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Graph Analysis

•Graphs are ubiquitous
• Social networks

• Proteins

• Chemical compounds

• Program dependence graph

• ...
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Typical Graph Functions
• Node level

• Similarity search
• Link prediction
• Classification
• Community detection
• Ranking

• Graph level
• Similarity search
• Classification
• Clustering 
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Neural Networks Have Reshaped Graph 
Analysis

•Node-level representation learning
• Shallow architecture: DeepWalk, LINE, 
Node2Vec, NetMF, …

• Deep architecture: SDNE, GCN, GraphSAGE …

•Graph-level representation learning
• GCN, GraphSAGE, Graph2Vec, Differential 
Pooling, GIN, … 
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More on Graph Convolutional Network (GCN)

•Kipf and Welling, ICLR’17

• A toy example of 2-layer GCN on a 4-node graph
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What Operators Are Needed for Graph 
Proximity Search?

• Consider graph-level similarity search

• Two types of graph-level operators will be helpful
• Graph similarity computation operator: 𝜙𝜙: 𝒢𝒢 × 𝒢𝒢 → 𝑅𝑅+

• Graph-level representation operator: 𝜙𝜙: 𝒢𝒢 → 𝑅𝑅d
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...
Query
Graph

Graph Database

...

Descending
Similarity

Q: Can existing operators solve the task? 
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Graph Edit Distance

•Measure the distance between two graphs

•NP-hard problem
• No currently available algorithm can reliably 
compute the exact GED within reasonable time 
between graphs with more than 16 nodes.
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Traditional Solution

•Combinatorial optimization approaches
• domain knowledge and heuristics; 

• difficult to design and implement
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𝑵𝑵𝟏𝟏 and 𝑵𝑵𝟐𝟐 refer to the node size of the two graphs



Existing Graph-Level Representation?

•Feature engineering
• E.g., Graphlets

•Neural network-based approach
• E.g., GCN, GraphSAGE, Graph2Vec, 
Differential Pooling, GAN, GIN, … 
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But why do they happen to be related to GED?



Our Goal: A Learnable Graph Similarity 
Operator 

•𝜙𝜙: 𝒢𝒢 × 𝒢𝒢 → 𝑅𝑅+

• Goal: 
• For a given pair of graphs 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑗𝑗
• Require: 𝜙𝜙 𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑗𝑗 ≈ 𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑗𝑗)

• In practice, we transform GED into similarity between 0 
and 1 using 1-1 mapping

• Properties of 𝜙𝜙
• Permutation-invariant: handle graph isomorphism
• Inductive: can apply to unseen graphs
• Learnable: flexible to different similarity metric
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Solution: SimGNN [Bai et al., WSDM’19]

•Strategy 1
• Learn a graph-level embedding that reflect the 
specified proximity

•Strategy 2
• Directly learn a score function based on two sets 
of node-level embedding vectors
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Strategy I: Operation on Graph-Level 
Representations

•How to get a proximity-aware graph-level 
embedding?
• Use learnable attention to get graph-level 
embedding

• Use learnable neural tensor network to compute 
proximity score

• Guided by proximity-based loss function
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Strategy II: Operation on Two Sets of Node-
Level Representations

•Challenges:
• Nodes are not ordered 

•Solution:
• Form node-node similarity matrix

• Extract histogram to represent overall distribution
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Putting Together

•The SimGNN architecture
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1. Attention-based graph-level embedding
2. Histogram features from pairwise node similarities



Check Properties of SimGNN

•Permutation-invariant

• Inductive

•Learnable
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Experiments
• Datasets

• Metric
• Effectiveness
• Efficiency

• Baselines
• Traditional GED computation methods
• Simple NN Graph operators
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Training Preparation
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...

1.00 0.71 0.53 0.48 0.41 0.10 ... 0.14

0.71 1.00 0.73 0.71 0.39 0.12 ... 0.15

0.53 0.73 1.00 0.88 0.45 0.23 ... 0.27

0.48 0.71 0.88 1.00 0.65 0.23 ... 0.28

0.41 0.39 0.45 0.65 1.00 0.81 ... 0.86

0.10 0.12 0.23 0.23 0.81 1.00 ... 0.91

... ... ... ... ... ... ... ...

0.14 0.15 0.27 0.28 0.86 0.91 ... 1.00

Graph Database

Training Validation Test



Effectiveness
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More accurate than most the existing approximate GED algorithms 
and simple NN methods.



Efficiency
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• Other NN approaches are with similar running time but less 
accurate than SimGNN. 

• Beam is better, but is much slower (log-scale). 



Case Studies
• Query on AIDS

• Query on LINUX
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Where do we put attention?

•AIDS Dataset
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Limitation of SimGNN

•Graph-Graph interaction modeling is 
oversimplified
• Histogram function in Strategy II provides a 
coarse summary

•Not a fully end-to-end framework
• Histogram function in Strategy II is not 
differentiable
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Can We Do Better? [Bai et al., NeurIPS’18 
Workshop]

•Directly use the original set of node vectors, 
and turn it into a set matching problem
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• Graph similarity → 
Image pattern 
recognition

• Similarity matrix 
encodes node alignment 
information.



Issues and Solutions to Similarity Matrix

•Not permutation-invariant
• Different similarity matrices under different node 
orders

• Solution: Fix a order using BFS starting from 
highest-degree node

•Graph pairs are with different sizes
• Solution: Padding zeros to get squared similarity 
matrix

•Different sizes over different graph pairs
• Solution: Resize via interpolation 
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Extend from one scale to multiple scales

•Compare two graphs at different scales

•Multiscale image regression problem
• Feed Similarity Matrices into CNN (or other NN 
architecture)
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Experiments

•Two Tasks
• GED (Graph Edit Distance)

• MCS (Maximum Common Subgraph)

•Metric
• Effectiveness

• Efficiency
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Summary of Baselines
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Effectiveness on GED and MCS
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GED Computation

MCS Computation



Running Time

•Similar to SimGNN
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Take Away Messages

• Node-Level Vs. Graph-Level operators
• Treat nodes as data points

• Treat graphs as data points

• Many graph tasks in addition to classification are 
waiting us to solve
• GED, MCS, graph alignment, subgraph matching, …

• Most of them are NP-hard problems

• Raw node-level info will provide more 
information in graph proximity computation
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Q & A
• Thanks to my collaborators:

• Yunsheng Bai, Ting Chen, Ziniu Hu, Wei Wang
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