Deep Generative

Models for Graphs:
Methods & Applications

Joint work with Jiaxuan You, R. Ying, X. Ren, W. Hamilton, B. Liu, V. Pande

Jure Leskovec

Q) Quisiive

SSSSSSSS
IIIIIII

The Problem

= We want to generate realistic graphs

Given a large Generate a
real graph synthetic graph

= \What is a good model?

= How can we fit the model and
generate the graph using it”

Why is This Important”

Gives insight into the graph formation
Process

Anomaly detection — albnormal behavior,
evolution

Predictions — predicting future from the past
Simulations of novel graph structures

Graph completion — many graphs are partially
observed

“What if” scenarios

Graph Generation Tasks

Task 1: Realistic graph generation

= (Generate graphs that are similar to a
given set of graphs

Task 2: Goal-directed graph generation

= (Generate graphs that optimize given
objectives/constraints

= Drug molecule generation/optimization

Why is it Interesting”

Drug discovery
= Discover highly drug-like molecules

- ;%

drug likeness=0.94

Why is it Interesting”

Drug discovery

= Complete an existing molecule to
have a desired property

Q{O /\{é Complete Qé YQ

Improve
Solubility=-5.55 — Solubility=-1.78

Why is it Interesting”

Discovering novel structures
Grid Community

Train

GraphRNN

Jure Leskovec, Stanford University 7

Why is it Interesting”

Network Science
= Null models for realistic networks

Barabasi Albert(n=50, m=2) ~ /<7

NeuralNet X(n=50, p=3, g=5) ~

Why is it Hard?

= [arge and variable output space
= For n nodes we need to generate n? values
= (Graph size (nodes, edges) varies

= Non-unigue representations:
= n-node graph can be represented in n! ways

= Hard to compute/optimize objective
functions (e.g., reconstruction error)

= GraphVAE solves approx. graph matching, 0(n*)
= Complex dependencies:

= Edge formation has long-range
dependencies

GraphRNN: Generating
Realistic Graphs with Deep
Auto-regressive Models

Jiaxuan You Rex Ying Xiang Ren William Hamilton

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models.
J. You, R.Ying, X. Ren, W. Hamilton, J. Leskovec. ICML, 2018.

Data & Code: https://github.com/snap-stanford/GraphBRNN

Jure Leskovec, Stanford University

Graph Generative Model

= Given: Graphs from pg,:4(G)

= Goal:
= |_earn the distribution p;,04e1(G)
= Sample from poge1(G)

Pdata (G) | earn & Pmodel (G)

Graph Generative Model

Challenges for modeling p ,:,(G):

= \ariab

e graph size

= Nume
= Comp

'OuUS node orderings
lex node dependency

= Solution: Map graphs to a different

represen

and sam

ation that I1s easier to learn
nle from

Key Insight

Generating graphs via sequentially
adding nodes/edges

Benefits:

= Represents graphs with different sizes with
different sequence lengths

= Corresponds different node orderings to
different generation trajectories

= Captures complex dependencies between
nodes, e.9g., the triad closure property

Model Graphs as Sequences

Graph G with node ordering m can be uniquely mapped

iInto a sequence of node and edge additions S™

Graph G with .‘@ f‘g_ t4and 2",
onnect 4 an
node Ol’de”ng TT. 0 “Connect 4 and 3’)

S” IS a seq. of seq.!

Sppetas

Sn_(51, 2,

Sequence ST

GraphRNN: Two levels of RNN

= Goal: Model graph generation as a
sequence generation

= Need to model two processes:

= (Generate a state for a new node
(Node-level RNN)

= Generate edges for the new node based
on its state
(Edge-level RNN)

GraphRNN: Two RNNs

= Need to model two processes:

= (Generate a state for a new node
(Node-level RNN)

= (Generate edges for the new node based on
the node’s hidden state (Edge-level RNN)

Node-level RNN

Generate state for a new node

010 Edge-level RNN
Generate edges for

the new node (based
on the state of Node
RNN)

= 1= 1O

1
1
0
1

GraphRNN Architecture

n+1

p(S™) = [[p(STIST,....ST-1) Node-level RNN)
1=1

hi

ho

SOS—

{——
NNY [ens|-ebp3

wn
N3

s
=$—~W

» 0

53

1—1

hy
-

0 0
:1 >0
» 1 » 1

s

S 1

p(STISZ;) = |] p(ST;15T <5+ SZ0)

j=1

Sample + Edge-level Update

Node-level Update

Issue: [ractabillity

= Any node can connect to any prior node

= Too many steps for edge generation
* Need to generate full adjacency matrix
= Complex too-long edge dependencies

“Recipe” to generate the left graph:

o @ - Add node 1
.‘ - Add node 2
@ - Add node 3

@ @ - Connect 3with 1 and 2

- Add node 4

Random node ordering:
Node 5 may connect to any/all previous nodes

Solution: Tractabillity via BFS

= Breadth-First Search node ordering

“Recipe” to generate the left graph:

0 @ - Add node 1
@ - Add node 2

- Connect 2 with 1
@ @ - Add node 3

- Connect 3 with 1

BFS ordering - Addnode 4
- Connect 4 with 2 and 3

BFS node ordering: Node 5 will never connect to node 1
(only need memory of 2 “steps” rather than n — 1 steps)

= Benefits:

* Reduce possible node orderings
= Reduce steps for edge generation

kovec, Stanford University

Tractability via BFS

BFS reduces the number of steps
for edge generation

Without BFS ordering With BFS ordering
N=10 N=10
/
/
M=3
M=9 -
A A
4 /
7
Connectivity with Connectivity only with

All Previous nodes nodes in the BFS frontier

Quantitative Comparison

Task: Compare two sets of graphs

" " Q
e o e
; R How similar & e =
@ 5 = RSl . SN P A
y v VS B 5 e .
% o i . & ' T
’ > et = I ot
P .‘\,‘ » A ./'»';’—‘ ™ N - ¥
- T - N\ e . P
2 y PR Y Y ,53} ¢ S
¢ 2 y . oz o/ a >7 “ i - S
: L7 WAL S NS
R % e T o .
v

= Classical graph generative models
= Barabasi-Albert (B-A) [Barabasi&Albert, 1998]
= Erdos-Renyi model [Erdos&Renyi, 1959]

= Model with learnable parameters

= Kronecker graphs [Leskovec et al., 2010]
= Mixed-membership Stochastic Block model [Airoldi et al., 2008]

= Recent deep models (can’t scale beyond ~30 nodes)
= GraphVAE [M. Simonovsky, N. Komodakis et al., 2017]
= DeepGMG [Y. Li et al. 2017]

Jure Leskovec, Stanford University 21

https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model

Quantitative Comparison

Community (160,1945)

Ego (399,1071)

Grid (361,684)

Protein (500,1575)

Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit MMD score.
E-R 0.021 1243 0.049 0508 1288 0232 1011 0018 0900 0.145 1779 1135 Other DL
B-A 0.268 0.322 0.047 0275 0973 0.095 1860 O 0.720 1.401 1.706 0.920 methods
Kronecker 0.259 1.685 0.069 0.108 0975 0.052 1.074 0.008 0.080 0.084 0441 0.288
MMSB 0.166 159 0.054 0304 0245 0048 1881 0.131 1239 0236 0495 0775 Jon’t scale
GraphRNN-S 0.055 0.016 0.041 0.090 0.006 0.043 0.029 10> 0.011 0.057 0.102 0.037 to this data
GraphRNN 0.014 0.002 0.039 0.077 0316 0.030 10°° 0 107* 0.034 0935 0217
Community-small (20,83) Ego-small (18,69)
Degree Clustering Orbit Train NLL Test NLL Degree Clustering Orbit Train NLL Test NLL
GraphVAE 0.35 0.98 0.54 13.55 25.48 0.13 0.17 0.05 12.45 14.28
DeepGMG 0.22 0.95 040 106.09 112.19 0.04 0.10 0.02 21.17 22.40
GraphRNN-S 0.02 0.15 001 31.24 35.94 0.002 0.05 0.0009 8.51 9.88
GraphRNN 0.03 0.03 0.01 28.95 35.10 0.0003 0.05 0.0009 9.05 10.61

GraphRNN achieves best performance:
= 80% improvement vs. traditional baselines
= 90% improvement vs. DL baselines

Jure Leskovec, Stanford University

22

tative Comparison

Qual

Grid

Sururexy,

NNydein

saurjaseq

(B-A)

(MMSB)

Jure Leskovec, Stanford University

(Kronecker)

23

Qualitative Comparison

Ego network

GraphRNN

Baselines

(Kronecker)

Jure Leskovec, Stanford University

24

Qualitative Comparison

Training

GraphRNN

Baselines

(Kronecker) (MMSB) (B-A)

Jure Leskovec, Stanford University

25

Qualitative Comparison

Community

Can we do more than

imitating given graphs?

2 <X G
m o * v i

- ‘ \l v
(Kronecker) (MMSB) (B-A)
Jure Leskovec, Stanford University

Graph Convolutional Policy
Network: Goal-Directed
Graph Generation

Jiaxuan You Bowen Liu Rex Ying Vijay Pande

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.
J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. NeurlPS, 2018.

Data & code: https://qithub.com/bowenliu16/rl graph generation

Jure Leskovec, Stanford University

Motivation

Question: Can we learn a model that
can generate valid and realistic
molecules with high value of a given
chemical property”

output | _ that optimizes

2 0g

¢ Property

e.g., drug_likeness=0.95

Goal-Directed Graph Gen.

Generating graphs that:

= Optimize a given objective (High scores)
= e.g., drug-likeness (black box)

= Obey underlying rules (Valid)
" e.g., chemical valency

= Are learned from examples (Realistic)
" e.9., Imitating a molecule graph dataset

Graph Conv. Policy Network

Graph Convolutional Policy Network
combines graph representation + RL.

= (Graph representation captures complex
structural information, and enables validity
check in each state transition (Valid)

= Reinforcement learning optimizes
iIntermediate/final rewards (High scores)

= Adversarial training imitates examples in
given datasets (Realistic)

Jure Leskovec. Stanford University

Overview of GCPN

(((((((((

O TP Oy o 2 e B e o T
Loen BB B & 0—©
- (a) Insert nodes/scaffolds
= (b) Compute state via GCN
= (C) Sample next action
= (d) Take action (check chemical validity)
"

e,) Compute reward

How Do We Set the Reward?

= | earn to take valid action

= At each step, assign small positive reward
for valid action

= Optimize desired properties

= At the end, assign positive reward for high
desired property

= (Generate realistic graphs

= At the end, adversarially train a GCN
discriminator, compute adversarial rewards
that encourage realistic molecule graphs

GCPN Architecture

Gradient _

Va“dlty _ Supervised

0.6 | Cross entropy loss Training

Generated
graph Gg4q
(O—®N

eg@? G/

(\
Graph G, VV)

sammmnd GCPN
'90,, Generated Score

A

7 graph G
b/sfo _ [0.1] Step reward
? 1 | Final reward
RL
Gradient Realistic Training

455 Adversarial reward

Policy gradient

GCPN: Tasks

= Property optimization

= Generate molecules with high specified
property score

= Property targeting

= Generate molecules whose specified
property score falls within given range

= Constrained property optimization

= Edit a given molecule for a few steps to
achieve highge(msvega%iﬂed property score

Data and Baselines

= /INC250k dataset

= 250,000 drug like molecules whose
Maximum atom number is 38

= Baselines:

= ORGAN: String representation + RL
[Guimaraes et al., 2017]

= JI-VAE: VAE-based vector representation
+ Bayesian optimization [Jin et al., 2018]

Quantitative Results

Property optimization
= +60% higher property scores

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Penalized logP QED
Method
Ist 2nd 3rd Validity Ist 2nd 3rd Validity
ZINC 4.52 430 4.23 100.0% 0.948 0.948 0.948 100.0%
ORGAN 3.63 349 344 04% 0.896 0.824 0.820 2.2%
JT-VAE 530 4.93 449 100.0% 0.925 0.911 0.910 100.0%
GCPN 798 785 7.80 100.0% 0948 0947 0946 100.0%

logP: octanol-water partition coef., indicates solubility
QED: indicator of drug-likeness

Jure Les

kovec, Stanford University

Quantitative Results

Property targeting

= /X higher success rate than JI-VAE,
10% less diversity

Table 2: Comparison of the effectiveness of property targeting task.
—2.5 <logP < -2 5 <logP <5.5 150 <MW <200 500 < MW < 550

Method

Success Diversity Success Diversity Success Diversity Success Diversity
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 —
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 — 0.2% 0.909 15.1% 0.759 0.1% 0.907

GCPN 85.5% 0.392 54.7 % 0.855 76.1% 0.921 74.1% 0.920

logP: octanol-water partition coef., indicates solubility
MW: molecular weight an indicator of drug-likeness
Diversity: avg. pairwise Tanimoto distance between Morgan fingerprints of molecules

Jure Leskovec, Stanford University 37

Quantitative Results

Constrained property optimization

= +180% higher scores than J1-VA

Table 3: Comparison of the performance in the constrained optimization task.

5 JT-VAE GCPN

Improvement Similarity =~ Success Improvement — Similarity Success
0.0 191+204 028+0.15 975% 4.20+1.28 0.32+0.12 100.0%
02 168+185 033+0.13 97.1% 4.12+1.19 0.34+0.11 100.0%
04 084+145 0.51+0.10 83.6% 249+1.30 0.47+0.08 100.0%
0.6 021+£0.71 0.69+0.06 46.4% 0.79+0.63 0.68+0.08 100.0%

ure Les|

kovec, Stanford University

38

Qualitative Results

Visualization of GCPN graphs:
Property optimization

DL Y | B

7.98 7.48 0.948 0.945
Y \/ A >-/ '_>
NI ‘21/{:)')%_‘%I)
N\
7.12 23.88* 0.944 0.941

(a) Penalized logP optimization (b) QED optimization

Qualitative Results

Visualization of GCPN graphs:
Constrained optimization

Starting structure Finished structure

gl Aeva

) _r’?)t\’\’\’\
8.32 ‘ 0.71

OJ“QAQ &ng ~©

-5.55 178

(c) Constrained optimization of penalized logP

Summary of the talk

Complex graphs can be successfully
generated via sequential generation

Each step a decision is made based on
hidden state, which can be

= Explicit: intermediate generated graphs, decode
with GCN

= |mplicit: vector representation, decode with RNN
Possible tasks:

= |mitating a set of given graphs

= Optimizing graphs towards given goals

Future Work

= (Generating graphs in other domains
= 3D shapes, social networks, etc.

= Simplify the optimization method:
= Using MCMC instead of RL

= Scale up to large graphs:

Hierarchical action space, allowing high-
evel action like adding a structure at a

tme

Industry Partnerships m

M \‘V/ twlk%@f @ - L2
HUAWEI | ‘

HYURNDAI L)
/t@ ””EI'VE i T’ﬁ!k'.‘)..!?ié
@ Bosch & ddcomo spinn3r

Invented for life

~Jp.coM HITACHI

PhD Students

Claire Emma
Porter Ruiz Donnat Pierson

,\.. ‘ N ",]»_.‘ _.\ \ \ -
Camilo

Alexandra

Observe

Funding

Jiaxuan Bowen Mohit
You Liu Tiwari

Post-Doctoral Fellows

—

ZUCKERBERG
INITIATIVE

Dan Jurafsky, Linguistics, Stanford University

David Grusky, Sociology, Stanford University

‘ | Stephen Boyd, Electrical Engineering, Stanford University
Michele David Gleich, Computer Science, Purdue University

Baharan Marinka

Mirzasoleiman Zitnik Catasta VS Subrahmanian, Computer Science, University of Maryland

Sarah Kunz, Medicine, Harvard University
Russ Altman, Medicine, Stanford University I‘ ‘

Staff Eric Horvitz, Microsoft Research [])

Jon Kleinberg, Computer Science, Cornell University I
Hingwei Adrijan Rok Sendhill Mul!amat!‘nan, I.Economlcs, Harv?rd l.!nlversny STANFORD
Wang Bradaschia Sosic Scott Delp, Bioengineering, Stanford University INFOLAB

James Zou, Medicine, Stanford University

Jure Leskovec, Stanford University 43

References

Tutorial on Representation Learning on Networks at WWW 2018

Inductive Representation Learning on Large Graphs. W. Hamilton, et al., NeurlPS 2017.

Representation Learning on Graphs: Methods and Applications. W. Hamilton, et al. IEEE Data
Engineering Bulletin, 2017.

GraphBNN: Generating Realistic Graphs with Deep Auto-regressive Models. J. You, et al., ICML,
2018.

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, et al.,
NeurlPS 2018.

How Powerful are Graph Neural Networks? K. Xu, W. Hu, et al., ICLR 2019.
Data & Code:

= http://snap.stanford.edu/graphsage

= https://github.com/bowenliul16/rl_graph_generation
= https://github.com/williamleif/graphgembed

= https://github.com/snhap-stanford/GraphRNN

Jure Leskovec, Stanford University 44

http://snap.stanford.edu/proj/embeddings-www/
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://arxiv.org/pdf/1806.08804.pdf
https://arxiv.org/abs/1810.00826
http://snap.stanford.edu/graphsage
https://github.com/bowenliu16/rl_graph_generation
https://github.com/williamleif/graphqembed
https://github.com/snap-stanford/GraphRNN

