speculate that we would acquire better representations by
utilizing more temporally close apps information. Therefore, we
set edges from all nodes within the time lag Δ𝑡th. Specifically, we
construct an app usage graph from 𝑛 apps and edges between apps
within Δ𝑡th.

We formulate a next app prediction as graph classification and
then learn representations of app usage graphs. Figure 1 shows
the process of the next app prediction with T-GCN. We generate a
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Figure 1:The process of next app predictionwith T-GCN.We
construct an app usage graph with apps 𝑎 from an app usage
sequence. We generate a representation of the entire graph
with T-GCN, and we predict the next app using one-layer
MLP with the representation as input.
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Figure 2: T-GCN architecture. First, we apply 𝑘 GCN layers
to an app usage graph for acquiring each node features ℎ𝑎 .
Next, we generate a representation of a node in the entire
graph with READOUT function. Finally, we get a score with
linear transformation and predict a next app by obtaining a
probability with softmax function.

representation of the entire graph with T-GCN, and we predict the
next app using one-layer MLP with the representation as input.

We introduce how GCN generates representations for graph
data. At training time, aggregate function is trained to aggregate
representations of a node’s neighborhood normalized by the num-
ber of its adjacent nodes. At inference time, the trained model is
utilized to generate a representation of a node in the entire graph
by repeatedly aggregating representations of its neighbors. After 𝑘
iterations, a representation of the entire graph is acquired by sum-
marizing representations of nodes. Formally, the procedure can be
described by previous studies[12][23] as follows:

ℎ
(𝑘)
𝑣 = ReLU

(
𝑊 ·MEAN

{
ℎ
(𝑘−1)
𝑢 ,∀𝑢 ∈ N (𝑣) ∪ {𝑣}

})
(1)

ℎ𝐺 = READOUT
({
ℎ
(𝑘)
𝑣 | 𝑣 ∈ 𝐺

})
(2)

where ℎ𝑘𝑣 is the representation of node 𝑣 at the 𝑘-th iteration,N(𝑣)
is a set of neighboring nodes to 𝑣 , and MEAN denotes the element-
wise mean.

Figure 2 shows T-GCN architecture. First, we apply 𝑘 GCN lay-
ers to an app usage graph for acquiring each node feature. Next,
we generate a representation of a node in the entire graph with
READOUT function. Finally, we get score with one layer MLP and
predict a next app by obtaining probability with softmax function.
Besides, we adopt permutation-invariant functions for READOUT
function to eliminate the effect of the order of apps in a graph. We
compare both summing-up and averaging representations of all
nodes, which are permutation-invariant functions.
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3 EXPERIMENTS
In this section, we explain the experiments we conduct using a
large-scale real-world app usage dataset to demonstrate the per-
formance of T-GCN.

3.1 Dataset
We use a large-scale real-world dataset of app usage 1, which con-
tains 1,000 users, and 2,000 apps [24]. The dataset was collected
from amobile cellular network in Shanghai. One record corresponds
to an HTTP request or response by user access. Each record con-
sists of the anonymized ID of each mobile device, timestamp, used
app ID, etc.

We conduct preprocessing to the dataset in order to evaluate T-
GCN. Specifically, we first delete the duplicate app ID within 10
seconds. Next, we remove the users with less than 100 records and
those with more than 1,000 records for excluding outlier user cases.
This dataset includes 252 users and 1,111 apps. Finally, we extract
the top 100,000 records. We split the dataset into three sets: 80%
train set, 10% validation set, and 10% test set. We also generate an
app usage sequence from 10 apps over a sliding with a step size of
three.

3.2 Performance Metric
Weadopt accuracy@k, whichwas used by the previouswork [6] for
app usage prediction, to evaluate performance ofmodels.We select
the top 𝑘 apps, calculating the probability of belonging to classes
by models. If the correct classification appears among k selected
classifications, we take it as one, otherwise zero, and let this value
be hit@k for a single test case. accuracy@k is calculated by the
average of the hit@k computed using all data as follows:

accuracy@k =
#ℎ𝑖𝑡@𝑘

|𝑅𝑡𝑒𝑠𝑡 |
(3)

where #ℎ𝑖𝑡@𝑘 is the number of hits in the test set, and |𝑅𝑡𝑒𝑠𝑡 | is
the number of all test cases. We conduct an evaluation by setting
𝑘 = 5, 10, and 20.

3.3 Baselines
In order to evaluate the performance of T-GCN, we compare T-
GCN with the two methods: LSTM and T-GCN with building app
usage graphs using an existing method[20]. Because Almeida et al.
[3] used LSTM in predicting human behavior, we apply themethod
to app usage prediction as a baseline model. Also, Ochiai et al. [20]
also proposed a building app usage graph method, which sets an
edge for two consecutively used apps. Thus, we select T-GCN with
the method as the baseline model, called T-GCNwith a single edge
(T-GCN-SE).

3.4 Hyper-Parameter Setting
We extract an app usage sequence using a sliding window, where
the three apps overlap, with both 𝑛 apps and edges within Δ𝑡th. We
select the window setting for all users. Table 1 shows the param-
eters of models. We employ grid search to optimize performances
and select the models of best accuracy for the validation set. We

1This dataset is available in http://fi.ee.tsinghua.edu.cn/appusage/.

Table 1: Parameters of models

Parameter Value
Epochs 30

The number of layers 1
Hidden layer units varied in {16, 32, 64}

Dropout rate 0.5
Learning rate for Adam optimizer 0.001

𝛽1 for Adam optimizer 0.9
𝛽2 for Adam optimizer 0.999

Weight decay for Adam optimizer 0
Batch size 32

READOUT function varied in {mean, sum}

also train models with Adam optimizer[11], adopting early stop-
ping with the patience of three [21].

3.5 Results
We first examine how the Δ𝑡th between apps for setting edges af-
fect the performance of T-GCN. Figure 3 shows the accuracy@10
of T-GCN we obtained while changing Δ𝑡th from 100 seconds to
3,600 seconds. We set the parameters as follows: hidden layer units
to 64, and READOUT function to sum. As shown in Figure 3, set-
ting edges within 1,800 seconds performs the best at the window
because the curve of accuracy is converging.These results indicate
that setting edges within a longer time than some width is essen-
tial to capture intricate app transition patterns. We therefore link
the edges between apps within 1,800 seconds.

Table 2 shows the performance comparison with models aver-
aged over three different random seeds. We link the edges between
apps within 1,800 seconds for T-GCN-SE and T-GCN. As shown
in Table 2, T-GCN achieves 1.7%, 3.6%, and 3.0% higher accuracy
than LSTM, respectively. T-GCN also achieves 1.1%, 1.1%, and 0.8%
higher accuracy than T-GCN-SE. These results show that T-GCN
performs best in terms of all metrics: accuracy@5, accuracy@10,
and accuracy@20. We conduct statistical hypothesis testing on ac-
curacy. First, we utilize the F-test, which checks the equality of two
variances of the hits. Since we could not reject the null hypothesis
for a significance level of 0.05, we assume that the two variances
are equal, and therefore we select the independent Student’s t-test
for checking if the difference in the accuracy between LSTM and
others is statistically significant. The result of the t-test shows the
notes of Table 2. As shown in Table 2, we reject the null hypothesis
for a significant level of 0.05 between LSTM and T-GCN-SE, and
for a significant level of 0.01 between LSTM and T-GCN.

4 RELATEDWORK
We first review related work about app usage prediction in Section
4.1 and representation learning using deep learning in Section 4.2.

4.1 App usage prediction
Several studies have attempted to predict users’ next app usage.
Utilizing features of app usage records is essential for app usage
prediction.Manually generating features of app usage for such con-
textual information [10, 14, 16, 22] is a general approach to the task.

http://fi.ee.tsinghua.edu.cn/appusage/
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Figure 3: Accuracy@10 of T-GCN with different max time
lag between apps

Table 2: Performance comparison with models

Model Accuracy@5 Accuracy@10 Accuracy@20
LSTM 0.526 0.660 0.771

T-GCN-SE 0.534 0.685* 0.793*
T-GCN 0.543 0.696** 0.801**

Notes: t-test for checking the difference in accuracy between LSTM and the
others.

* 𝑝 < 0.05
** 𝑝 < 0.01

Sequence modeling for app usage is important for app usage
prediction. The methods based on the Markov model are proposed
for modeling app transitions [13, 18]. The representation learn-
ing methods for sequence relationships based on Word2Vec and
Doc2Vec are proposed [4, 25].

Graph-based methods are proposed for app usage prediction.
Chen et al. [5] proposed a method based on the node and path
similarity of a bipartite network of apps and users. Chen et al. [6]
proposed a heterogeneous graph embedding algorithm tomap con-
textual information such as location, time, and attribution into the
common latent space.

4.2 Representation Learning using Deep
Learning

Many studies have attempted to generate representations using
deep learning in order to capture data features. For example, Con-
volutional Neural Networks (CNN) are used to extract representa-
tions for image [17]. LSTM is utilized to capture temporal relation-
ships among sequential data [7].

Graph Neural Networks have been proposed to generate repre-
sentations for graph data such as citation networks [12] and social
networks [7]. Ochiai et al. [20] proposed a representation learning
method for user state estimation by utilizing GCN. Deng et al. [8]
also proposed a method predicting social events with GCN using
word relation graphs.

Our study differs from previous works in terms of the following
reasons: effective construction of graphs for generating represen-
tations from app usage records, which consist of time-series data.

5 CONCLUSION
This paper presented Time-aware GCN (T-GCN), which is a novel
representation learning method for app usage based on GCN. We
formulated an app usage prediction as graph classification.We pro-
posed a method to construct the app usage graph considering tem-
poral information from app usage records. We evaluated a large-
scale real-world dataset of app usage on a next app prediction
task. The evaluation validated the effectiveness of T-GCN com-
pared with LSTM. The results demonstrated that T-GCN achieves
3.6% higher accuracy than LSTM in accuracy@10.

In future work, we plan to explore the following directions: We
will 1) compare T-GCN with LSTM varying window size of se-
quence; 2) evaluate the app usage prediction task increasing the
amount of data, because the dataset whichwe usemay be small and
lead to overfitting; 3) evaluate other tasks using app usage such as
estimating users’ stress and detecting smartphone usage trouble;
4) apply other time-series tasks such as predicting next items on
e-commerce and visitor prediction on restaurants. Another direc-
tion would be to consider contextual information. As app usage is
affected by when and where users use their apps, we would like to
incorporate contextual information into T-GCN.
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