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ABSTRACT
Random walks are at the heart of many existing network embed-

ding methods. However, such methods have many limitations that

arise from the use of traditional random walks, e.g., the embed-

dings resulting from these methods primarily capture proximity

(communities) among the vertices as opposed to structural equiv-

alence/similarity (roles). In this work, we introduce the Role2Vec
framework which uses the flexible notion of attributed random
walks, and serves as a basis for generalizing existing methods such

as DeepWalk, node2vec, and many others that leverage random

walks. Our proposed framework enables these methods to be more

widely applicable by learning functions that capture the behavioral

roles of the nodes. We show that our proposed framework is effec-

tive with an average AUC improvement of 16.55% while requiring

on average 853x less space than existing methods.

KEYWORDS
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1 INTRODUCTION
Learning a useful feature representation from graph data lies at the

heart and success of many machine learning tasks such as node

classification [39], anomaly detection [3], link prediction [4], among

others [29, 40]. Motivated by the success of word embedding mod-

els, such as the skip-gram model [37, 38], recent works extended

word embedding models to learn graph embeddings [20, 42]. The

primary goal of these works is to model the conditional probabilities

that relate each input vertex to its context, where the context is a

set of other vertices surrounding and/or topologically related to the

input vertex. Many variants of graph embedding methods proposed

random walks to generate the context vertices [9, 22, 42, 44]. For

instance, DeepWalk [42] initiates random walks from each vertex

to collect sequences of vertices (similar to sentences in language).

Then, the skip-gram model is used to fit the embeddings by maxi-

mizing the conditional probabilities that relate each input vertex to

its surrounding context. Thus, vertex identities are used as words

in the skip-gram model, and the embeddings are tied to vertex ids.

In language, the central idea is that words with similar meanings

will be surrounded by a similar context [24]. As such, in language

models, the context of a word is defined as the surrounding words.

However, this foundation does not directly translate to graphs.

Since unlike words in languages that are universal with semantics

and meaning independent of the corpus of documents, vertex ids

obtained by random walks on graphs are not universal and are only

meaningful within a particular graph. This key limitation has two

main disadvantages. First, these embedding methods are inherently

transductive, dealing essentially with isolated graphs, and unable

to generalize to unseen nodes. Consequently, they are unsuitable

for graph-based transfer learning tasks such as across-network

classification [16, 30], and graph similarity/comparison [19, 55].

Second, by using this traditional definition of random walks, there

is no general way to integrate vertex attributes/features to the

network representation.

While similar words are typically surrounded by a similar con-

text, there is no guarantee that similar vertices are surrounded by

similar context (obtained using random walks on graphs). Recent

empirical analysis shows that using random walks in graph embed-

dings primarily capture proximity among the vertices (see [20]), so

that vertices that are close to one another in the graph are embed-

ded together, e.g., vertices that belong to the same community are

embedded similarly. While proximity among the vertices does not

guarantee their similarity, the concept of a network position or a

role [25, 34, 46] is more suitable to represent the equivalence/simi-

larity and structural relatedness among vertices.

Roles represent vertex connectivity patterns such as hubs, star-

centers, star-edge nodes, near-cliques or vertices that act as bridges

to different regions of the graph. Intuitively, two vertices belong to

the same role if they are structurally similar/equivalent and need

not be connected by an edge. Several methods propose properties

under which vertices in a network are to be considered equiva-

lent/similar [52]. However, all of these methods are based on the

concept of a network position (role) as a collection of vertices (e.g.,
actors in a social network) all of whom are similarly connected

to other vertices or sets of vertices [52]. Since random walks will

likely visit nearby vertices first, they are more suitable for finding

communities (proximity/adjacency), rather than roles (structural

similarity/equivalence, see [46] for a survey on roles).

In this work, we propose the Role2Vec framework which serves as

a basis for generalizing many existing methods that use traditional

random walks. In particular, we introduce the notion of attributed

random walks that is not tied to vertex identity and is instead based

on a function Φ : x → w that maps a vertex attribute vector to a

role (label, attribute value), such that two vertices belong to the

same role if they are structurally similar. Then Role2Vec learns the
embeddings of vertex roles (as opposed to individual vertices). Thus,

Role2Vec learns a representation that model the associations among

subsets of vertices (i.e., roles). The proposed framework provides



Ahmed et al.

a number of important advantages to any method generalized us-

ing it. First, the proposed framework is naturally inductive as the

learned features generalize to new nodes and across graphs and

therefore can be used for transfer learning tasks. Second, they are

able to capture structural similarity (roles) better. Third, the pro-

posed framework is inherently space-efficient since embeddings

are learned for roles (as opposed to vertices) and therefore requires

significantly less space than existing methods. Fourth, the proposed

framework naturally supports graphs with attributes (if available/-

given as input). Furthermore, our approach is shown to be effective

with an average improvement of 16.55% in AUC while requiring

on average 853x less space than existing methods on a variety of

graphs from different domains.

2 FRAMEWORK
We consider an (un)directed input graph G = (V ,E), where Nv =
|V | is the number of vertices in G, and Ne = |E | is the number

of edges in G. For any vertex vi ∈ V , let Γ(i) be the set of direct
neighbors of vi , and di = |Γ(i)| is the vertex degree. In addition,

we consider a matrix X of attributes/features, where each xi is a
K-vector for vertex vi . For example, for graphs without attributes,

xi could simply be an indicator vector for vertex vi and K is equiv-

alent to the number of vertices (i.e., having xi j = 1 if j = i , and
xi j = 0 otherwise) [22, 42]. For attributed graphs, xi may include

observed attributes, topological features, and/or node types for het-

erogeneous graphs. The goal of an embedding method is to derive

useful features of particular graph elements (e.g., vertices, edges)
by learning a model that maps each graph element to the latent

D-dimension space. While the approach remains general for any

graph element, this paper focuses on vertex embeddings.

To achieve this, an embedding is usually defined with three com-

ponents: (1) the context function, which specifies a set of other

vertices called the context ci for any given vertex vi , such that the

context vertices are surrounding and/or topologically related to

the given vertex. Each vertex is associated with two latent vectors,

an embedding vector α i ∈ RD and a context vector βi ∈ RD . (2)
the conditional distribution, which specifies the statistical distri-

bution used to combine the embedding and context vectors. More

specifically, the conditional distribution of a vertex combines its

embedding and the context vectors of its surrounding vertices. (3)

the model parameters (i.e., embedding and context vectors) and

how these are shared across the conditional distributions. Thus, an

embedding method models the conditional probability that relate

each vertex to its context as follows:

xci | xi ∼ P (1)

where ci is the set of context vertices for vertex vi , xi is its fea-
ture/attribute vector, and P is the conditional distribution.

Our goal is to model P[xci |xi ] =
∏

j ∈ci P(xj |xi ), assuming the

context vertices are conditionally independent. Themost commonly

used conditional distribution is the categorical distribution (see [48]

for other distributions). In this case, a softmax function parame-

terized with the two latent vectors (i.e., embedding and context

vectors) is used. Thus, for each input-context vertex pair (vi ,vj ),

P(xj |xi ) =
e
α i .β j∑

vk ∈V e
α i .βk

(2)

For sparse graphs, the summation in

∑
vk ∈V e

α i .βk contains many

zero entries, and thus can be approximated by sub-sampling those

zero entries (using negative sampling similar to language mod-

els [38]). Finally, the objective function of the embedding method

is the sum of the logarithm of likelihood values of each vertex, i.e.,

L(α , β) =
Nv∑
i=1

log P[xci |xi ] (3)

Clearly, there is a class of possible embedding methods where

each of the three components (discussed above) is considered a

modeling choice with various alternatives. Recent work proposed

random walks to sample/collect the context vertices ci [22, 42]. Note
for these random walk based embedding methods, xi is simply an

indicator vector for vertex vi (i.e., no attributes).

2.1 Mapping Vertices to Vertex-Roles
Given Nv ×K matrix X of attributes and/or structural features, the

Role2Vec framework starts by locating sets of vertices, independent

of the distance (proximity) between any two in the set, who are

placed similarly with respect to all other sets of vertices. Thus,

two vertices belong to the same set if they are similar in terms of

attributes and/or structural features. We achieve this by learning a

function that maps the Nv vertices to a setW = {w1, ...,wM } ofM
vertex-roles whereM is often much smaller than Nv , i.e.,M ≪ Nv ,

Φ : x → w (4)

Thus, Φ is a function mapping vertices to vertex-roles based on

the Nv × K attribute matrix X. Clearly, the function Φ is a model-

ing choice [52], which could be learned automatically or defined

manually by the user. We explore two general classes of functions

for mapping vertices to their roles. The first class of functions are

simple functions taking the form:

Φ(x) = x1 ◦ x2 ◦ · · · ◦ xK (5)

where x =
[
x1 x2 · · · xK

]
is an attribute vector and ◦ is a

binary operator such as concatenation, sum, among others. Notably,

suppose 3 or 4-node graphlets are used, then two nodes belong

to the same role iff they have the same graphlet features. This

is consistent with the definition of structural roles, see [46] for

further details. As an aside, the above functions can be “relaxed” by

performing log binning on each individual graphlet feature prior to

using Eq. 5. This has two main consequences. First, it allows nodes

to be in the same role even if they do not have identical feature

values. Thus, nodes that are sufficiently similar with respect to their

structural properties belong to the same role. Second, log binning

and other feature transformation techniques can be used to control

the number of roles (e.g., by changing the bin size in log binning,

etc.).

The second class of functions are learned by solving an objective

function. This includes functions based on a low-rank factorization

of the Nv × K matrix X having the form X ≈ f ⟨UVT ⟩ with factor

matrices U ∈ RNv×r
and V ∈ RK×r

where r > 0 is the rank and f
is a linear or non-linear function. More formally,

arg min

U,V∈C

[
D

(
X, f ⟨UVT ⟩

)
+ R(U,V)

]
(6)

whereD is the loss, C is constraints (e.g., non-negativity constraints
U ≥ 0,V ≥ 0), and R(U,V) is a regularization penalty. Then, we

partition U ∈ RNv×r
intoM disjoint sets of nodes (for each of the



role2vec: Role-based Network Embeddings

M vertex-roles) V1, . . . ,VM , where Vj is the set of vertices mapped

to vertex-rolew j ∈W , by solving the k-means objective:

min

{Vj }Mj=1

M∑
j=1

∑
ui ∈Vj

∥ui − cj ∥2,where cj =

∑
ui ∈Vj ui
|Vj |

(7)

2.2 Attributed RandomWalks
Recently, random walks received much attention in learning net-

work embeddings [22, 42], in particular to generate the context

vertices (as discussed above). Consider a random walk of length L
and starting at a vertex v0 of the input graph G, if at time t we are
at vertex vt , then at time t + 1, we move to a neighbor of vt with
probability 1/dvt . Thus, the resulting randomly chosen sequence of

vertex indices (vt : t = 0, 1, ...,L − 1) is a Markov chain. However,

a key limitation of these methods is that the embeddings learned

based on random walks are fundamentally tied to vertex ids (as

discussed above). By using this traditional definition of random

walks, there is no general way to integrate vertex attributes and

structural features to the network representation. On the other

hand, vertex attributes and structural features can easily be repre-

sented by differentiating the edges according to the roles of their

endpoints, which leads to the definition of attributed random walks.

Definition 1 (Attributed walk). Let xi be a K-dimensional
vector for vertex vi . An attributed walk of length L is a sequence of
adjacent vertex-roles,

Φ(xv0
), . . . ,Φ(xvt ),Φ(xvt+1 ), . . . ,Φ(xvL−1 ) (8)

induced by a randomly chosen sequence of indices (vt : t = 0, 1, ...,L−
1) generated by a random walk of length L starting at v0, and a
function Φ : x → w that maps an input vector x to a vertex role Φ(x).

The induced vertex-role sequence in the above definition is called

attributed random walks.
The Role2vec framework uses vertex mapping and attributed

random walks to learn the embeddings. Thus, our goal is to model

the conditional probability that relate each vertex-role to the roles

of its context,

P
[
Φ⟨xci ⟩|Φ⟨xi ⟩

]
=

∏
j ∈ci

P(Φ⟨xj ⟩ |Φ⟨xi ⟩) (9)

Hence, the embedding structure (i.e., the embedding and context

vectors) is shared among the vertices with the same vertex-role.

Specifically, we learn α j ∈ R
D
and β j ∈ R

D
for each partition Vj

of vertices, which are mapped to vertex-rolew j . Note that Role2vec
learns an embedding for an aggregated network, where detailed

relations among individual vertices are aggregated to total relations

among vertex-roles.

2.3 Role2Vec Algorithm
The Role2Vec algorithm is shown in Alg. 1. Alg. 1 takes the following

inputs: (1) graphG , (2) attribute matrixX, (3) embedding dimension

D, (4) walks per vertex R, (5) walk length L, (6) context window size

ω. In Line 3, ifX is not available, we derive structural features using

the graph structure itself. For instance, in this paper, we use small

subgraphs called motifs as higher-order structural features. Counts

of motif patterns were found useful to capture the local structure of

vertices and can be computed quickly and efficiently with parallel

Algorithm 1 role2vec

1 procedure Role2Vec(G = (V , E) and X, embedding dimensions D , walks per

node R , walk length L, context (window) size ω )

2 Initialize set of attributed walks S to ∅

3 Extract (motif) features if needed and append to X
4 Transform each attribute in X (e.g., using logarithmic binning)

5 Map vertices to roles function Φ : x → w
6 Precompute transition probabilities π
7 G′ = (V , E, π )
8 parallel for j = 1, 2, ..., R do ▷ walks per node

9 Set Π to be a random permutation of the nodes V
10 for each v ∈ Π in order do
11 S = AttributedWalk(G′, X, v, Φ, L)
12 Add the attributed walk S to S

13 end parallel
14 α = StochasticGradientDescent(ω, D, S) ▷ parallel
15 return the learned role embeddings α
16 procedure AttributedWalk(G′

, X, start node s , function Φ, L)
17 Initialize attributed walk S to

[
Φ(xs )

]
18 Set i = s ▷ current node

19 for ℓ = 1 to L − 1 do
20 Γi = Set of the neighbors for node i
21 j = AliasSample(Γi , π ) ▷ select node j ∈ Γi
22 Append Φ(xj ) to S
23 Set i to be the current node j

24 return attributed walk S of length L rooted at node s

algorithms [1, 5]. Since many graph properties including motifs

exhibit power law distributions, we preprocess X using logarithmic

binning, similar to [25] (Line 4). In Line 5, vertices are mapped to

vertex-roles using a function Φ(x) as discussed in Section 2.1. Then,

we precompute the random walk transition probabilities π , which
could be uniform or weighted (Line 6). Lines 8-13 initiate random

walks from each vertex using the notion of attributed randomwalks

(using alias sampling).Finally, Role2Vec learns the embeddings using

stochastic gradient descent in Line 14.

Recall that Nv is the number of nodes,M is the number of roles,

andM ≪ Nv . Role2vec has the following properties.

Corollary 2.1. Role2vec is space-efficient with space complexity
O(MD + Nv ).

Corollary 2.2. As M → Nv then we recover the traditional
random walk methods [22, 42] as a special case of the framework.

This is straightforward to see. SupposeM → Nv , then Role2vec
converges to the baseline random walk methods [22, 42], since

each vertex is mapped to a new role that uniquely identifies it from

other vertices, i.e., Φ is a one-to-one function from V onto itself.

Intuitively, this implies that each node is assigned a unique role that

uniquely identifies it and thus corresponds exactly to the baseline

random walk methods [22, 42] that use simple random walks based

on node identity. Furthermore, notice that M → 1 and M → Nv
correspond to the two most extremes in the framework and the

best algorithm is likely to lie in between these two extremes.
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3 EXPERIMENTS
We investigate the effectiveness of the proposed framework us-

ing a variety of graphs. All graphs have been made available at

NetworkRepository [45].
1

Experimental Setup. All experiments use logarithmic binning
2

with the bin sizeδ chosen by searching overδ ∈ {0.01, 0.1, 0.5, 0.9, 0.99}.

In these experiments, we use a simple function Φ(x) that repre-
sents a concatenation of the attribute values in the node attribute

vector x. We searched over 10 subsets of the 9 motif features of

size 2-4 nodes shown in Figure 1. We evaluate the role2vec ap-

proach presented in Section 2.3 that leverages the attributed ran-

dom walk framework (Section 2) against a number of baseline

methods including: node2vec [22], DeepWalk [42], struc2vec [44],

and LINE [51]. For our approach and node2vec, we use the same

hyperparameters (D = 128, R = 10, L = 80) and grid search over

p,q ∈ {0.25, 0.50, 1, 2, 4} as mentioned in [22]. For link prediction,

we use logistic regression (LR) with an L2 penalty. The model is

selected using 10-fold cross-validation on 10% of the labeled data.

Experiments are repeated for 10 random seed initializations. All

results are statistically significant with p-value < 0.01. We use AUC

to evaluate the models. Data is available online [45].
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Figure 1: Summary of the 9 graphlets (motifs) and 15 orbits
with 2-4 nodes.

Table 1: AUC scores for various methods for link predic-
tion using (α i + α j )

/
2. Note R2V=Role2vec, N2V=node2vec,

DW=DeepWalk and S2V=struc2vec.

Graph R2V N2V DW LINE S2V

bn–cat 0.710 0.627 0.627 0.672 0.669

bn–rat–brain 0.748 0.716 0.716 0.691 0.729

bn–rat–cerebral 0.867 0.813 0.811 0.709 0.858

ca–CSphd 0.838 0.768 0.735 0.620 0.791

eco–fweb–baydry 0.681 0.655 0.627 0.660 0.623

ia–radoslaw–email 0.867 0.756 0.745 0.769 0.857

soc–anybeat 0.961 0.854 0.848 0.850 0.883

soc–dolphins 0.656 0.580 0.498 0.551 0.590

fb–Yale4 0.793 0.742 0.728 0.763 0.758

web–EPA 0.926 0.804 0.738 0.768 0.861

Comparison. We compare the proposed approach to other em-

bedding methods for link prediction. Given a partially observed

graph G with a fraction of missing edges, the link prediction task

is to predict these missing edges. We generate a labeled dataset of

edges as done in [22]. Positive examples are obtained by removing

50% of edges randomly, whereas negative examples are generated
by randomly sampling an equal number of node pairs that are not

connected with an edge, i.e., each node pair (i, j) < E. For each
method, we learn features using the remaining graph that consists

1http://networkrepository.com/
2
Logarithmic binning assigns the first δNv nodes with smallest attribute value to 0

(where 0 < δ < 1), then assigns the δ fraction of remaining unassigned nodes with

smallest value to 1, and so on.

of only positive examples. Using the learned embeddings from each

method, we then learn a model to predict whether a given edge in

the test set exists in E or not. Notice that embedding methods such

as DeepWalk and node2vec require each vertex in G to appear in

at least one edge in the training graph, otherwise these methods

are unable to derive features for such vertices.

For comparison, we use the same set of binary operators as

in [22] to construct features for the edges by combining the learned

embeddings of its endpoints. The AUC results are provided in Ta-

ble 1 and 2. The AUC scores from our method are all significantly

better than the other methods at p < 0.01. In all cases, our method

achieves better predictive performance over the other methods

across a wide variety of graphs with different characteristics. Over-

all, the mean and product binary operators give an average gain in

predictive performance (over all graphs) of 11.1% and 22%, respec-

tively. As an aside, depending on the graph, the number of rolesM
can sometimes be relatively large. However, in all cases, the best

M is obviously less than Nv . We note that our approach directly

models the similarity between the vertices, hence, the embeddings

learned by Role2Vec models the network structure better than tra-

ditional methods, capturing both homophily and heterophily [36].

4 CONCLUSION
In this work, we proposed the notion of role-based graph embed-

dings. Instead of learning individual embeddings for each node,

embeddings are learned for each role based on functions that map

feature vectors to roles. To learn such role-based embeddings, we

proposed the notion of attributed random walk. Using this notion,

we described a framework called Role2Vec that serves as a basis

for generalizing existing methods that use random walks (based on

vertex ids). The proposed framework enables these methods to be

more widely applicable by learning functions that capture the be-

havioral roles of nodes. Instead of learning individual embeddings

for each node, our approach learns embeddings for each role based

on functions that map feature vectors to roles. It was shown that

many existing methods are actually a special case in the Role2Vec

framework when the number of roles equals the number of nodes.

Finally, we demonstrated the effectiveness of the framework for

link prediction task where it is shown to achieve an average gain

in AUC of 16.55% while requiring 853x less space than existing

methods on a wide variety of graphs.

Table 2: AUC scores for various methods for link predic-
tion using α i ⊙ α j . Note R2V=Role2vec, N2V=node2vec,
DW=DeepWalk and S2V=struc2vec.

Graph R2V N2V DW LINE S2V

bn–cat 0.694 0.621 0.621 0.494 0.662

bn–rat–brain 0.775 0.715 0.715 0.562 0.736

bn–rat–cerebral 0.867 0.796 0.793 0.498 0.834

ca–CSphd 0.758 0.678 0.660 0.533 0.699

eco–fweb–baydry 0.684 0.673 0.631 0.516 0.599

ia–radoslaw–email 0.852 0.746 0.731 0.471 0.843

soc–anybeat 0.945 0.730 0.728 0.618 0.798

soc–dolphins 0.787 0.593 0.508 0.549 0.553

fb–Yale4 0.940 0.912 0.904 0.784 0.905

web–EPA 0.907 0.808 0.797 0.650 0.841
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A SUPPLEMENTARY MATERIALS
A.1 Theoretical Analysis
We analyze the properties/parameters of attributed random walks.

Lemmas 1–3 analyze the constraints and bounds on vertex reacha-

bility, expected access time, and representation of vertices/edges in

attributed random walks.

We consider an attributed random walk of length L and starting

at vertexv0 ofG , if at time t we are at vertexvt with roleΦ(xt ), then
at time t + 1, we move to a neighbor of vt with probability 1/dvt .
Clearly, the randomly chosen sequence of vertex roles (Φ(xt ) : t =
0, 1, ...,L − 1) is a Markov chain. We denote by Pt the distribution
of vt , where Pi (t ) = Pr(vt = i) is the probability that the attributed

randomwalk visits vertex i at time t . Similarly, we denote by Pi j the
transition probability from vertex i to vertex j in one step, where

Pi j = Pr(vt = j |vt−1 = i). Thus, the Markov property implies that

this Markov chain is uniquely defined by its one-step transition

matrix P = (Pi j )vi ,vj ∈V ,

Pi j =

{
1/di , if (i, j) ∈ E

0, otherwise

(10)
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Let Pm be the transition matrix whose entries are them-step tran-

sition probabilities, such that

Pmij = Pr(vt+m = j | vt = i) (11)

is the probability that the attributed walk moves from vertex i to
vertex j in exactlym steps. Finally, we denote by r ti j the probability

that starting at vertex i , the first transition to vertex j occurs at time

t ,

r ti j = Pr(vt = j,∀1 ≤ m ≤ t − 1,vm , j | v0 = i) (12)

Lemma 1. If u and v are two non-adjacent vertices in a connected
graph G , then there is at least one neighbor j ∈ Γ(u) where r tu j ≤ r t1jv
for t1 < t .

Proof. Let du = |Γ(u)| be the degree of vertex u, and denote by

[du ] the set of neighbors of u. For each neighbor j ∈ [du ], start an

attributed random walk at j, and let r t1jv be the probability that the

first transition from j to v occurs at time t1. Now begin a attrib-

uted random walk at u and let r tuv be the probability that the first

transition from u to v occurs at time t . By conditioning on the first

transition, we have

r tuv =

du∑
j=1

Puj . r
t−1
jv =

1

du

du∑
j=1

r t−1jv

Set t1 = t−1, thus the probability r tuv is themean of the probabilities

of u’s neighbors, r t1jv for j ∈ [du ] and t1 < t . This implies that there

is at least one neighbor j where r tuv ≤ r t1jv for t1 < t , and Lemma 1

is proved. ■
Lemma 1 shows that the probability r tuv is upper bounded by

the probability of at least one of u’s neighbors (i.e., r t1jv ). Thus, an
attributed random walk starting at any vertex u will likely visit

nearby vertices first before visiting distant vertices. And that a

distant vertex v is more reachable from some neighbor j in less

steps (i.e., t1 < t ).

Lemma 2. If u and v are two non-adjacent vertices in a connected
graph G, with huv is the expected access time from u to v , and ˜hjv
is the average neighbor access time for u, then with probability less
than 1/2, an attributed random walk starting at u takes at least
L = 2 huv > 2

˜hjv to reach v .

Proof. Recall that r tuv is the probability that starting at u, the attrib-
uted random walk first visits v at time t , then the expected access

time from u to v is E[t] = huv =
∑
t ≥1 t . r

t
uv . By conditioning on

the first transition, we have

huv =
∑
t ≥1

t .

du∑
j=1

Puj . r
t−1
jv

=

du∑
j=1

Puj +
∑
t>1

t .

du∑
j=1

Puj . r
t
jv

= 1 +
1

du

du∑
j=1

∑
t>1

t . r tjv = 1 +
1

du

du∑
j=1

hjv

where du is the degree of u, and hjv is the expected access time

for some neighbor vertex j ∈ [du ]. Since t ≥ 0 for any vertex in G,

then by Markov’s inequality, for any L > 0,

Pr(t ≥ L) ≤
E[t]

L
=

huv
L

Let
˜hjv =

1

du
∑du
j=1 hjv be the average neighbor access time for

vertex u. Then, with Pr(t ≥ L) ≤ 1/2, an attributed random walk

starting at u takes at least L = 2 huv > 2
˜hjv to reach v . ■

Lemma 3. Suppose we start du attributed random walks of length
L from any vertex u ∈ V in G. For a given edge e = (v,v ′), let Ie
denote the total number of attributed random walks containing e .
Then, the expectation of the random variable Ie is upper bounded by
L, i.e., E[Ie ] ≤ L.

Proof. Recall that the probability of an attributed random walk

starting at u visits v at time t is P tuv = λuPtλ
⊺
v , where λu is the

indicator vector for vertex u, which equals 1 in coordinate u and 0

otherwise. Then, for a given edge e = (v,v ′), the probability that

the attributed random walk visits v at time t and v ′
at time t + 1 is

λuPtλ
⊺
v /dv (since the transition probability from v to v ′

is 1/dv ).
Suppose we start du attributed random walks of length L fromu, let
Ie denote the total number of attributed random walks containing e ,
then the expectation of Ie is the sum of the probabilities that there

exists an attributed random walk visiting e = (v,v ′) as follows

E[Ie ] ≤
L∑
t=1

∑
u

duλuPtλ
⊺
v/dv

=

L∑
t=1

1DPtλ⊺v/dv =
L∑
t=1

1Dλ⊺v/dv =
L∑
t=1

1 = L

where D is the degree matrix with the ith diagonal entry is the

vertex degree di , 1 is the unit vector with all entries equal to 1, and

(1D)Pt = 1D. ■
The above implies attributed random walks are a generalization

of random walks. For instance, ifM = Nv , then random walks are

recovered.

Corollary A.1. Role2vec is space-efficient with space complexity
O(MD + Nv ).

Proof. To store the learned embeddings of the vertex-roles, Role2vec
takes O(MD) space. Also, Role2vec takes O(Nv ) space for a hash
table mapping vertices to their corresponding roles. Thus, the total

space used by Role2vec is O(MD+Nv ). SinceM ≪ Nv , then Role2vec
takes less space compared to baseline methods that require O(NvD)

space. ■

A.2 Space-efficient Embeddings
We now investigate the space-efficiency of the learned embeddings

from the proposed framework and intermediate representation. Ob-

serve that any embedding method that implements the proposed

attributed random walk framework (and intermediate representa-

tion) learns an embedding for each distinct node role w ∈W . As

described earlier in Sec. 2.3, in the worst case, an embedding is

learned for each of the Nv vertices in the graph and we recover

the baseline methods [22, 42] as a special case. In general, the best

embedding most often lies between such extremes and therefore

the embedding learned from a method implementing Role2Vec is
often orders of magnitude smaller in size, sinceM ≪ Nv .
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Figure 2: Evaluating the space savings of Role2Vec.

Given an attribute vector x of motif counts (Figure 1) for an arbi-

trary node inG , we derive embeddings using each of the following:

Φ(xi = [ x2 x3 ]), for i = 1, ...,Nv (13)

Φ(xi = [ x2 x3 x4 x6 x9 ]), for i = 1, ...,Nv (14)

Φ(xi = [ x2 x3 x4 x5 · · · x9 ]), for i = 1, ...,Nv (15)

Φ(xi = [ x1 x2 x3 x4 x5 · · · x9 ]), for i = 1, ...,Nv (16)

where Φ(·) is a function that maps xi to a role w ∈ W . In these

experiments, we use logarithmic binning (applied to each Nv -
dimensional motif feature) with δ = 0.5 and use Φ defined as

the concatenation of the logarithmically binned attribute values.

Embeddings are learned using the different subsets of attributes in

Eq. (13)-(16). For instance, Eq. (13) indicates that vertex roles are

derived using the (logarithmic binned) number of 2-stars x2 and

triangles x3 incident to the given vertex (Figure 1). We measure

the space (in bytes) required to store the embedding learned by

each method. As shown in Figure 2, space savings are defined as

the reduction in embedding size (bytes) relative to the smallest

embedding size among the baseline methods. Let σ denote the size

(bytes) of a Role2Vec embedding and σb be the smallest embedding

size from the baseline methods, then space savings is defined as

1 − σ
σb

. Hence, larger values indicate a larger space savings (reduc-

tion in size). In all cases, the embeddings learned from our approach

require significantly less space (require on average 853x less space

across all graphs) and thus more space-efficient.

A.3 Extensive Related Work
Random walks are widely used in graph embedding methods [9, 22,

42, 44]. Recent embedding methods for graphs have largely been

based on the popular skip-grammodel [11, 37] originally introduced

for learning vector representations of words in text. In particular,

DeepWalk [42] used this approach to embed the nodes such that

the co-occurrence frequencies of pairs in short random walks are

preserved. Recently, node2vec [22] introduced hyperparameters to

DeepWalk that tune the depth and breadth of the random walks.

These approaches are becoming increasingly popular and have been

shown to outperform a number of existing methods. These methods

(and many others) are all based on simple random walks and thus

are well-suited for generalization using the attributed random walk

framework. While most network representation learning methods

use only the graph [8, 22, 42, 51], our framework exploits both the

graph and structural features (e.g., motifs).

Yang et al. [54] proposed an approach called Planetoid. Plane-

toid is an embedding-based approach for semi-supervised learning

and does not use any structural features. Rossi et al. [47] proposed
an approach for (attributed) networks called DeepGL that learns

relational functions representing compositions of one or more op-

erators applied to an initial set of graph features. Recently, Hamil-

ton et al. [23] proposed a similar approach that also aggregates

features from node neighborhoods. Heterogeneous networks [50]

have also been recently considered [10, 14] as well as attributed

networks [26, 27]. Huang et al. [27] proposed an approach for at-

tributed networks with labels whereas Yang et al. [53] used text

features to learn node representations. Liang et al. [32] proposed a

semi-supervised approach for networks with outliers. Bojchevski et
al. [7] proposed an unsupervised rank-based approach. Coley et
al. [13] introduced a convolutional approach for attributed molecu-

lar graphs that learns graph embeddings rather than nodes.

Our work is also related to uniform and non-uniform random

walks on graphs [12, 35]. Random walks are at the heart of many

important applications such as ranking [41], community detec-

tion [40, 43], recommendation [6], link prediction [33], influence

modeling [28], search engines [31], image segmentation [21], rout-

ing in wireless sensor networks [49], and time-series forecast-

ing [18]. These applications and techniques may also benefit from

the notion of attributed random walks.
Finally, our work is also related to role discovery [15] includ-

ing recent feature-based roles [46]. In particular, recent feature-

based role discovery methods [46] learn behavior roles automati-

cally from the graph by first extracting a set of features from the

graph and then using a (non-negative) matrix/tensor factorization

to derive a low-rank approximation of X capturing the role mixed-

memberships of nodes [17] or edges [2] in the graph.
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