role2vec: Role-based Network Embeddings
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Representation Learning in Graphs

= Goal: Learn representation (features) for a set of graph
elements (nodes, edges, etc.)

(" )
Given G = (V, FE)

Learn a function f : V — R
- W,

= Key intuition: Map the graph elements (e.g., nodes) to the
d-dimension space

= Use the features for any downstream prediction task

Many examples: deepWalk, node2vec, GCN ... etc



Two Complimentary Notions in Graphs:
Proximity vs. Structural Similarity




Most Existing Work Focus on Modeling Graph Proximity
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No guarantee that nearby vertices are structurally similar

e.g., Deepwalk, GraRep, node2vec, Line, etc.



Communities and Roles
Roles are sets of nodes that are Input

more structurally similar to nodes
inside the set than outside

—> Based on structural similarity

Graph Clustering

Communities are sets of nodes
with more connections inside the

set than outside. Roles Communities

—> Based on proximity, density @@



Roles and Communities are Complimentary

= Roles based on structural similarity

@ star/hub role
« Communities based on proximity, density @ clique role

@ peripheral role
(O bridge role

= Roles globally distributed

« Communities are local

= Roles generalize

« Communities do not generalize across graphs
(for graph transfer learning tasks)



Problem:
Learn Role-based Embeddings

Goal: Find d-dimensional embeddings of nodes that preserve
structural similarity

Based on structural properties of nodes + attributes (if any)

Properties warranted by approach:
* General & unifying framework

* Methods generalized via framework are
representationally more powerful

* Space-efficient



role2vec: Learning Role-based Graph Embeddings

Q Step 1: Mapping vertices to vertex-roles.
®:x = w

Q Step 2: Sample Feature-based/Attributed Random walks.

ﬂ feature-based/attributed walk of length L is a sequence of adjace%
vertex-roles

D(xy,)y-- -, P(Xy, ), (I)(XUH_l), o DXy, )

induced by a randomly chosen sequence of indices
(”Ut = O,l,...,L— 1)

Qenerated by a random walk of length L and a function ® j

QO Step 3: Model the conditional probability that relate each vertex-role to
the roles of its context.

Po(x.,)|00x)| = [ P@(x;) [0(x:)

JEC;



Generalize Existing Methods via Framework

= Embeddings can be learned using basic Skip-gram model

= Other existing or future RW-based embedding methods
can be easily generalized via the proposed framework

Existing/future
RW-based method

Collect [ use attributed
random walks

Examples: DeepWalk, node2vec, metapath2vec, struct2vec, and deep graph
models, e.g., GRAM



We use small subgraphs called motifs as structural features
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Prediction

Experimental setup: 10-fold cross-validation, repeated for 10

Average improvement in AUC of 16.5%

random trials, D=128, Predict link existence via Logistic Regression

Table 1: AUC scores for various methods using (a; + ;) / 2.
N2V=node2vec, DW=DeepWalk and S2V=struc2vec.

GRAPH R2V R2V-DW N2V DW LINE S2V
bn-cat 0.710 0.688 0.627 0.627 0.672  0.669
bn-rat-brain  0.748 0.731  0.716  0.716  0.691 0.729
bn-rat-cerebral 0.867 0.846 0813 0.81I 0.709  0.858
ca-CSphd 0.838 0.838 0.768 0.735 0.620 0.791
eco-fweb-baydry 0.681 0.656  0.655 0.627 0.660  0.623
la-radoslaw-email 0.867 0.847 0.756  0.745  0.769  0.857
soc-anybeat 0.961 0.960 0.854 0.848 0.850 0.883
soc-dolphins 0.656 0.597 0580 0498  0.551 0.590
fb-Yale4 0.793 0.793 0.742 0.728 0.763  0.758
web-EPA  0.926 0925 0.804 0.738 0.768  0.861




role2vec requires on average 850x less space

Space-Efficiency

Ty T3 Ty T 569])
g ])
29))

xz o« o o
I

Ty T3])

(1
(1
([
(I

Min baseline embedding size

Role2Vec

¢ Role2Vec
Role2Vec

® Role2Vec

SB-18uJ8]ul-|yo9]
L00cepIed-se-yoal
oba-sdiu-q}
PolEA-Q)
811l1qI8pUBA-Q)

Z luolsdulid-q}
LGdWedaJloN-q}
IpleAleH-q}

| LUMOIg-Q}
00]9-1{IM-00S
19]S191SWeyY-00s
sulydjop-20s
aIMiybug-oos
1eaqAue-00s
BIWSPEIR-00S

| 09sdIys-0s
giseseu-os
lamod-jul
L6AVYSN-{ul
|lewa-me|Sope.-el
1oambuew-099
AipAeq-qam}-008
BpLI0}}-008
sope|b1oN8-028
0102-digp-eo
19958}10-B0
yddeH-eo
0DID-BD
¢66S0pPI3-ED
pydso-eod
|eJgaJa9-1el-uq
ureig-jel-uq
e||npaw-Aj}-uq
180-Uuq
uewny-puboiq



Conclusion

* |ntroduced notion of feature-based/attributed walks

= Proposed a generic framework for learning role-based
embeddings based on this notion

= Learns universal functions that can generalize across
networks/graphs = Useful for inductive & graph-based
transfer learning

= role2vec achieves a mean gain in AUC of 16.5% while requiring
850x less space than existing methods
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Thank You!
Questions?

nesreen.k.ahmed(@intel.com
http://nesreenahmed.com
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