

Jeep ntelligent Adaptive L Knowledg e Graph

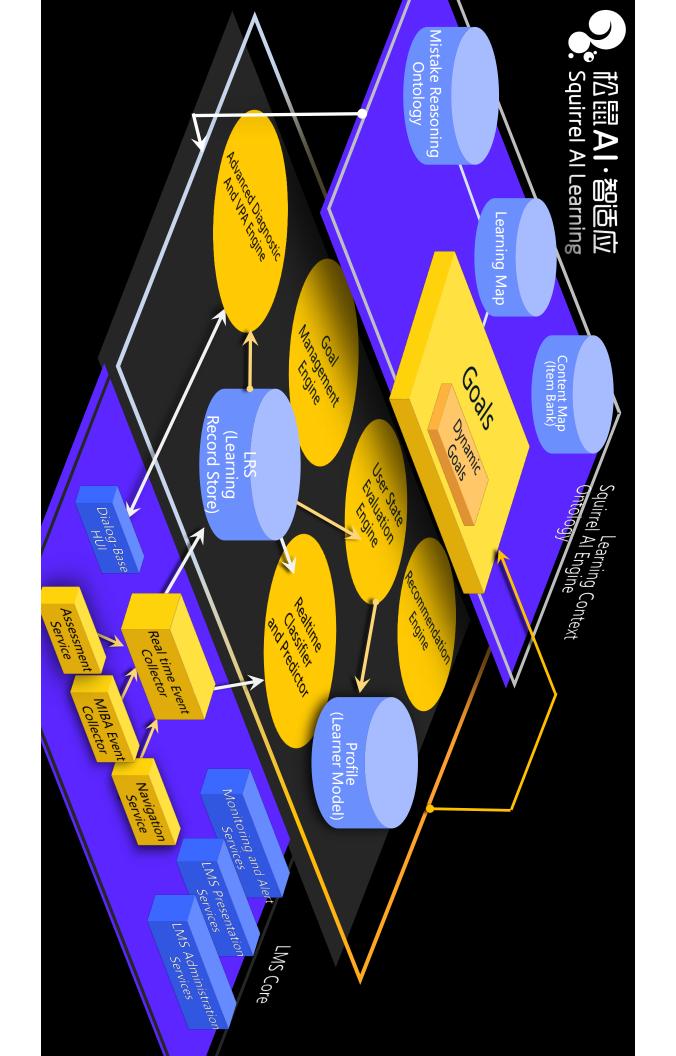
Wei Cui

Squirrel Al Learning

Copyright © SquirrelAl. All Rights Reserved.

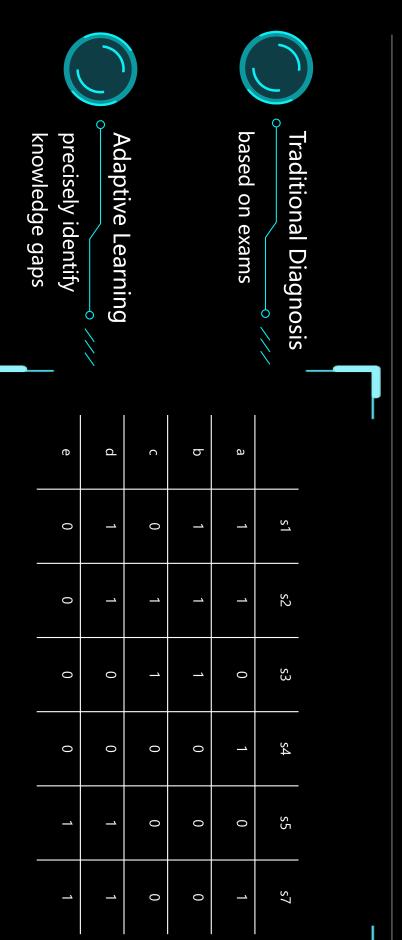
于*影 80%掌握

	•								
电荷与电荷间的相互作用	光的反射作图	光源	电阻的概念, 常见物体的电阻	电路的三种状态	电压的概念、单位及换算	光的折射作图	行程问题	功的简单计算 (二)	浮力的应用之轮 船问题
热机的分类及能 量转化	探究物质的吸热 能力的实验	物体的浮沉条件	液体压强的计算	利用浮沉条件 比较浮力大小	液体压强的产 生原因	阿基米德原理 的简单计算	古诗中的参照物	影响摩擦力 大小的因素	光的折射规律的 应用
探究光的反射规律	光在均匀介质中沿直线传播	影响电阻大小 的因素	电压表的测量对象	电路图和实物图的相互转化	电路构成及元件作用	原子结构	小孔成像	声音是由物体振动产生的	温度的概念
光的折射作图 (进阶多次折射)	浮力的应用 之潜水艇	利用浮沉条件來浮力	对阿基米德 原理的理解	电压的概念辨析	阿基米德原理(实验验证)	凸透镜成像计算	平面镜成像作图	凸透镜成像作图	平面镜成像的特点
增大和減小固体 压强的方法	惯性及其大小	参照技	功率的公式变形	功率的简单计算	功的简单计算	不做功的三种情况	光的折射现 象辨析	功的定义	验电器
质量和密度的概念	探究重力的大小 与质量的关系	影响电阻大小 因素的实验	重力的方向、作图及应用	重力的定义	弹簧测力计的原理	弹力大小 (胡克定律)	力的作用是 相互的	力的表示	力的三要素
固体压强计算——知二求—	压强的定义、 公式、单位、估算	探究压力作用效 果的影响因素	压力的概念	光的折射	利用二力平衡 求摩擦力	影响摩擦力大小 因素的应用	电压表的使用	增大和减小 摩擦力的方法	判断机械能的 变化
内能改变方式的辨析	内能的改变方式	内能的概念及 影响因素	扩散现象	分子动理论的 辨析	分子动理论	生活中的连通器	连通器的定义及其特点	三种常见容器	探究电流与电压、电阻的关系
功率公式	力的概念	物距等于像距的简单计算	物体运动情况的判断	探究浮力的大小 跟哪些因素有关	浮力定义及方向	田頭	放大镜原理	比热容的定义	网基米德原理 的综合计算
力的概念	探究液体压强 的特点	摩擦起电	二力平衡的计算	功率的定义	区别平衡力 和相互作用力	镜面反射和 漫反射	影响物体的 平衡条件	入射角与反射角 的计算	力的作用效果


平面镶嵌	关于原点对称 的点的坐标	中心对称图形	分式的乘法	最简公分母	Start
多边形的内角 与外角	利用旋转设计图案	中心对称	分式的除法	分式的通分	因式分解- 提公因式法
多边形的外角和	利用平移、旋转、对称设计图案	旋转对称图形	分式的乘除法	最简分式	因式分解- 平方差公式法
多边形的内角和	几回变换的类型	作图- 旋转变换	分式的加減- 同分母	分式的约分	因式分解- 完全平方公式法
三角形中位线定理	平行四边形的概念	旋转的性质	分式的加减- 异分母	分式的基本性质	因式分解- 分组分解法
平行四边形判定与 性质的综合运用	平行四边形的性质- 边的性质	利用平移设计图案	分式的混合运算	分式无意义 的条件	因式分解综 合方法应用
平行四边形判定 的综合运用	平行四边形的性质- 角的性质	作图- 平移变换	分式的化简 求值	分式值为零的条件	利用因式分解进行条件求值
平行四边形的判定- 一组对边平行且相等	平行四边形的性质- 对角线的性质	统计量的选择	解分式方程- 可化为一元一次方程	分式有意义的条件	因式分解-整除性问题
平行四边形的判定- 对角线互相平分	平行四边形性质的综合运用	平移的性质	分式方程的 增根	分式的概念	因式分解- 配方法求值
平行四边形的判定 - 两组对角分别相等	平行四边形的判定- 两组对边分别相等	用样本平均数估计总体平均数	可转化为一元一次方程 的分式方程的应用	因式分解- 实际应用问题	因式分解- 判断三角形形状

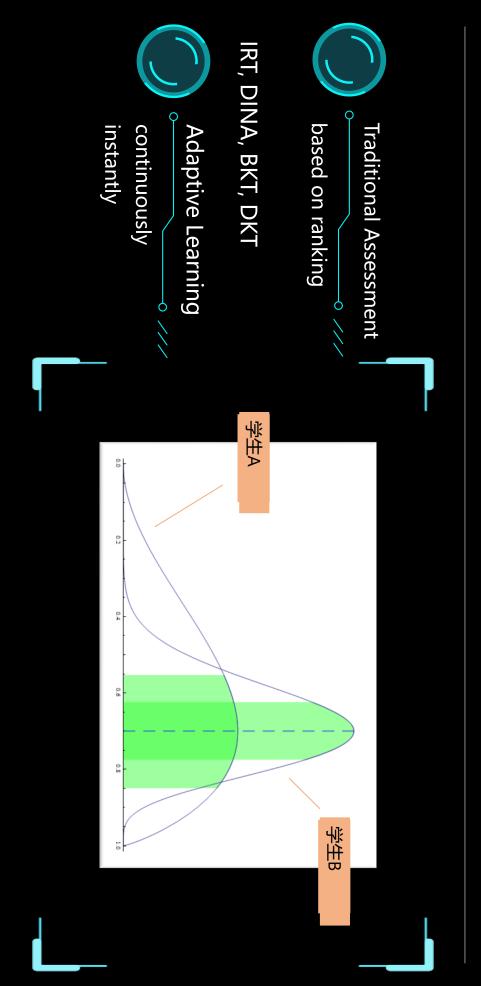
平面镶嵌	关于原点对称 的点的坐标	中心对称图形	分式的乘法	最简公分母	Start
多边形的内角 与外角	利用旋转设计图案	中心对称	分式的除法	分式的通分	因式分解- 提公因式法
多边形的外角和	利用平移、旋转、对称设计图案	旋转对称图形	分式的乘除法	最简分式	因式分解- 平方差公式法
多边形的内角和	几回变换的类型	作图- 旋转变换	分式的加減- 同分母	分式的约分	因式分解- 完全平方公式法
三角形中位线定理	平行四边形的概念	旋转的性质	分式的加减- 异分母	分式的基本性质	因式分解- 分组分解法
平行四边形判定与 性质的综合运用	平行四边形的性质- 边的性质	利用平移设计图案	分式的混合运算	分式无意义 的条件	因式分解综 合方法应用
平行四边形判定 的综合运用	平行四边形的性质- 角的性质	作图- 平移变换	分式的化简 求值	分式值为零的条件	利用因式分解进行条件求值
平行四边形的判定- 一组对边平行且相等	平行四边形的性质- 对角线的性质	统计量的选择	解分式方程- 可化为一元一次方程	分式有意义的条件	因式分解-整除性问题
平行四边形的判定- 对角线互相平分	平行四边形性质的综合运用	平移的性质	分式方程的 增根	分式的概念	因式分解- 配方法求值
平行四边形的判定 - 两组对角分别相等	平行四边形的判定- 两组对边分别相等	用样本平均数估计总体平均数	可转化为一元一次方程 的分式方程的应用	因式分解- 实际应用问题	因式分解- 判断三角形形状

平面镶嵌	关于原点对称 的点的坐标	中心对称图形	分式的乘法	最简公分母	Start
多边形的内角与外角	利用旋转设计图案	中心对称	分式的除法	分式的通分	因式分解- 提公因式法
多边形的外角和	利用平移、旋转、对称设计图案	旋转对称图形	分式的乘除法	最简分式	因式分解- 平方差公式法
多边形的内角和	几回变换的类型	作图- 旋转变换	分式的加减- 同分母	分式的约分	因式分解- 完全平方公式法
三角形中位线	平行四边形的概念	旋转的性质	分式的加减- 异分母	分式的基本 性质	因式分解- 分组分解法
平行四边形判定与 性质的综合运用	平行四边形的性质- 边的性质	利用平移设计图案	分式的混合运算	分式无意义 的条件	因式分解综 合方法应用
平行四边形判定的综合运用	平行四边形的性质- 角的性质	作图- 平移变换	分式的化简 求值	分式值为零 的条件	利用因式分解进行条件求值
平行四边形的判定- 一组对边平行且相等	平行四边形的性质- 对角线的性质	统计量的选择	解分式方程- 可化为一元一次方程	分式有意义 的条件	因式分解- 整除性问题
平行四边形的判定- 对角线互相平分	平行四边形性质的综合运用	平移的性质	分式方程的 增根	分式的概念	因式分解- 配方法求值
平行四边形的判定- 两组对角分别相等	平行四边形的判定-两组对边分别相等	用样本平均数估计总体平均数	可转化为一元一次方程的分式方程的应用	因式分解- 实际应用问题	因式分解- 判断三角形形状

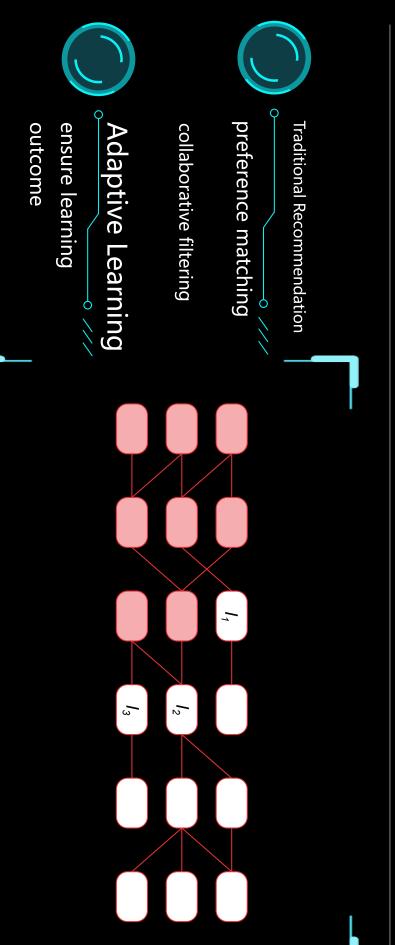

Learning Data

- Results of tests for students
- Difficulty of test, knowledge points included in the test
- Time for students to finish test
- Reflecting awareness when selecting different incorrect options.
- Sliding of mouse reflecting student's cognitive state

We adjust all algorithms in accordance with student's real-time response.

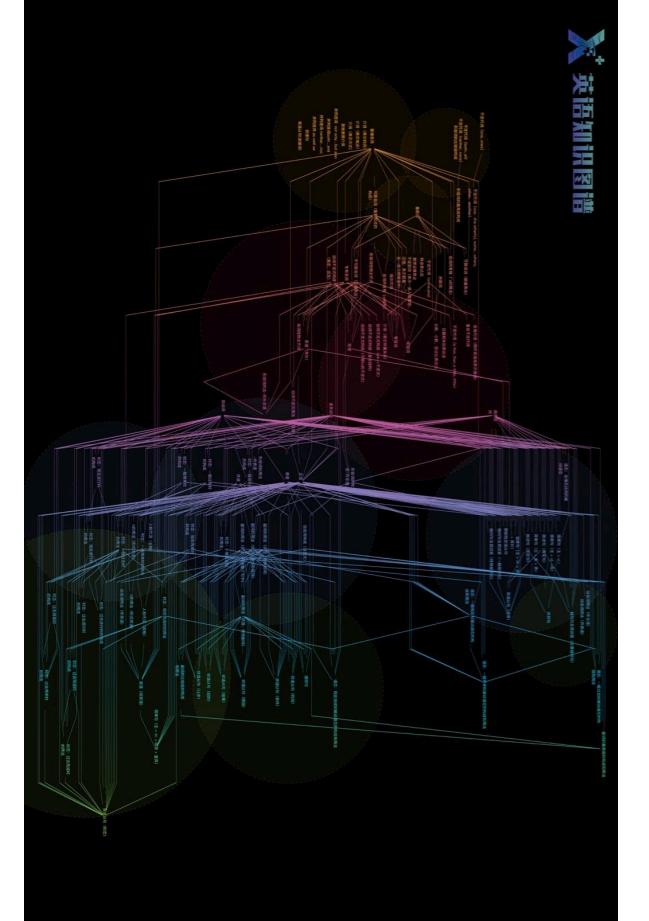


Knowledge State Diagnosis




Knowledge State Evaluation

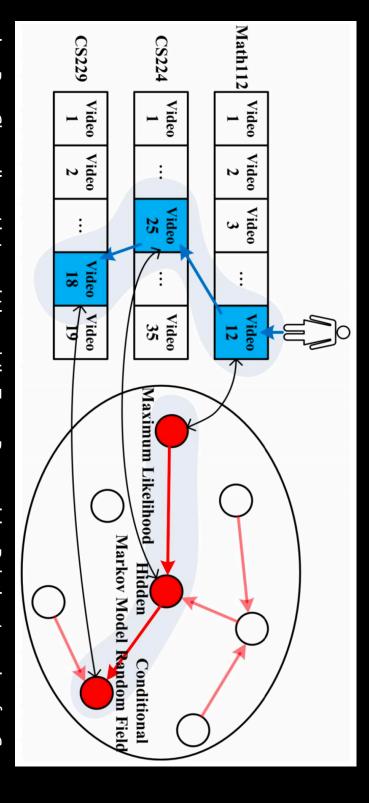
Personal Recommendation


Knowledge Graph based on Bayesian Network

 $c070110 \rightarrow c070106 \rightarrow c070105$

 $c070111 \rightarrow c070103 \rightarrow c070108 \rightarrow c070109 \rightarrow c070107$

 $c070101 \rightarrow c070102 \rightarrow c070104$


利用整式乘法表示图形面积	整式乘法的 化筒求值	多顶式振多项式	单项式振单项式 单项式振多项式 多项式振多项式	单顶式振单顶式	似的乘方逆用	职的乘方	暴的乘方逆用	暴的乘方	同底数幂的 乘法逆用	同底数幂的乘法	知识点名称
c070111	c070110	c070107 c070108 c070109 c070110 c070111	c070108	c070107	c070106	c070105	c070104	c070101 c070102 c070103 c070104 c070105 c070106	c070102	c070101	知识点编号

Relationship Between Knowledge Components

Existing work

MOOCs. ACL'17 Liangming Pan, Chengjiang Li, Juanzi Li, and Jie Tang. Prerequisite Relation Learning for Concepts in

松間內 Squirrel Al teaching robot and human teachers Four Human-Machine Competitions between

Oct. of 2017: Zhengzhou

Apr. of 2018: Chengdu

Jun. of 2018: Shandong

Aug. of 2018: in 100 cities in China

defeated members of High School Test Programming Group. the senior teacher with 17 teaching experience. Squirrel AI teaching robot gets 9 scores higher than that gotten by the first human-machine competition in Asian-Pacific Competition,

teachers. better than the one-to-three teaching efficiency by 17 human

defeated lots of human teachers in more than 100 teachers in

中学人工智能 松鼠 AI 智适应系统 实证研究报告

2016 01 13

Name	Subject	Pre-guidance scores	Post-guidance scores	Raised scores	City
Guo*nan	English	59	112.5	72.5	Shan Tou
Ma*fan	Math	57	108	51	Ding Zhou
Wang*tu	Math	38	86	48	Chong Qing
Peng*xiang	Math	29	76	47	Cheng Du
Jia*ying	Math	57	102	45	Pi Zhou
Dai*shuo	Chinese	40	83	43	Gao Yang
Lei*ran	English	45	86.5	41.5	Xi'an
Chen*sen	English	56	97.5	41.5	Xia Men
Xia*ting	Math	70	106	36	Cheng Du
Chen*zhuo	Math	26	61	35	Xi'an
Zhu*de	Math	74	108	34	Xia Men
Li*yang	Math	24	57	33	Su Zhou
Zhang*xin	Math	104.5	136	31.5	Shang Hai
Xυ*yi	Chemistry	30	60	30	Xi'an
Yυ*qi	Math	55	84	29	Beijing

Name	Subject	Pre-guidance scores	Post-guidance scores	Raised scores	City
Zhang*ying	Math	64	110.5	46.5	Beng Bu
Tu*zhang	English	58	101	43	Fu Zhou
Huang*ye	Math	70	110.5	40.5	Jin Chang
Su*ze	Math	38	76	38	Dong Guan
Wang*tu	English	62	100	38	Gui Yang
Lin*	English	40	77.5	37.5	Shi Jiazhuang
Fang*	Chinese	65.5	102.5	37	Zhen Zhou
Liao*sen	English	51	87.5	36.5	Wu Han
Zhu*	Chemistry	у 32	77	35	Chang Sha
Guo*bin	English	75	109	34	Nan Jing
Mao*ming	Math	68.5	102	33.5	Nan Chang
≕*	Math	66	99	33	Qing Dao
Zhang*	Physics	45	77	32	Yan'an
Wen*yue	Chemistry	у 36	67.5	31.5	Cheng Du
Yang*qi	Math	64	94	30	Tian Jing

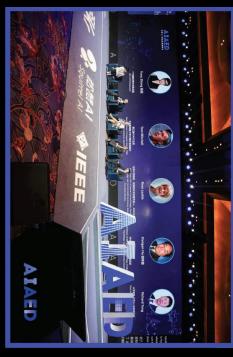
300+ Cities

1800+Learning Centers

Nearly 2,000,000 Students

Raised over 150,000,000 USD

2015-2018 Compound Annua Growth Rate 500%



4th International Conference on Al + Adaptive Education

November, 2019 Shanghai, China

