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ABSTRACT

Having an effective fraud detection system can help social media
to identify suspicious behaviors or accounts. Early detection is
crucial to minimize losses if the fraud is ongoing. Existing detec-
tion methods perform effectively when good amounts of observed
behavior data are available (which sometimes has been too late);
however, at an early stage when the observations are limited, the
performance would not be satisfactory. In this work, we propose
ALFRAD, a novel self-training framework that uses behavior data
augmentation for early fraud detection. It has a Seq2Seq-based be-
havior predictor that predicts (i) whether a user will adopt a new
item or an item that has been historically adopted and (ii) which
item will be adopted. ALFRAD utilizes the prediction results of fraud
detection methods to make better prediction of future behavior
and uses the augmented graph to help fraud detection methods
to achieve higher performance while not requiring any additional
data. It explores the mutually beneficial relationship between fraud
detection and behavior prediction. Experiments show that ALFRAD
improves the performance of different kinds of fraud detection
methods. With ALFRAD augmented methods, the performance of
fraud detection at an earlier stage is comparable with and/or better
than non-augmented methods on a greater amount of observed
data.

1 INTRODUCTION

During the last twenty years, we have witnessed a boom in social
networks and other web-based services. While it certainly makes
people’s life easier and more convenient, it also indirectly creates
a market for malicious users. One can earn huge profits by sell-
ing fake followers on Instagram and Twitter, or fake reviews on
Yelp and Amazon. Some malicious service providers could also
help one disseminating information such as ads or fake news by
manipulating botnets on social networks. It turns out that these
behaviors have negative impact on our society: fake news could
have tremendous effects on political activities; fake reviews con-
stantly undermine customers’ ability to make fair judgements; and
fake followers will cause fake popularity, giving false credentials
and breaking a competitive market. In this paper, we mainly focus
on the suspicious behavior that is often being referred to as link-
farming which involves creating false edges in a social network. For
example, in a Facebook "who-likes-what-pages" graph, the fraud-
sters might create false edges that make certain pages look more
popular or more legitimate [2].

Various efforts have been made in the data mining community
to address the problem of link farming, including graph mining
based methods such as FRAUDAR [9], LocKINFER [12] etc., and graph
machine learning based methods like DoMINANT [4]. Despite their
effectiveness, we nevertheless witness a decline in performance
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when data is insufficient or incomplete. However, detecting the
fraudsters after they have achieved their purpose is not ideal in real
usage. This in turn poses a grim challenge for fraud detection at
early stage: we want to prevent the negative impact incurred by
fraudsters when observed data is not sufficient while existing fraud
detection methods would inevitably underperform for the scarcity
of available observations. Thus, in this paper, we aim to answer the
following question: Is it possible to achieve a similar performance
at an early stage when observed behavior data is incomplete? In
other words, can we design a framework so that the performance of
fraud detection at an earlier stage is comparable with and/or better
than the performance on greater amount of data?

Present work. In this paper, we propose Early Fraud Detection
(ALFRAD), a novel self-training framework that is constructed by
two components: a fraud detection method that detects fraudu-
lent users (un)supervisedly and a Seq2Seq user behavior forecast-
ing model that augments the graph. The two components inter-
dependent on each other in the sense that the information derived
from the first could be a useful input for the second, and vice versa.
Shown in Figure 1 is a sample iteration: the behavior forecasting
model consists of a two-step decoder to (i) predict whether the next
item a user will adopt comes from his/her behavior history and to
(ii) predict which item will be adopted through similarity matching.
When making predictions, it takes advantage of the fraudster de-
tection results from the previous iteration based on the assumption
that malicious users tend to post more frequently. Also, we assume
that the fraudulent users (often consist of bot accounts controlled
by central servers) have a higher tendency to repeatedly adopt
the same items while the normal users will have a consistent pat-
tern of discovering new information. The augmentation model can
hence update both the graph structure and attribute information
simultaneously based on the newly predicted items.

We thus summarize our contribution as follows:

e To the best of our knowledge, this is the first work that
studies the problem of early-stage fraud detection on social
media by learning for behavior forecasting.

e We propose a novel framework that improves the perfor-
mance of early fraud detection by behavior forecasting and
behavior graph augmentation.

e We conduct extensive experiments on a real-world dataset
and obtain better performance than both unsupervised and
supervised fraudulent detection methods when data is rela-
tively insufficient and incomplete.

2 RELATED WORK

Our work aims to address the early-stage fraud detection problem
using a two-step sequence predictor for data augmentation, so in
this section, we will first review related works in suspicious behav-
ior detection. Then, we will shift our focus to some of the relevant
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Figure 1: One pass for the early fraud detection framework: The Seq2Seq model first predict the items that a user will adopt
in the future based on his/her behavior history. (1) The first step is to predict whether the item has been in the user’s behavior
history or is a new item in the global “vocabulary.” The second step is to predict the item from the historical items or from the
vocabulary. (2) The framework then uses the predicted items to augment user-item bipartite behavior graphs. The predicted
items and links will improve the performance of a wide line of fraud detection methods including semi-supervised learning
(e.g., GCN [13]) and unsupervised learning (e.g., Fraudar [9], LockInfer [12]). Our framework’s performance of fraud detection

at an earlier stage is comparable or better than non-augmented methods with more observed data.

works related to our framework, including sequence prediction,
dynamic graph learning, and behavior data mining.
Unsupervised Fraud Detection. Suspicious behavior detection
has received a great amount of academic interest in the past decade
[2]. We categorize these methods into unsupervised and supervised
methods. Unsupervised methods approach the problem by taking
certain assumptions regarding fraudulent behaviors. LOCKINFER
[11] investigates the lockstep behavior using a generalized Spo-
KEN [21] method, which utilizes pairs of eigenvectors of graphs
to detect the "eigen-spokes" patterns. DOMINANT [4] was a graph
auto-encoder based deep model that detects anomalous nodes from
attributed networks. REv2 [14] was an iterative algorithm that
detected outlier users with low fairness scores. Zhao et al. [30]
proposed an actionable algorithm to block the dense subgraphs on
bipartite graphs.

Graph Neural Networks. In recent years, following the initial
idea of convolution based on spectral graph theory [1], many spec-
tral GNNs have since been developed and improved by [3, 7, 13, 15,
17, 29]. As spectral GNNs generally operate (expensively) on the full
adjacency, spatial-based methods which perform graph convolution
with neighborhood aggregation became prominent [5, 6, 18, 19, 22],
owing to their scalability and flexibility [26]. Moreover, several
recent works proposed more advanced architectures which add
residual connections to facilitate deep GNN training [16, 25]. More
recently, GNN-based models were also proposed for tasks in varies
fields of research such as natural language processing [27] and
behavior modeling [23].

3 PROBLEM DEFINITION

Consider a bipartite graph G; = (U, V, E;) at timestamp ¢, where
U is a set of m users, YV is a set of n items and &; is the set of
edges at time ¢. Let X, € R(™)XK be the feature matrix at time
t that contains k-dimensional raw features of all nodes. We also

denote y € {0, 1} as labels for users where fraudsters get 1 and
others get 0. Following the above notations, we first define the task
of fraud detection, and then proceed to give a formal definition of
early-stage fraud detection.

DEFINITION 1. (Fraudulent Behavior Detection) Given the bipartite
graph G and feature matrix X € R™MXk fnd g function g :
G, X — y’ that returns a vector of prediction logitsy’ € [0,1]™.

Next, we define early-stage fraud detection. At time ¢, we aim to
design a framework that will achieve comparable or better perfor-
mance with the current cross-sectional data than with the cross-
sectional data at time T where T > t. Formally, our goal is to find a
data augmentation framework satisfying the following criteria:

DEFINITION 2. (Early Stage Fraudulent Behavior Detection) Let
h: (R™ R™) — R be an evaluation metric such that a larger value
is more desirable holding other conditions the same. Let g be a fraud
detection method. Design a framework f : G1,X; — G,,X] that
satisfies h(g(f(Gr. Xt)),y) = h(9(Gr. X1). y).

4 METHODS

In this section, we present our proposed ALFRAD approach towards
the above problem. We discuss the two key components of the
ALFRAD framework. We first focus on the fraud detection module;
then we discuss the Seq2Seq behavior predictor module.

4.1 Fraud Detection Module

The first component of our proposed ALFRAD framework is a fraud
detection module. It is worth pointing out that this part of Ar-
FRAD is not model-specific: any fraud detection/node classification
model(e.g., FRAUDAR [9], CaTcHSYNC [10], GCN[13], GRAPHSAGE
[6]) suffices to be the this component of the framework and could
have its performance improved with ALFraD. Without the loss of
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generality, let the fraud detection model g be defined as:
9:G.X-y, M

where y” € [0, 1]™ is the predicted suspiciousness of the user nodes
of being fraudsters.

For graph representation learning methods (graph neural net-
works) that is capable of learning low-dimensional node repre-
sentations as well as giving predictions, we also take advantage
of the learned representations for user nodes. Without the loss
of generality, here we take the widely used Graph Convolutional
Network (GCN) [13] as a fraudulent user nodes detection method,
because it’s capable of semi-supervised node classification. The
graph convolution operation of each GCN layer is defined as:

H®Y = oD 2 AD T HO WD), @

where [ indicates the layer, H! is the node embedding matrix gen-

erated by I-th layer, W is the weight matrix of the co-responding

layer, A = A + I is the adjacency matrix with added self-loops, D

is the diagonal degree matrix Dii = j A; j» and o(-) denotes a

nonlinear activation such as the Rectified Linear Unit (ReLU).
Thus the GCN used for fraud detection can be notated as:

Y9gen ¢ G X—>Z y', (3)

where ggcn is a multi-layer GCN model, Z is the node embedding
matrix generated by the second last layer, and y” is still the predicted
user suspiciousness. We use a standard binary cross entropy loss
for training the GCN.

4.2 Behavior Predictor

We aim to explore the user-level sequential data for behavior mod-
elling. In other words, given the item history of each user u € U,
we want to be able to forecast what item this user will post next.
For this purpose, we employ an Seq2Seq model as our building
block for behavior modelling in order to capture the information
embedded in user’s item history.

Encoder. We can regard each user’s item history as a sequence of
features that are constructed as a prior knowledge. For example, for
content-based items, it could be the embedded representation of the
texts, but it could also be other features like in/out degrees. Suppose
user u; has an item history of j items, we can denote the sequence

of item history for user u; as x(@ = {xgi), el xﬁ.i) }, of which each

item x” € R¥ stands for the feature vector of the corresponding
item node. If we have a fraudster prediction model that gives user
embedding (GCN etc.), say z; for user u;, the item history could also
be constructed as x() = {xgi) ® z;, .,x;i) ® z;}, where @ stands
for concatenation. For the ease of reading we omit the user index
i in the following of this section, denoting xj.i) as x;. and index i
will be mainly referred to as the current time stamp.

We adopt Long Short Term Memory network (LSTM) [8] as
encoder to capture contextualized representation for each item in
the sequence. The encoder contains only a forward LSTM as we
want to make predictions based on the history items. Hence the

hidden state for each item is calculated by:

—_—
h;, ¢; = LSTM(x;, hj-1,¢i-1), 4
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where h; and c; refer to the hidden state and cell state in i-th step
respectively.
Decoder. When decoding the hidden features, we build a two-step
decoder for behavior pattern mining: first, we decide if the user
is going to select an item that has already been selected; then we
want to minimize the distance between the predicted item and the
real item in the feature space. The first step is motivated by our
observation that fraudulent users tend to have more repeated items,
which could be explicitly modelled through learning. These two
tasks are jointly optimized through our two-step decoder.

We first decode the hidden states and cell states for each item,
the readout operation is defined as following:

ﬁi = ¢(th . hi + Wrc - Cjit+ br), (5)

where W,;, € RIIXk W e RleIXk 1 ¢ RF are trainable parame-
ters, ¢ is the sigmoid function, and p; is the probability of repeating
item, i.e, larger p; indicates that the user if more likely to perform
a repeat behavior (e.g., repost a message that the user has posted in
the past). Let p; be the ground truth of repeating behavior where
pi = 1if the next item is a recurring item, and p; = 0 otherwise.
Then we define the loss for prediction of repetition as:

J
Lrep == (pilog(pi) + (1= pi)log(1 =) (6)
i=1
Moreover, we use another readout function to decode the pre-
diction of next item by

Xi+1 = Wy - h; + by, (7)

where W), € RIhiIxk b, € R¥ are trainable parameters and X1
is the predicted feature vector for the next item. Then the loss
function of item prediction can be defined as

J
1 . 2
Lyrea =7 § [1%i = xill7. ®)
i=1

Therefore, we can train the behavior predictor by the following

loss function:
L= Lrep ta- Lpred’ )

where « is a hyperparameter.
Inference. After the model is well trained, it can be easily used to
predict the future items for each user node. However, one question
remains, that is, how many items should we predict for each user?
With the assumption of fraudulent users tend to have higher degree
to achieve their goals (e.g., hot topic boosting), we aim to make
more predictions for the users that are more likely to be fraudsters.
Hence we utilize the predicted suspiciousness scores y’ for each
user given by the fraud detection module (Eq. 1/3) to decide the
number of predictions we make for each user u;:

n; = I_yl' . KJ s (10)
where k € Z" is a hyperparameter to control the maximum number
of predictions.

During inference, teacher forcing is not used. Hence when each
Xit1 is predicted by Eq.(7), the next input item is determined by
cosine-similarity:

. Xi41 - X
Xj41 = argmin | —— | . (11)
xex; \Xiwall x||x]]
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where X; is the current vocabulary calculated by

5 <o
Xi={X i <05

{Xl, ...,Xi} }31‘ > 0.5 (12)

We thus obtain a new edge list & and are able to update the
graph by adding these new edges.
Self-training. As the fraud detection module and the behavior
predictor can mutually enhance each other, i.e., the fraud detection
results can help behavior predictor to make better predictions and
the augmented graph enriched with predicted behaviors can also
help fraud detection methods. We make this an iterative process: we
first run the fraud detection method on the original graph, use the
results together with a trained behavior prediction model to forecast
future user behaviors, and augment the graph with the predicted
user behaviors. Then we re-run the fraud detection method on the
updated graph and repeat the above process for several iterations.

5 EXPERIMENTS

In this section, we evaluate the proposed ALFRAD framework for
early-stage fraud detection on a real-world dataset.

5.1 Experimental Settings

5.1.1 Datasets.

Overview. We use a real world dataset constructed from Tencent
Weibo, one of the most popular Chinese micro-blog sites between
2010 and 2015. Particularly, the dataset is crawled in November 2011,
consisting posts and public user profiles. We construct the graph
as a "who-post-what" graph where the user nodes are registered
users and item nodes are micro-blog posts. Edges occur between
users and posts when the user (re)posted the post. The features for
each post is generated from its text with GLOVE[20]; the features
for each user is the average features of all connected posts.
Labeling. The data does not come with golden labels, so we utilized
rule-base labeling strategy that validated by human labeling. We
first sampled 1000 users from the full dataset, along with links to
their public profiles. Then several Data Labeler manually labeled
these users by reading their post and profile information, and ob-
serving their temporal behavior pattern. Specifically, we conclude
the following criteria that we followed when labelling users:

(i) Suspicious Timestamp: The major conspicuous characteristics of
suspicious users is their bot-controlled behavior. It is truly hard for
bots to be programmed to have human-like posting pattern. As we
observe, suspicious users usually post in a fixed time interval. For
example, an user with many posts is identified as suspicious since
if 2/3 of her posts are posted with an interval of 10 + 2 seconds.
(ii) Deactivated Accounts: We identify those users whose QQ ac-
count and Wechat account are deactivated as suspicious users since
Wechat and QQ are two major online communication tools in China.
Researchers have shown that over 90 percent of Chinese network
users are also Wechat users [24].

(iil) Malicious post/repost content: If an account post certain content
or malicious links multiple times, we will identify it as a malicious
account candidate.

(iv) Suspicious Username: We also employ suspicious username as
an important clue. For example, if a user has a highly random name,
we consider it as a candidate. Then combining other factors, we
can usually identify a fraudster confidently.
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With these criteria, we coded rules that can reach over 96%

accuracy in the sampled 1000 users and labeled the whole dataset
with the rules. The final dataset consists of 40235 users in total,
within which 3283 users are identified as malicious and 36952 users
are identified as benign.
Early-Stage Detection. We manually modify the dataset in order
to fit our task. We divide the dataset based on the percentage of
user’s posts to recreate the temporal evolvement of the graph. For
example, a 10% graph is to select the first 10% posts of each user.
Table 1 briefly summarizes the statistics of the divided graphs.

Table 1: Graph Statistics (Total # of Users: 40235)

Cut Percentage | Total Posts Total Edges
20 3126 45024
40 3163 51784
60 3218 59020
80 3250 66866
100 3288 75285

5.1.2  Baselines.

We compare the improvement of our ALFRAD framework over the
following fraud detection methods without graph augmentation:
e FRAUDAR [9]: An unsupervised fraud detection method with
graph mining that aims to address the issue of camouflage.

e LoCKINFER [11]: An unsupervised fraud detection method that
uses the lockstep pattern of fraudsters as a clue for detection.

® GCN [13]: An semi-supervised graph neural network. The neural
structure has been empirically demonstrated to be useful in the
area of fraudster detection [28].

o GRAPHSAGE [6]: An inductive graph neural network model that
can also be used on semi-supervised node classification talk.

5.2 Experiment Results

Table 2 summarizes the performance of ALFRAD over the base-
line methods. We use average precision (AP) and area under ROC
curve (AUC) as our evaluation metric. As we can clearly see, our
proposed ALFRAD framework is able to significantly improve all
the baseline methods. Both graph-mining based methods and su-
pervised graph learning methods are improved. Specifically, AL-
FRAD improves 1.1%(FRAUDAR), 6.0%(LocKINFER), 1.2%(GCN) and
1.4%(GrRAPHSAGE) on average. We observe that GNN-Based meth-
ods perform better than other fraudster detection methods in gen-
eral for the ablility of graph machine learning models to learn both
the topological structure as well as node embedded representations.

Figure 2 presents the results in line plots for clearer analysis.
We can observe that in general, ALFRAD is able to accomplish the
early-stage fraudster detection task as we defined in section 3. Par-
ticularly, for FRAUDAR, we achieve roughly the same performance
in the 50% graph with ALFRAD as in the 70% graph without Ar-
FRAD; for LOCKINFER, since the performance without ALFRAD is not
monotonically increasing, we cannot draw a comparative conclu-
sion; for GCN, ALFRAD achieves the same level of performance in
10% graph as the baseline GCN in the 50% graph; similarly, despite
some irregular behavior in larger graphs, GRAPHSAGE achieves
the same level of performance in 20% graph with ALFRAD as in 80%
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Table 2: ALFRAD performance across different methods and different amount of data.

FRAUDAR LocKINFER GCN GRAPHSAGE
Graph Original +ALFRAD Original +ALFRAD Original +ALFRAD Original +ALFRAD
Percentage | AUC AP AUC AP | AUC AP AUC AP |AUC AP AUC AP | AUC AP AUC AP
10 | 516 139 520 143 | 537 85 57.0 95| 777 329 787 333 | 794 348 810 37.7
20 | 538 161 543 169 | 566 88 59.8 104 | 770 316 79.2 33.1| 795 359 810 36.2
30 | 546 162 553 17.2| 592 99 604 123 | 771 323 805 359 | 798 375 817 373
40 | 560 174 571 185 | 547 94 613 124 | 774 329 793 369 | 790 342 829 40.1
50 | 571 184 582 19.2| 555 103 613 124 | 782 338 79.8 381 | 814 407 810 380
60 | 571 184 57.6 19.2| 541 100 62.6 17.3| 791 352 80.1 385 | 812 408 824 412
70 | 581 190 588 154 554 100 616 152 | 790 370 79.9 37.7| 805 39.0 821 365
80 | 592 189 603 20.2| 559 9.9 617 129 | 794 374 792 342 | 821 417 812 331
9 | 595 194 603 20.2| 561 98 623 123 | 797 394 80.0 39.1| 812 395 823 403
100 | 604 200 612 213 | 564 104 645 13.7 | 799 402 80.9 394 | 814 393 84.0 415
—— Fraudar 64 oo ) o
21 — Fraudar+Alfrad o / .
79.5 // g
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Figure 2: Performance measued in AUC change as graph size increases
. and oscillates around a value as more iteration continues. We can
oar I observe a more smooth line for GCN than for LOCKINFER, which
o0 e we think is because GCN’s capability of learning low-dimension
O 059 2
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Figure 3: Performance measured in AUC change as iteration
continues

without ALFRAD. Although for methods like LOCKINFER, the base-
line is not monotonically increasing, it is also worth pointing out
that for all of the baseline fraudster detection methods, we are able
to observe substantial improvements in absolute performance on
average, which are evidence for ALFRAD’s powerful ability to model
the evolution of the graph structure and user-item interactions.

Iteration Convergence. In figure 3, we randomly select two graphs
and plot the evolution of the ALFRAD with LocKINFER and GCN (one
unsupervised graph-mining method and one semi-supervised ma-
chine learning method). The first is the 8% graph and the second is
the 4% graph. Qualitatively, they generally have the same behavior:
the performance quickly increases in the first couple of iterations,

node representations, which are also used in the fraudster detection
module. In contrast, the graph-mining based methods like LockIN-
FER relies more on the graph topological structure and do not learn
any node representations, making the improvement less stable. But
still, it is largely consistent with our original supposition that the
iterative process will reach a steady state as more iteration happens,
demonstrating the mutually beneficial relationship between the
two main tasks - fraud detection and behavior forecasting.

6 CONCLUSION

In this work, we propose a novel early-stage fraud detection frame-
work ALFRAD that consistently improve the existing fraudster de-
tection methods in the task of early-stage detection when graph is
temporally incomplete. In summary, our work manages to model
both the node representation and graph topology evolution through
behaviour modelling. The experiment results based on the real
world dataset demonstrates the effectiveness of ALFRAD on the task
of early-stage fraud detection.
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