
Non-IID Graph Neural Networks
Yiqi Wang∗

Michigan State University
wangy206@msu.edu

Yao Ma∗
Michigan State University

mayao4@msu.edu

Charu Aggarwal
IBM T. J. Watson Research Center

charu@us.ibm.com

Jiliang Tang
Michigan State University

tangjili@msu.edu

ABSTRACT
Recently Graph Neural Networks (GNNs) have greatly advanced the
task of graph classification. When building a GNN model for graph
classification, the graphs in the training set are often assumed to be
identically distributed. However, these graphs could have dramati-
cally distinct structures, which indicates that these graphs could be
non-identically distributed. Therefore, in this paper, we aim to de-
velop graph neural networks for graphs that are assumed to be not
non-identically distributed. Specifically, we propose a general non-
IID graph neural network framework, i.e., Non-IID-GNN. Given a
graph, Non-IID-GNN can adapt any existing graph neural network
model to generate a sample-specific model for this graph. Compre-
hensive experiments on various graph classification benchmarks
demonstrate the effectiveness of the proposed framework. We will
release the implementation of the proposed framework upon the
acceptance of the paper.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
KEYWORDS
graph classification, graph neural networks, non-identically dis-
tributed

ACM Reference Format:
Yiqi Wang, Yao Ma, Charu Aggarwal, and Jiliang Tang. 2018. Non-IID Graph
Neural Networks. In Woodstock ’18: ACM Symposium on Neural Gaze Detec-
tion, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Graphs are natural representations for many real-world data such
as social networks [8, 10, 21, 22], biological networks [1, 4, 16, 18]
and chemical molecules [2, 5, 7]. A crucial step to perform down-
stream tasks on graph data is to learn better representations. Deep

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

neural networks have demonstrated great capabilities in represen-
tation learning for Euclidean data and thus have advanced numer-
ous fields including speech recognition [13], computer vision [9]
and natural language processing [3]. However, they cannot be di-
rectly applied to graph data due to its complex topological structure.
Recently, Graph Neural Networks (GNNs) have generalized deep
neural networks to graph data that typically perform transforming,
propagating and aggregating node features across the graph. They
have boosted the performance of many graph related tasks such
as node classification [8, 10], link prediction [6, 17, 25] and graph
classification [11, 23]. In this work, we aim to advance Graph Neural
Networks for graph classification.

In graph classification, each graph is treated as a data sample and
the goal is to train a classification model on a set of training graphs
that can predict the label for an unlabeled graph by leveraging its
associated node features and graph structure. There are numerous
real-world applications for graph classification. For example, it can
be used to infer whether a protein functions as an enzyme or not
where proteins are denoted as graphs [4]; and it can be applied
to forecast Alzheimer’s disease progression in which individual
brains are represented as graphs [19]. In reality, graphs in the same
training set can present distinct structural information. Figure 1a
demonstrates the distribution of the number of nodes for protein
graphs in the D&D dataset [4] where the number of nodes varies
dramatically from 30 to 5, 748. We further illustrate two graphs
from D&D in Figures 1b and 1c, respectively. These two graphs
present very different structural information such as the number of
edges, density and diameters. The above investigations indicate that
graphs in the same training set could follow different distributions.
In other words, they may be non-identically distributed. In fact,
this observation is consistent with existing work. For example, it
is evident in [20] that due to differences in individual brains, the
distribution of the brain data can vary remarkably across individu-
als. It naturally raises the question – whether we should treat these
training graphs differently? To investigate this question, we divide
graphs from D&D into two groups based on the number of nodes
– one for graphs with a small number of nodes and the other for
graphs with a large number of nodes. Then, we split each group
into a training set and a test set. We train two GCN models1 [10]
based on two training sets, separately, and test their performance
on the two test sets. The results are shown in the Figure 1d. The
GNN model achieves much better performance on the test from the

1The GCN model was originally designed for semi-supervised node classification,
we include a max-pooling layer to generate graph-level representation for graph
classification.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY

(a) Node size distribution (b) A graph with 31 nodes (c) A graph with 302 nodes (d) Classification accuracy

Figure 1: An Illustrative Example of Varied Structural Information and its Impact on the Performance of Graph Neural Net-
work based Graph Classification.

same group that suggests that efforts are desired to consider the
difference.

In this paper, we propose to design graph neural networks for
graphs that are assumed to be non-identically distributed. In partic-
ular, we target on addressing two challenges – (a) how to capture
the distributions of graphs that are often not available; and (b) how
to integrate them to build graph neural networks for graph classifi-
cation. To tackle these two challenges, we propose a novel graph
neural network framework, Non-IID-GNN, for graph classification,
which can learn graph-level representations for non-identically dis-
tributed graphs. We design comprehensive experiments on numer-
ous graph datasets from various domains to verify the effectiveness
of the proposed framework.

2 THE PROPOSED FRAMEWORK
The majority of traditional graph neural networks assume that
graphs in the same training data are identically distributed and
thus they train a unified GNN model for all graphs. In this section,
we introduce the proposed framework Non-IID-GNN that has been
designed for graphs assumed to be non-identically distributed.

2.1 The Overall Design
In this work, graphs are assumed to be non-identically distributed.
Thus, we are desired to build distinct GNN models for graphs with
different distributions. To achieve this goal, we face tremendous
challenges. First, we have no explicit knowledge about the underly-
ing distributions of graphs. Second, if we separately train different
models for graphs with different distributions, we have to split the
training graphs for each model; as a consequence, the training data
for each model could be very limited. For example, in the extreme
case when one graph has a unique distribution, we only have one
training sample for the corresponding model. Third, even if we
can well train distinct GNN models for different graphs, during the
test stage, for an unlabelled graph, which trained model we should
adopt to make the prediction?

In this work, we propose a Non-IID graph neural network frame-
work, i.e., Non-IID-GNN, which can tackle the aforementioned
challenges simultaneously. An overview about the architecture of
Non-IID-GNN is demonstrated in Figure 2. The basic idea of Non-
IID-GNN is – it approximates the distribution information of a
graph sample 𝑔𝑖 via an adaptor network on its structural informa-
tion, which serves as the adaptor parameters to adapt each GNN
block for 𝑔𝑖 and the adapted GNN model𝐺𝑁𝑁 𝑖 can be viewed as a

𝐴𝑑𝑎𝑝𝑡𝑜𝑟	𝑁𝑒𝑡𝑤𝑜𝑟𝑘-	(Ω-)
…

⋄

𝑦34

𝐴𝑑𝑎𝑝𝑡𝑜𝑟	𝑁𝑒𝑡𝑤𝑜𝑟𝑘5	(Ω5)

𝐴𝑑𝑎𝑝𝑡𝑜𝑟	𝑁𝑒𝑡𝑤𝑜𝑟𝑘6	(Ω6)

𝑎𝑑𝑎𝑝𝑡𝑜𝑟	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠-	(𝜙3-)

𝑎𝑑𝑎𝑝𝑡𝑜𝑟	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠5	(𝜙35)

𝑎𝑑𝑎𝑝𝑡𝑜𝑟	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠6	(𝜙36)

𝑔3

…

⋄

𝐺𝑁𝑁	𝐵𝑙𝑜𝑐𝑘-	(𝜃-)

⋄

𝐺𝑁𝑁	𝐵𝑙𝑜𝑐𝑘5	(𝜃5)

𝐺𝑁𝑁	𝐵𝑙𝑜𝑐𝑘6	(𝜃6)

Adaptor Networks Graph Neural Networks

𝐺𝑁𝑁3…

Figure 2: An overview of the proposed Non-IID graph neural
network.

specific graph classification model for 𝑔𝑖 . The underlying distribu-
tion of a given sample may have different influences on different
GNN blocks. Thus, for each GNN block, we introduce one adaptor
network. To solve the first challenge of no knowledge about the
underlying distribution, we develop an adaptor network to approx-
imate the distribution information of a graph through its observed
structural information. To tackle the second challenge, we learn a
set of shared models including adaptor networks and GNN blocks,
which are trained among all the graph samples, and thus preseving
the common knowledge from the whloe dataset. With this design,
the third challenge is addressed automatically. Given an unlabeled
graph 𝑔 𝑗 , the trained Non-IID-GNN will generate an adapted GNN
model 𝐺𝑁𝑁 𝑗 to predict its label. Next we will introduce details
about the adaptor network, the adapted graph neural network for
each graph, and the time complexity analysis.

2.2 The Adaptor Network
The goal of the adaptor network is to approximate the distribution
information of a given graph. In particular, we utilize the structural
information as input for the adaptor network to achieve this goal.
The intuition is – the structural differences of graphs are caused
by their different distributions; thus, we want to estimate the dis-
tribution from the observed structural information via a powerful
adaptor network. Graph neural networks often consist of several
subsequent filtering and pooling layers, which can be viewed as
different blocks of the graph neural network model. As mentioned
before, the distribution of a graph may influence each GNN block
differently. Thus, we build an adaptor network to generate adaptor
parameters for each block. We first extract a vector s𝑖 to denote the
structural information of a given graph 𝑔𝑖 . We will discuss more
details about s𝑖 in the experiment section. As shown in the left part

Non-IID Graph Neural Networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

of Figure 2, the adaptor networks take the structural information
s𝑖 as input and generate the adaptation parameters for each block.
Assuming that we have 𝐾 blocks in the graph neural network, we
have 𝐾 independent adaptor networks. Note that these adaptor
networks share the same input s𝑖 while their outputs can be dif-
ferent. Specifically, the adaptor network for the 𝑗-th block can be
expressed as follows:

𝝓𝑖 𝑗 = ℎ 𝑗 (𝒔𝑖 ;Ω 𝑗), 𝑗 = 1, . . . , 𝐾, (1)

where Ω 𝑗 denotes the parameters of the 𝑗-th adaptor network and
𝝓𝑖 𝑗 denotes its output, which will be used to adapt the 𝑗-th learning
block. The adaptor h𝑗 can be modeled using any functions. In this
work, we utilize feed-forward neural networks due to their strong
capability in approximating any functions. For convenience, we
summarize the process of the 𝐾 adaptor networks for 𝑔𝑖 as follows:

Φ𝑖 = 𝐻 (s𝑖 ;Ω𝐻), (2)

whereΦ𝑖 contains the generated adaptation parameters of the graph
𝑔𝑖 for all the GNN blocks and Ω𝐻 denotes the parameters of the 𝐾
adaptor networks.

2.3 The Adapted Graph Neural Network
Any existing graph neural network model can be adapted by the
Non-IID-GNN framework to generate sample-specific models based
on the sample’s structural information. Therefore, we first generally
introduce the GNN model for graph classification and describe
how it can be adapted based on a specific given sample. Then, we
illustrate how to adapt a specific GNN model.

2.3.1 A General Adapted Framework. A typical GNN framework
for graph classification usually contains two types of layers, i.e., the
filtering layer and the pooling layer. The filtering layer takes the
graph structure and node representations as input and generates re-
fined node representations as output. The pooling layer takes graph
structure and node representations as input to produce a coarsened
graph with a new graph and new node representations. A general
GNN framework for graph classification contains𝐾𝑝 pooling layers,
each of which follows 𝐾𝑓 stacking filtering layers. Hence, there are
𝐾 = 𝐾𝑝 ∗𝐾𝑓 learning blocks in this GNN framework. A graph-level
representation can be obtained from these layers that can be further
utilized to perform the prediction. Given a graph sample 𝑔 𝑗 , we
need to adapt each of the 𝐾 layers according to its distribution
information from the adaptor network. Via this process, we can
generate a GNN model 𝐺𝑁𝑁 𝑗 specific to 𝑔 𝑗 .

Without the loss of generality, when introducing a filtering layer
or a pooling layer, we use an adjacency matrix A ∈ R𝑛×𝑛 and node
representations X ∈ R𝑛×𝑑 to denote the input of these layers where
𝑛 is the number of nodes and 𝑑 is the dimension of node features.
Then, the operation of a filtering layer can be described as follows:

X𝑛𝑒𝑤 = 𝑓 (A,X;𝜃 𝑓) (3)

where 𝜃 𝑓 denotes the parameters in the filtering layer and X𝑛𝑒𝑤 ∈
R𝑛×𝑑𝑛𝑒𝑤 denotes the refined node representations with dimension
𝑑𝑛𝑒𝑤 generated by the filtering layer. Assuming 𝜙 𝑓 is the corre-
sponding adaptor parameters for this filtering layer, we adapt the
model parameter 𝜃 𝑓 of this filtering layer as follows:

𝜃𝑚
𝑓

= 𝜃 𝑓 ⋄𝜙 𝑓 , (4)

where 𝜃𝑚
𝑓
is the adapted model parameters that has the same di-

mension as the original model parameter 𝜃 𝑓 ; and ⋄ is the adaptation
operator. The adaption operator can have various designs, which
can be determined according to the specific GNN model. We will
provide the details of the adaptation operator when we introduce
concrete examples in the following subsections. Then, with the
adapted model parameters, we can define the adapted filtering
layer as follows:

X𝑛𝑒𝑤 = 𝑓 (A,X;𝜃 𝑓 ⋄𝜙 𝑓) . (5)

The process of a pooling layer can be described as follows:

A𝑛𝑒𝑤 ,X𝑛𝑒𝑤 = 𝑝 (A,X;𝜃𝑝), (6)

where 𝜃𝑝 denotes the parameters of the pooling layer, A𝑛𝑒𝑤 ∈
R𝑛𝑛𝑒𝑤×𝑛𝑛𝑒𝑤 with 𝑛𝑛𝑒𝑤 < 𝑛 is the adjacency matrix for the newly
generated coarsened graph and X𝑛𝑒𝑤 ∈ R𝑛𝑛𝑒𝑤×𝑑𝑛𝑒𝑤 is the learned
node representations for the coarsened graph. Similarly, we adapt
the model parameters of the pooling layer as follows:

𝜃𝑚𝑝 = 𝜃𝑝 ⋄𝜙𝑝 , (7)

which leads to the following adapted pooling layer:

A𝑛𝑒𝑤 ,X𝑛𝑒𝑤 = 𝑝 (A,X;𝜃𝑝 ⋄𝜙𝑝), (8)

where 𝜙𝑝 is the adaptation parameters generated by the adaptor
network for this pooling layer.

To summarize, given a graph sample 𝑔𝑖 , its specific adaptor pa-
rametersΦ𝑖 learned by the adaptor networks, and aGNN framework
𝐺𝑁𝑁 (·|Θ𝐺𝑁𝑁) with model parameters of all layers summarized in
Θ𝐺𝑁𝑁 , we can generate an adapted GNN specific for the sample 𝑔𝑖
as 𝐺𝑁𝑁𝑖 (·|Θ𝐺𝑁𝑁^Φ𝑖). Here, we summarize the layer-wise adap-
tion operation using Θ𝐺𝑁𝑁^Φ𝑖 . There are numerous GNN models
designed for graph classification [6, 11, 15, 24]. The proposed frame-
work can be applied to the majority of these models. In this work,
we focus on two representative GNN models including GCN [10]
and Diffpool [23]. We would like to leave the investigations of other
GNN models as one future work.

2.3.2 Adapted GCN: Non-IID-GCN. Graph Convolutional Network
(GCN) [10] is originally proposed for semi-supervised node classifi-
cation task. The filtering layer in GCN is defined as follows:

X𝑛𝑒𝑤 = 𝑓 (A,X;𝜃 𝑓) = 𝜎 (D̃− 1
2 ÃD̃− 1

2 XW), (9)

where Ã = A + I represents the adjacency matrix with self-loops,
D̃ =

∑
𝑗 Ã𝑖 𝑗 is the diagonal degree matrix of Ã and W ∈ R𝑑×𝑑𝑛𝑒𝑤

denotes the trainable weight matrix in filtering layer and 𝜎 (·) is a
nonlinear activation function. With the adaptation parameter 𝜙 𝑓
for the corresponding filtering layer, the adapted filtering layer can
be represented as follows:

X𝑛𝑒𝑤 = 𝑓 (A,X;𝜃 𝑓) = 𝜎 (D̃− 1
2 ÃD̃− 1

2 X(W ⋄𝜙 𝑓)) . (10)

Specifically, we adopt FiLM [14] as the adaption operator. In this
case, the dimension of the adaptor parameter is 2𝑑 , i.e., 𝜙 𝑓 ∈ R2𝑑 .
We split 𝜙 𝑓 into two parts 𝛾𝑓 ∈ R𝑑 and 𝛽𝑓 ∈ R𝑑 and then the
adaptation operation can be expressed as follows

W ⋄𝜙 𝑓 = (W ⊙ 𝑏𝑟 (𝛾𝑓 , 𝑑𝑛𝑒𝑤)) + 𝑏𝑟 (𝛽𝑓 , 𝑑𝑛𝑒𝑤), (11)

where 𝑏𝑟 (a, 𝑘) is a broadcasting function that repeats 𝑘 times for
the vector a; hence, 𝑏𝑟 (𝛾𝑓 , 𝑑𝑛𝑒𝑤) ∈ R𝑑×𝑑𝑛𝑒𝑤 and 𝑏𝑟 (𝛽𝑓 , 𝑑𝑛𝑒𝑤) ∈

Woodstock ’18, June 03–05, 2018, Woodstock, NY

R𝑑×𝑑𝑛𝑒𝑤 have the same shape as W and ⊙ denotes the element-wise
multiplication between two matrices.

To utilize GCN for graph classification, we introduce a node-wise
max pooling layer to generate graph representation from the node
representations as follows:

x𝐺 = 𝑝 (A,X;𝜃𝑝) =𝑚𝑎𝑥 (X), (12)

where x𝐺 ∈ R𝑑𝑛𝑒𝑤 denotes the graph-level representation and
𝑚𝑎𝑥 () takes the maximum over all the nodes. Note that the max-
pooing operation does not involve learable parameters and thus no
adaptation is needed for it. We refer to an adapted GCN framework
as Non-IID-GCN.

2.3.3 Adapted diffpool: Non-IID-Diffpool. Diffpool is a hierarchical
graph level representation learning method for graph classifica-
tion [23]. The filtering layer in Diffpool is the same as (9) and its
corresponding adapted version is shown in (10). Its pooling layer is
defined as follows:

S = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑎 (A,X;𝜃 𝑓𝑎)), (13)

X𝑛𝑒𝑤 = S𝑇 Z, (14)

A𝑛𝑒𝑤 = S𝑇 AS, (15)

where 𝑓𝑎 is a filtering layer embedded in the pooling layer, S ∈
R𝑛×𝑛𝑛𝑒𝑤 is a soft-assignment matrix, which softly assigns each
node into a supernode to generate a coarsened graph. Specifically,
the structure and the node representations for the coarsened graph
are generated by (15) and (14) respectively, where Z ∈ R𝑛×𝑑𝑛𝑒𝑤 is
the output of the filtering layers to the pooling layer. To adapt the
pooling layer, we only need to adapt (13), which follows the same
way as introduced in (10) as it is also a filtering layer. We refer to
the adapted diffpool model as Non-IID-Diffpool.

3 EXPERIMENT
In this section, we conducted comprehensive experiments to verify
the effectiveness of the proposed Non-IID-GNN framework.We first
describe the implementation details of the proposed framework.
Then, we evaluate the performance of the framework by comparing
original GCN and Diffpool with the adpated GCN, Diffpool models
by the Non-IID-GNN framework. Next, we analyse the importance
of different components in the adaptor operator. Finally we conduct
some case studies to further facilitate our understanding of the
proposed method.

3.1 Experimental Settings
We carried out graph classification tasks on eight datasets from
various domains with a variety of representative baselines. Next,
we describe the datasets and the baselines.

We choose eight graph datasets to evaluate the proposed frame-
work includingD&D [4],ENZ [18],PROT [1],NCI1 andNCI109 [18],
COLLAB,RE-BI andRE-5K [22].More details about these datasets
are demonstrated in Table 1.

In Section 2.3, we apply the proposed framework to two graph
neural networks: a basic graph convolutional network (GCN) [10]
and an advanced graph convolutional network with hierarchical
pooling, Diffpool [23]. The corresponding adapted versions are Non-
IID GCN and Non-IID Diffpool, respectively. Our evaluation purpose

Table 1: The statistics of eight datasets. #Graphs denotes
the number of graphs. #Class denotes the number of graph
classes. #Nodes(avg ± std) denotes the average and standard
deviation of the number of nodes among the graphs.

Datasets #Graphs #Class #Nodes(avg± std)
DD 1,178 2 284.3± 272.0
ENZ 600 6 32.6± 14.9
PROT 1,113 2 39.06± 45.8
NCI1 4,110 2 29.87± 13.5
NCI109 4,127 2 29.68± 13.6
COLLAB 5,000 3 74.49± 62.3
RE-BI 2,000 2 429.63± 554.0
RE-5K 4,999 5 508.52± 452.6

is if the proposed framework can boost the performance of existing
models by adapting them to their corresponding NonIID versions.Thus,
(1) to validate the effectiveness of the proposed model, we compare
Non-IID-GCN, Non-IID-Diffpool with GCN and Diffpool; and (2)
we do not choose models in [6, 11, 15, 24] as baselines since the
proposed framework can be applied to adapt them as well. Besides,
we also develop baseline methods , Multi-GCN and Multi-Diff. They
learn multiple graph convolutional networks for graph samples
with different structural information.Multi-GCN (or Multi-Diff)
consists of several GCN (or Diffpool) models trained from different
subsets of the training dataset. We first cluster data samples from
training set into different training subsets based on the graph struc-
tural information. Note that in this work, the structural information
s𝑖 of 𝑔𝑖 includes the number of nodes, the number of edges and the
graph density. Then we train different models from different train-
ing subsets. During the test phase, given a test graph sample, we
first assign it to one cluster with the smallest euclidean distance
between its graph structural information and the centroid of the
training cluster. Then, we choose the model trained on the cluster
for prediction. In this experiment, we set the number of clusters to
2 and 3, and denote the corresponding frameworks as Multi-GCN-2
(or Multi-Diff-2) and Multi-GCN-3 (or Multi-Diff-3).

3.2 Graph Classification Performance
Comparison

For each graph dataset, we randomly shuffle the dataset and then
split 90% of the data into the training set and the remaining 10% as
test set. We train all the models on the training set and evaluate
their performance on the test set with accuracy as the measure. We
repeat this process for 10 times and report the average performance.
The GCN/Non-IID-GCN model consists of 3 filtering layers and
a single max-poling layer; the hidden dimension of each filtering
layer is 20; and ReLU [12] activation is applied after each filtering
layer. For Diffpool/Non-IID-Diffpool, we follow the setting of the
original paper [23] with 𝐾𝑝 = 2, 𝐾𝑓 = 3 and the dimension of
hidden filtering layer 20. We adopt fully-connected networks to
implement the adaptor networks in the Non-IID-GNN frameworks.
Its input dimension is the same as the dimension of the graph
structural information.

Non-IID Graph Neural Networks Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 2: Comparisons of graph classification performance of in terms of accuracy.

Methods Datasets
DD ENZ PROT NCI1 NCI109 COLLAB RE-BI RE-5K

GCN 0.7716 0.5176 0.7662 0.7715 0.7574 0.6986 0.8189 0.5039
Diffpool 0.7823 0.5771 0.7894 0.8017 0.7718 0.704 0.8972 0.5646

Multi-GCN-2 0.7435 0.4521 0.7950 0.7743 0.7515 0.699 0.7938 0.5088
Multi-GCN-3 0.7435 0.4604 0.7962 0.7749 0.7555 0.6815 0.8888 0.470
Multi-Diff-2 0.7672 0.5292 0.8001 0.7948 0.7797 0.7168 0.8736 0.5385
Multi-Diff-3 0.7716 0.4896 0.8255 0.7908 0.7797 0.7178 0.8896 0.5312
Non-IID-GCN 0.7931 0.5592 0.7788 0.7877 0.7705 0.7316 0.9039 0.5293

Non-IID-Diffpool 0.7856 0.5854 0.7939 0.7932 0.7755 0.738 0.9292 0.5541

Table 3: Ablation Study

Methods Datasets
DD ENZ PROT NCI1 NCI109 COLLAB RE-BI RE-5K

GCN 0.7716 0.5176 0.7662 0.7715 0.7574 0.6986 0.8189 0.5039
Non-IID-GCN𝛾 0.781 0.5225 0.7761 0.779 0.7596 0.7084 0.8517 0.5173
Non-IID-GCN𝛽 0.7797 0.54 0.7793 0.7877 0.7714 0.7116 0.8878 0.5188
Non-IID-GCN 0.7931 0.5592 0.7788 0.7878 0.7705 0.7316 0.9039 0.5293

Table 4: Adaptability Study

Datasets Methods
Non-IID-Diffpool Diffpool Non-IID-GCN GCN

ENZ 0.2564 0.2222 0.2222 0.2051
RE-BI 0.7855 0.5265 0.7019 0.5042

The results are shown in Table 2. We notice that Multi-GCN and
Multi-Diff frameworks sometimes can obtain comparable perfor-
mance with their original versions. This observation suggests that
training graphs should be considered differently. However, most
of the time, Non-IID-GCN and Non-IID-Diffpool outperform the
correspondingMulti-GCN andMulti-Diff frameworks. Simply train-
ing different models for different graphs can lead to unsatisfactory
performance because less training data is available for each model.
We observe that the adapted GCN model, Non-IID-GCN, consis-
tently obtains better performance than the original GCN model. We
also find similar observations when comparing Non-IID-Diffpool
with the original Diffpool model. These observations demonstrate
that the sample-wise adaptation performed by the Non-IID-GNN
framework can boost the performance of GNN frameworks.

To further show the adaptability of the proposed framework
to new graphs with different distributions, we first order graphs
according to their sizes from small to big and then we choose first
80% as training and the remaining 20% as test. The purpose of this
setting is to simulate the distributions of graphs in the test are
different from these in the training set. The results on the ENZ
and RE-BI datasets are shown in Table 4. We can observe that the
advantage of the non-iid frameworks is much more significant
under this setting that demonstrates the ability to adapt to new
graphs.

3.3 Ablation Study
In this subsection, we investigate the effectiveness of different com-
ponents in the adaptor operator in Equation (11) used in our model.
Specifically, we want to investigate whether 𝛾𝑓 and 𝛽𝑓 play im-
portant roles in the adaptor operator by defining the variants of
Non-IID-GCN –Non-IID-GCN𝛾 : It is a variant of the adaptor oper-
ator with only element-wise multiplication operation where instead
of (11), the adaptation process is now expressed as: W⋄𝜙 𝑓 = (W⊙
𝑏𝑟 (𝛾𝑓 , 𝑑𝑛𝑒𝑤)); and Non-IID-GCN𝛽 : It is a variant of the adaptor
operator with only element-wise addition operation where instead
of (11), the adaptation process is now: W ⋄𝜙 𝑓 = W + 𝑏𝑟 (𝛽𝑓 , 𝑑𝑛𝑒𝑤).

Following the previous experimental setting, we compared Non-
IID-GCN with its variants. The results are presented in Table 3.
We observe that both Non-IID-GCN𝛾 and Non-IID-GCN𝛽 can
outperform the original GCN model. It indicates that both terms
with 𝛾 and 𝛽 are effective for the adaptation and utilizing either
one of them can already adapt the original model in a reasonable
manner. We also note that the Non-IID-GCN model outperforms
bothNon-IID-GCN𝛾 andNon-IID-GCN𝛽 on most of the datasets.
It demonstrates that the adaption effects of the term with 𝛾 and 𝛽
are complementary to each other and combing them together can
further enhance the performance.

4 CONCLUSION
In this paper, we propose a general graph neural network frame-
work, Non-IID-GNN, to deal with graphs that are non-identically
distributed. Given a graph sample, the Non-IID-GNN framework is
able to approximate its underlying distribution information from
its structural information, the Non-IID-GNN framework can then
adapt any existing GNN-based graph classification model to gener-
ate a specific model for this sample, which is then utilized to predict
the label of this sample. Comprehensive experiments demonstrated
that the Non-IID-GNN framework can effectively adapt both flat

Woodstock ’18, June 03–05, 2018, Woodstock, NY

GNN model and hierarchical GNN model to enhance their per-
formance. An interesting future direction is to better infer the
underlying distribution given a graph sample. Instead of utilizing
hand-engineered graph properties to approximate the underlying
distribution information of a given sample, we can design more
sophisticated algorithm to achieve this goal.

5 ACKNOWLEGEMENTS
This work is supported by the National Science Foundation (NSF)
under grant numbers IIS-1714741, IIS-1715940, IIS-1845081, IIS-
1907704, IIS-1928278 and CNS-1815636.

REFERENCES
[1] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,

Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph
kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[2] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent vari-
able models for structured data. In International conference on machine learning.
2702–2711.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[4] Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330, 4 (2003),
771–783.

[5] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In Advances in neural
information processing systems. 2224–2232.

[6] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. arXiv preprint
arXiv:1905.05178 (2019).

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
1263–1272.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[11] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. 2019. Graph convo-
lutional networks with eigenpooling. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 723–731.

[12] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[13] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled
Shaalan. 2019. Speech recognition using deep neural networks: A systematic
review. IEEE Access 7 (2019), 19143–19165.

[14] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. Film: Visual reasoning with a general conditioning layer. In
Thirty-Second AAAI Conference on Artificial Intelligence.

[15] Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. 2019. ASAP: Adap-
tive Structure Aware Pooling for Learning Hierarchical Graph Representations.
arXiv preprint arXiv:1911.07979 (2019).

[16] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt,
Gregor Huhn, and Dietmar Schomburg. 2004. BRENDA, the enzyme database:
updates and major new developments. Nucleic acids research 32, suppl_1 (2004),
D431–D433.

[17] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela,
Alexandre Tkatchenko, and Klaus-Robert Müller. 2017. Schnet: A continuous-
filter convolutional neural network for modeling quantum interactions. In Ad-
vances in neural information processing systems. 991–1001.

[18] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[19] Tzu-An Song, Samadrita Roy Chowdhury, Fan Yang, Heidi Jacobs, Georges
El Fakhri, Quanzheng Li, Keith Johnson, and Joyita Dutta. 2019. Graph Convolu-
tional Neural Networks For Alzheimer’s Disease Classification. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 414–417.

[20] Robert E Tillman. 2009. Structure learning with independent non-identically
distributed data. In Proceedings of the 26th Annual International Conference on
Machine Learning. 1041–1048.

[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[22] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1365–1374.

[23] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Advances in neural information processing systems. 4800–4810.

[24] Hao Yuan and Shuiwang Ji. 2020. StructPool: Structured Graph Pooling via Con-
ditional Random Fields. In International Conference on Learning Representations.
https://openreview.net/forum?id=BJxg_hVtwH

[25] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang,
Martin Ester, and Can Wang. 2018. ANRL: Attributed Network Representation
Learning via Deep Neural Networks.. In IJCAI, Vol. 18. 3155–3161.

https://openreview.net/forum?id=BJxg_hVtwH

	Abstract
	1 Introduction
	2 The Proposed Framework
	2.1 The Overall Design
	2.2 The Adaptor Network
	2.3 The Adapted Graph Neural Network

	3 Experiment
	3.1 Experimental Settings
	3.2 Graph Classification Performance Comparison
	3.3 Ablation Study

	4 Conclusion
	5 Acknowlegements
	References

