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The Problem

§ We want to generate realistic graphs

§ What is a good model?
§ How can we fit the model and 

generate the graph using it?

Given a large
real graph

Generate a 
synthetic graph
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Why is This Important?

§ Gives insight into the graph formation 
process

§ Anomaly detection – abnormal behavior, 
evolution

§ Predictions – predicting future from the past

§ Simulations of novel graph structures

§ Graph completion – many graphs are partially 
observed

§ “What if” scenarios
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Graph Generation Tasks

Task 1: Realistic graph generation
§ Generate graphs that are similar to a 

given set of graphs

Task 2: Goal-directed graph generation
§ Generate graphs that optimize given 

objectives/constraints
§ Drug molecule generation/optimization
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Why is it Interesting?

Drug discovery
§ Discover highly drug-like molecules
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drug_likeness=0.94



Why is it Interesting?

Drug discovery
§ Complete an existing molecule to 

have a desired property
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Solubility=-5.55 Solubility=-1.78

Complete

Improve
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Why is it Interesting?

Discovering novel structures
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Why is it Interesting?

Network Science
§ Null models for realistic networks
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Barabasi_Albert(n=50, m=2) ~

NeuralNet_X(n=50, p=3, q=5) ~



Why is it Hard?
§ Large and variable output space

§ For ! nodes we need to generate !" values
§ Graph size (nodes, edges) varies

§ Non-unique representations:
§ !-node graph can be represented in !! ways
§ Hard to compute/optimize objective 

functions (e.g., reconstruction error)
§ GraphVAE solves approx. graph matching, $(!&)

§ Complex dependencies:
§ Edge formation has long-range 

dependencies
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GraphRNN: Generating 
Realistic Graphs with Deep 

Auto-regressive Models

Jure Leskovec, Stanford University

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. 
J. You, R. Ying, X. Ren, W. Hamilton, J. Leskovec. ICML, 2018.
Data & Code: https://github.com/snap-stanford/GraphRNN 

Jiaxuan You Rex Ying Xiang Ren William Hamilton



Graph Generative Model

§ Given: Graphs from !"#$#(&)
§ Goal: 

§ Learn the distribution !()"*+(&)
§ Sample from !()"*+(&)
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!"#$#(&) !()"*+(&)Learn & 
Sample



Graph Generative Model

Challenges for modeling !"#$#(&):
§ Variable graph size

§ Numerous node orderings

§ Complex node dependency

§ Solution: Map graphs to a different 
representation that is easier to learn 
and sample from
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Key Insight

Generating graphs via sequentially 
adding nodes/edges
Benefits:

§ Represents graphs with different sizes with 
different sequence lengths

§ Corresponds different node orderings to 
different generation trajectories

§ Captures complex dependencies between 
nodes, e.g., the triad closure property
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Model Graphs as Sequences
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GraphRNN: Two levels of RNN

§ Goal: Model graph generation as a 
sequence generation

§ Need to model two processes:
§ Generate a state for a new node

(Node-level RNN)

§ Generate edges for the new node based 
on its state 
(Edge-level RNN)
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GraphRNN: Two RNNs

§ Need to model two processes:
§ Generate a state for a new node

(Node-level RNN)

§ Generate edges for the new node based on 
the node’s hidden state (Edge-level RNN)
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GraphRNN Architecture
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Issue: Tractability
§ Any node can connect to any prior node
§ Too many steps for edge generation

§ Need to generate full adjacency matrix
§ Complex too-long edge dependencies
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Random node ordering: 
Node 5 may connect to any/all previous nodes

How do we limit complexity of graph generation?

“Recipe” to generate the left graph:
- Add node 1
- Add node 2
- Add node 3
- Connect 3 with 1 and 2
- Add node 4
- …



Solution: Tractability via BFS

§ Breadth-First Search node ordering

§ Benefits:
§ Reduce possible node orderings

§ Reduce steps for edge generation
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BFS node ordering: Node 5 will never connect to node 1
(only need memory of 2 “steps” rather than ! − 1 steps)

“Recipe” to generate the left graph:
- Add node 1
- Add node 2
- Connect 2 with 1
- Add node 3
- Connect 3 with 1 
- Add node 4
- Connect 4 with 2 and 3



Tractability via BFS
BFS reduces the number of steps 
for edge generation
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Quantitative Comparison
Task: Compare two sets of graphs

§ Classical graph generative models
§ Barabasi-Albert (B-A) [Barabasi&Albert, 1998]
§ Erdos-Renyi model [Erdos&Renyi, 1959]

§ Model with learnable parameters
§ Kronecker graphs [Leskovec et al., 2010]
§ Mixed-membership Stochastic Block model [Airoldi et al., 2008]

§ Recent deep models (can’t scale beyond ~30 nodes)
§ GraphVAE [M. Simonovsky, N. Komodakis et al., 2017]
§ DeepGMG [Y. Li et al. 2017]
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How similar?

https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model


Quantitative Comparison

GraphRNN achieves best performance:
§ 80% improvement vs. traditional baselines
§ 90% improvement vs. DL baselines
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MMD score.
Other DL 
methods 
don’t scale 
to this data



Qualitative Comparison
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Qualitative Comparison
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Qualitative Comparison
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Qualitative Comparison
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Can we do more than 
imitating given graphs?
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Graph Convolutional Policy 
Network: Goal-Directed 

Graph Generation

Jure Leskovec, Stanford University

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. 
J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. NeurIPS, 2018.
Data & code: https://github.com/bowenliu16/rl_graph_generation

Jiaxuan You Rex Ying Vijay PandeBowen Liu



Motivation

Question: Can we learn a model that 
can generate valid and realistic
molecules with high value of a given 
chemical property?
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Model Property
output that optimizes

e.g., drug_likeness=0.95
Jure Leskovec, Stanford University



Goal-Directed Graph Gen.
Generating graphs that:
§ Optimize a given objective (High scores)

§ e.g., drug-likeness (black box)
§ Obey underlying rules (Valid)

§ e.g., chemical valency
§ Are learned from examples (Realistic)

§ e.g., Imitating a molecule graph dataset
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Graph Conv. Policy Network

Graph Convolutional Policy Network 
combines graph representation + RL:
§ Graph representation captures complex 

structural information, and enables validity 
check in each state transition (Valid)

§ Reinforcement learning optimizes 
intermediate/final rewards (High scores)

§ Adversarial training imitates examples in 
given datasets (Realistic)
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Overview of GCPN

§ (a) Insert nodes/scaffolds
§ (b) Compute state via GCN
§ (c) Sample next action
§ (d) Take action (check chemical validity)
§ (e, f) Compute reward
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How Do We Set the Reward?
§ Learn to take valid action

§ At each step, assign small positive reward 
for valid action

§ Optimize desired properties
§ At the end, assign positive reward for high 

desired property
§ Generate realistic graphs

§ At the end, adversarially train a GCN 
discriminator, compute adversarial rewards 
that encourage realistic molecule graphs
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GCPN Architecture
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GCPN: Tasks

§ Property optimization

§ Generate molecules with high specified 
property score

§ Property targeting
§ Generate molecules whose specified 

property score falls within given range

§ Constrained property optimization
§ Edit a given molecule for a few steps to 

achieve higher specified property score
Jure Leskovec, Stanford University 34



Data and Baselines

§ ZINC250k dataset
§ 250,000 drug like molecules whose 

maximum atom number is 38

§ Baselines:
§ ORGAN: String representation + RL 

[Guimaraes et al., 2017]

§ JT-VAE: VAE-based vector representation 
+ Bayesian optimization [Jin et al., 2018]

Jure Leskovec, Stanford University 35



Quantitative Results

Property optimization
§ +60% higher property scores
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logP: octanol-water partition coef., indicates solubility
QED: indicator of drug-likeness



Quantitative Results

Property targeting
§ 7x higher success rate than JT-VAE, 

10% less diversity
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logP: octanol-water partition coef., indicates solubility
MW: molecular weight an indicator of drug-likeness
Diversity: avg. pairwise Tanimoto distance between Morgan fingerprints of molecules



Quantitative Results

Constrained property optimization
§ +180% higher scores than JT-VAE
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Qualitative Results

Visualization of GCPN graphs: 
Property optimization
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Qualitative Results

Visualization of GCPN graphs: 
Constrained optimization
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Starting structure Finished structure



Summary of the talk
§ Complex graphs can be successfully 

generated via sequential generation
§ Each step a decision is made based on 

hidden state, which can be 
§ Explicit: intermediate generated graphs, decode 

with GCN
§ Implicit: vector representation, decode with RNN

§ Possible tasks:
§ Imitating a set of given graphs
§ Optimizing graphs towards given goals

Jure Leskovec, Stanford University 41



Future Work

§ Generating graphs in other domains
§ 3D shapes, social networks, etc.

§ Simplify the optimization method:
§ Using MCMC instead of RL

§ Scale up to large graphs:
§ Hierarchical action space, allowing high-

level action like adding a structure at a 
time

Jure Leskovec, Stanford University 42
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