
Logical Graph Deep Learning for Circuit Deobfuscation
Runtime Estimation

Zhiqian Chen
∗
, Gaurav Kolhe

§
, Setareh Rafatirad

§
, Chang-Tien Lu

∗
,

Sai Manoj P.D.
§
, Houman Homayoun

§
, Liang Zhao

§

Virginia Tech
∗

George Mason University
§

{czq, ctlu}@vt.edu, {gkolhe, srafatir, spudukot, hhomayou, lzhao9}@gmu.edu

ABSTRACT
Circuit obfuscation is a recently proposed defense mechanism

to protect digital integrated circuits (ICs) from reverse engineer-

ing by logic locking. There have been effective schemes such as

satisfiability-checking (SAT) based attacks that can potentially de-

crypt obfuscated circuits, called deobfuscation. Deobfuscation run-

time could be days or years, depending on the layouts of the obfus-

cated ICs. And hence accurately pre-estimating the deobfuscation

runtime within a reasonable amount of time is highly crucial for

the defenders to optimize their defense. However, ICs are logical

graphs whose edges represent logical operators and hence are rad-

ically different from existing works which typically focus graphs

whose edges are for diffusion or message passing. To automatically

learn the discriminative features and achieve accurate prediction,

this work proposes the first framework that predicts the deob-

fuscation runtime based on graph deep learning. A conjunctive

normal form (CNF) bipartite graph is formulated and leveraged

to represent the original circuit in terms of the SAT hardness. To

overcome the difficulty in capturing the dynamic size of the CNF

graph, an energy-based kernel is proposed to aggregate dynamic

features into an identical vector space. The proposed CNF-Net is an

end-to-end framework which can automatically extract the deter-

minant features for deobfuscation runtime. Extensive experiments

demonstrate its effectiveness and efficiency.

1 INTRODUCTION
The considerable high capital costs on semiconductor manufactur-

ing motivate most semiconductor companies to outsource their

designed integrated circuits (ICs) to the contract foundries for fab-

rication. Despite the reduced cost and other benefits, this trend

has led to ever-increasing security risks such as IC counterfeiting,

piracy and unauthorized overproduction by the contract foundries

[18]. The overall financial risk caused by such counterfeit and unau-

thorized ICs was estimated to be over $169 billion per year [13]. The

major threats from the attackers arise from reverse engineering an

IC by fully identifying its functionality by stripping it layer-by-layer

and extracting the unveiling gate-level netlist. To prevent such re-

verse engineering, IC obfuscation techniques have been extensively

researched in recent years [25]. The general idea is to obfuscate

some gates in an IC so that their gate type cannot be determined by

reverse engineering optically, yet they preserve the functionality

same as the original gates. As shown in Fig. (1), obfuscation is a

process which selects a part of the circuit (in pink) and modifies

the structure of them, whose functionality can be retrieved only if

correct keys are provided at the input.

The runtime of state of the art attack [7, 11] to reverse engineer

the IC mostly depends on the complexity of the obfuscated IC,

which can vary from milliseconds to days or years. Therefore, a

successful obfuscation requires attackers a prohibitive amount of

time (i.e., many years) to deobfuscate. However, gates to obfuscate

come at a heavy cost in finance, power, and space, such trade-off

forces us to search for optimal layout instead of purely increasing

their quantity. Therefore, the best set of gates for being obfuscated

maximizes the runtime for deobfuscating. However, until now it is

still generally based on human heuristics or experience, which is

seriously arbitrary and suboptimal [10]. This is because it is unable

to “try and error” all the different ways of obfuscation, as there are

millions of combinations to try and the runtime for each try (i.e.,

to run the attacker) can be days, weeks, or years.

Figure 1: Illustration of obfuscation and deobfuscation

Our paper focuses on efficient and scalable ways to estimate

the runtime for an attacker to deobfuscate an obfuscated IC. This

research topic is vastly under-explored because of its significant

challenges: Over the recent years, a large number of deobfuscation

methods have been proposed [10]. The behavior of such highly-

nonlinear and strongly-coupling systems is prohibitive for conven-

tional simple models to characterize. The inputs of the runtime

estimation problem is the ICs with selected gates obfuscated. Con-

ventional graph neural networks are not intuitive to be applied to

such type of varying-structured graph across different instances

without significant information loss. Our code and data are available

at https://bitbucket.org/submission-repo/anonymous/src/master/.

This work addresses all the above challenges and proposes the

first generic framework for deobfuscation runtime prediction, based

on Conjunctive Normal Form (CNF) graph representation for ob-

fuscated Circuits. The major contributions of this paper are: (1)
Proposing a new framework, CNF-Net, for deobfuscation runtime

estimation based on graph deep learning.;(2) Designing an energy-

based neural layer to process varying size of graph data.

2 BACKGROUND AND RELATEDWORK
Logic Obfuscation often referred to as logic locking [24] is a hard-

ware security solution that facilitates to hide the Intellectual Prop-

erty (IP) using key-programmable logic gates. Although obfuscation

https://bitbucket.org/submission-repo/anonymous/src/master/

schemes try to minimize the probability of determining the correct

key by an attacker, and avoid making pirated and illegal copies,

introducing SAT attack shows that these schemes can be broken

[19]. In order to perform SAT attack, the attacker is required to

have access to the functional IC along with the obfuscated netlist,

and different SAT-hard schemes such as [22, 23] are proposed. Fur-

thermore, new obfuscation schemes that focus on non-Boolean

behavior of circuits [21], that are not convertible to an SAT cir-

cuit is proposed for SAT resilience. Some of such defenses include

adding cycles into the design [16]. By adding cycles into the de-

sign may cause that the SAT attack gets stuck in the infinite loop,

however, advanced SAT-based attacks such as cycSAT [26] can

extract the correct key despite employing such defenses. Before

the proposed defense ensures robustness against SAT attacks, the

defenders need to run the rigorous simulations which could range

from few minutes up to days or even years.

3 THE PROPOSED MODEL: CNF-NET
The ICs deobfuscation can be considered as solving the Boolean

satisfiability (SAT) of a conjunctive normal form (CNF) since SAT

attack are based on CNF format. Specifically, Fig. 2 exemplifies for

us this process as three steps. Step 1 shows the obfuscated IC where

several gates (the two blue gates) have been encrypted into the new

blue components with additional key inputs (i.e., x1, x2, and x3)
shown in Step 2. These new components can be equivalent to the

original IC only when the key inputs are correctly inferred. This

will be achieved only when the inferred circuit in Step 2 and the

original one in Step 1 will always produce the same output value

of Y given the same values of the inputs A,B,C,D. Such a problem

is routinely formulated as a CNF expression shown in Step 3, and
the solving of it is a standard SAT problem, which has been proved

to be NP-complete [2, 9].

Figure 2: Illustration of transformation fromoriginal circuit
to obfuscated circuit, and then to CNF representation.

Therefore, the runtime prediction is dependent on the CNF ex-

pression. As a standard formula of a Boolean expression, CNF is a

conjunction of one or more clauses, where a clause is a disjunction

of literals. In other words, different clauses are connected by “AND”

operators while each clause consists of one or more literals (or their

negations) connected by “OR” operators [18]. Hence, we formally

present the problem formulation of this paper as follows: Given the

CNF (denoted as CNFi) of the ith obfuscated IC, the goal of this

work is to predict the runtime Ti by a runtime prediction function

f : CNFi → Ti , where Ti is typically a non-deterministic value.

As shown in Fig. 3, an obfuscated IC is encoded into the cor-

responding CNF, which will be mathematically formulated as a

bipartite graph, called CNF bipartite graph. Following the proposed

Figure 3: Workflow of CNF-Net: 1) extract CNF graph from
obfuscated circuit; 2) derive multiple order information
from graph representation; 3) apply energy kernel to aggre-
gate intermediate features;

method, multiple order information is extracted from the CNF bi-

partite graph by calculating the power series of its adjacency matrix.

By leveraging the property of the bipartite graph, the computational

cost is significantly reduced. Without loss of generality, the first

two orders are considered in this model, and it is easy to extend

to any order. After extract raw features of CNF bipartite graph, an
energy-based[15] kernel is proposed to model the dynamic-size

data. This new kernel calculates the energy which identifies the

complexity of corresponding CNF bipartite graph.

3.1 CNF Bipartite Graph Representation
The CNF of an obfuscated circuit is modeled as an undirected and

signed bipartite graph which uses one node type for clauses and

the other for literals. This CNF bipartite graph is exemplified in Fig.

4 and defined as G(E,V l iteral ,V clause), where V l iteral ,V clause

indicate the set of literal and clause nodes, respectively. The sign

of an edge between a literal l and a clause c denotes whether l is
negated or not in c . That means, the edge value is: 1 (positively

connected), if l is in c , and l is positive; -1 (negatively connected),

if l is in c , and l is negative; 0 (disconnected), if l is not in c .
Based on the above formulation, we denote the ith CNF bipartite

graph with adjacency matrixAi ∈ R
Ni×Ni

, where Ni = |V
l
i |+ |V

c
i |

is the total number of literal and clause nodes. Typically, the CNFs

for different obfuscated of the same circuit (or different circuits)

are different, leading to Ai , A j givein i , j. The CNF bipartite
graph provides a comprehensive representation of the CNF without

information loss, and hence enables the end-to-end frameworks to

sufficiently learn any important features automatically. Moreover,

we find that the CNF bipartite graph is a powerful representation

such that its multi-order version can also capture additional mean-

ings of a CNF. Specifically, here, the 1st- and 2nd-order information

is studied first and then expand to higher orders. This multi-order

information is used as an immediate input representation of an

obfuscated IC to explore the patterns associated with the deobfus-

cation runtime estimation.

1st and 2nd orderCNFbipartite graph information: The 1st
order information is the connectivity between literals and clause,

i.e., adjacency matrix A. Note that A is shown on the left side

of Fig. 5, which only has zero values for the diagonal blocks and

non-zero values in other parts, each of which is an incident matrix.

Since the incidence matrix is symmetric in A, only one blue block

is sufficient to represent A without any information loss, leading

2

Figure 4: From CNF to 1st order graph.

to significant computational savings. The 2nd order graph holds

2nd order connectivity which can be obtained by taking a square

of the adjacency matrix, i.e., A2
. Then the numbers in A2

indicate

the connections only between the same type of nodes. As shown

on the right side of Fig. 5, the numbers in the diagonal blocks are

all zero, and non-zero otherwise, which exactly the reverse case of

the 1st order adjacency matrix. This implies that there is no need to

feed the whole A2
into the model as well. Section 3.2 will show a

method which fully utilizes this property to dramatically reduce the

computation cost. Following this, the 3rd order adjacency matrix

indicated the connectivity with 3rd order neighbors and had zero

values again in the diagonal blocks while zeros elsewhere, the same

as the 1st order one shown on the left of Fig. 5. Similarly, the 4th

order one is the same way as that of the 2nd order one, so on so

forth. This means we can save significant amount of computations

when considering higher-order graph information in the same way

as we discuss the case for 1st- and 2nd-order graph. There is a trade-

off between efficiency and order number since more orders mean

more information but take more computational resource. Therefore,

we only consider the 1st and 2nd order to improve efficiency, and

it can be easily extended to any order as needed.

3.2 Energy-based Operators for CNF Graph
Unlike the conventional graphs, the correlation among the neigh-

boring nodes in the CNF bipartite graph does not indicate “proxim-

ity” or “similarity” but instead indicates logical relation with signed

edges in a variable-size bipartite graph. A novel graph encoder

layers have been proposed by leveraging and extending the energy

of restricted Boltzmann machine (RBM) [17].

Figure 5: A simple example showing (left): adjacencymatrix
of 1st order graph: A, which models the example in Fig. 4;
and (right): adjacency matrix of 2nd order graph:A2. There
are 5 clauses: clause C1 = {¬A,B}, clause C2 = {¬x1,B,D},
clause C3 = {x1,C,D}, clause C4 = {x2,C}, clause C5 =
{¬x3,D}

RBMs for CNF bipartite graphs: Inspired by RMB, v and h are

the representations of a literal and a clause, respectively. Similarly,

an energy form is defined for characterizing a CNF: E = −α ·
El iteral − β · Eclause − γ · Einter , where El iteral , Eclause and

Einter are the energies of literals, clauses, and their connections,

and α , β,γ are the weights of them, respectively. Since SAT runtime

estimation over CNF is a highly nonlinear process, traditional linear

function has been generalized by us into a new non-linear version:

E = fΦ(El iteral , Eclause , Einter), (1)

where fΦ is a neural network function controlled by parameter Φ.
In the following, we study bipartite connection energy Einter first

and then El iteral ,Eclause in turn. Based on RBM, Einter is defined
as linear function of literals: Einter =

∑
m
∑
n vmwm,nhn , where

vm is a literal and hn is a clause in one single CNF bipartite graph

Gi . However, Einter is not necessarily a sum function. Therefore,

we generalize Einter inspired by generalizing convolutional graph

layers into bipartite graphs. However, most existing graph deep

learning operators focus on graphs with fixed topology while the

size and topologies of CNF bipartite graph vary across different

instances dramatically. To solve this problem, we design a kernel

for aggregating interaction information in one graph. Specifically,

a d-dimensional vector of pseudo-coordinates is associated with

[v,h], we define a weighting kernel ZΘ(·, ·), so that for one CNF

bipartite graph Gi , we have:

Einter =
∑
m

∑
n

ZΘ(E(vm, hn)) · E(vm, hn), (2)

where ZΘ(·) projects the [v,h] into a new value as the weight

of [v,h], and E(vm ,hn) represents the interaction or edge value

between vm and hn such as 1, -1 or 0. Note that ZΘ function is

implemented by neural networks and controlled by fixed-size pa-

rameters Θ. Similarly, we further generalize El iteral , Eclause as:

El iteral =
∑
m

ZΘ(vm) · vm and Eclause =
∑
n

ZΘ(hn) · hn, (3)

where v and h indicate attributes of literal and clause respectively.

Therefore, the final model for CNF is:

E = fΦ(
∑
m

ZΘ(vm) · vm,
∑
n

ZΘ(hn) · hn,
∑
m

∑
n

ZΘ(E(vm, hn)) · E(vm, hn)), (4)

Energy model for 1st-order graph operators: Eq. (4) above
dose not consider the sign of the edges between literals and clauses.

Hence, positive and negative information is encoded separated:

E = {E+,E−}. To capture the sign information, the corresponding

incidence matrix INC ∈ R |V
l iteral |× |V clause |

is utilized:

Normalized positive and negative edge distribution in clause scope
(NPNC): we count positive and negative edges for each clause, and

take normalization of both positive and negative counts, so there

are two values for each clause, i.e., cpos and cneд . If there exist

|V clause | clauses, there will be 2|V clause | number of features:〈
c+clause (0), c

−
clause (0)

〉
,
〈
c+clause (1), c

−
clause (1)

〉
, ..., (5)

which can be obtained by column-wise summation on positive

values only and negative only of incidence matrix.

Normalized positive and negative edge distribution in literal scope
(NPNL): Similarly, positive and negative degrees are counted for

each literal, and the normalization per literal is taken. there will

be 2|V l iteral | number of features. In sum, positive- and negative-

valued edges are treated as separate operators, so we have 2 feature

maps for NPNC after normalization.

3

MSE Pearson Spearman

c432 c499 c880 c1355 c1908 c2670 c432 c499 c880 c1355 c1908 c2670 c432 c499 c880 c1355 c1908 c2670

EN 17.422 16.836 18.488 19.873 17.550 17.223 0.333 0.112 0.436 0.046 0.301 0.440 0.625 0.491 0.726 0.609 0.553 0.704

LARS 17.454 16.421 18.546 19.872 17.593 17.313 0.314 0.038 0.331 -0.000 0.393 0.332 -0.123 0.215 0.888 0.150 0.437 0.895
LASSO 17.342 17.120 18.358 19.896 17.407 17.124 0.572 0.076 0.515 -0.038 0.441 0.533 0.417 0.353 0.377 0.300 0.374 0.622

LR 17.315 17.518 18.281 19.861 17.591 16.744 0.582 -0.088 0.550 0.105 0.355 0.727 0.426 0.162 0.215 0.208 0.347 0.122

OMP 17.421 16.976 18.521 19.881 17.433 17.304 0.314 0.038 0.331 -0.000 0.393 0.332 -0.123 0.215 0.888 0.150 0.437 0.895
PAR 17.452 16.226 18.618 19.876 17.596 17.409 0.150 0.172 0.306 0.105 0.220 0.318 0.794 0.927 0.869 0.947 0.812 0.871
Ridge 17.379 17.032 18.467 19.879 17.469 17.154 0.489 0.079 0.445 0.025 0.384 0.503 0.526 0.394 0.462 0.477 0.371 0.594

SGD 68.412 72.478 65.875 73.447 72.771 75.613 -0.159 0.145 0.226 -0.121 0.202 -0.332 -0.808 0.887 0.812 -0.941 0.894 -0.895

SVR 17.446 16.259 18.613 19.876 17.612 17.450 0.737 0.092 0.375 0.016 0.080 0.213 0.411 0.533 0.476 0.540 0.775 0.839
Theil 20.350 20.089 18.512 19.941 20.063 17.106 0.012 -0.038 0.546 0.033 0.007 0.615 0.354 0.365 0.288 0.562 0.551 0.240

DistNet 174.0315 18.406 9.3729 12.8988 22.8172 7.0459 0.175 0.638, 0.5472 0.265 0.8915 0.4034 -0.1229 0.8043 0.774 0.8903 0.5021 0.0995

DCNN 4.458 3.897 7.431 5.356 4.353 6.312 -0.061 0.034 0.203 -0.099 -0.021 -0.031 0.030 -0.005 0.213 -0.037 -0.043 -0.030

CNF-Net 5.758 4.164 7.719 6.602 20.063 7.273 0.736 0.686 0.770 0.878 0.710 0.855 0.794 0.858 0.888 0.944 0.5519 0.884

Table 1: Prediction performance on 6 benchmark circuits: MSE, Pearson and Spearman correlation

Figure 6: Prediction performance on samples from two datasets c432 and c880(negative values are removed): x-axis is the data
index and y-axis denote predicted runtime compared with real runtime(label ofdata)

Energy Model for the 2nd-order graph operators The 2nd
order of graph with adjacency matrix A2

denotes the literal-wise

and clause-wise mutual information, which corresponds to the top

left and bottom right block respectively in the right subfigure of

Fig. 5. To further emphasize this important trait and reduce the

computational complexity, our model only distinguish zero with

non-zero values in 2nd order graph information, which means that

we only consider if: two literals co-appear in the same clause or

two clauses share the same literal.

4 EVALUATION
For the experimental setup, we have used the ISCAS-89 benchmarks

(http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/), and

obfuscation instances on 6 different circuits are selected as 6 bench-

mark datasets. The synthesized netlist is further converted to the

bench format as per the SAT-solver requirements [18]. The in-

house developed script replaces the gates with the Look-up-table

of size 2, as described in [8]. The output of the script is the ob-

fuscated bench file along with the adjacency matrix. The time

taken by the SAT-solver to find the correct key is the deobfuscation

time. We compare against several state of art regression models

(https://scikit-learn.org/stable/modules/linearmodel.html): Linear

Regression(LR),Passive Aggressive Regression(PAR) [3], LASSO

[20], Epsilon-Support Vector Regression (SVR), Ridge Regression

(RR) [14], Elastic Net(EN) [27], Orthogonal Matching Pursuit (OMP)

[12], SGD Regression, Least Angle Regression (LARS) [5], Theil-Sen

Estimators(Theil) [4]. In addition, a neural network for predicting

runtime work DistNet [6] is employed.

Performance analysis Table (1) shows the MSE after taking

ln(·), and two correlation for all the methods on 6 datasets. DCNN

achieved the best MSE score throughout all datasets, while our

method is the second best. MSE scores of regression models are

much higher, which shows their ineffectiveness. On the contrary,

this observation implies the effectiveness of the proposed methods

in considering and utilizing the graph features. Regarding corre-

lation, CNF-Net outperformed all the other baselines. This advan-

tage confirms our model can well identify the trend of runtime.

In terms of the correlation between predicted runtime and real

runtime, DCN’s scores are significantly small, i.e., less than 20%

of the Pearson coefficient. While CNF-Net achieves around 70%

correlation and up to 87% of Pearson coefficient at c1355 dataset.

The same advantage of CNF-Net shows up in Spearman evalua-

tion: the correlation score is more than 80% for five datasets, which

verifies its effectiveness in estimating the runtime trend. The per-

formance on Spearman of PAR is similar to CNF-Net, which also

achieved high correlations. Overall, CNF-net is balanced and has

good performance in predicting runtime task. However, the incon-

sistent performance of DCNN using different metrics shows the

insufficiency of these metrics. Therefore, random samples were

evaluated on all the methods to illustrate the differences among

them. As shown in Fig. (6), 56 samples from dataset c432 were used

to perform evaluation one by one. DCNN predicted runtime by a

constant value which is close to the mean of the distribution. This

can help DCNN to achieve low MSE, but it is useless in practice

since DCNN cannot distinguish high values from low values. CNF-

Net can almost match the trend of these samples except extremely

high values.

5 CONCLUSION
This paper presents a novel graph neural networks framework to

identify the security level of obfuscated ICs by predicting runtime

of SAT attack. Our work proposed to employ a bipartite graph as

a representation of obfuscated ICs and characterize this graph by

4

http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/
https://scikit-learn.org/stable/modules/linear_model.html

multi-order information without any information loss. An energy-

based kernel is designed to aggregate dynamic features of the graph

representation. By utilizing the special properties of the bipartite

graph under our case, the computational cost is further reduced.

Extensive experiments on several benchmarks demonstrated the

advantageous performance of the proposed model over the existing

method for runtime prediction task.

REFERENCES
[1] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In Advances in Neural Information Processing Systems. 1993–2001.
[2] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing. ACM,

151–158.

[3] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. 2006. Online passive-aggressive algorithms. Journal of Machine Learning
Research 7, Mar (2006), 551–585.

[4] Xin Dang, Hanxiang Peng, Xueqin Wang, and Heping Zhang. 2008. Theil-Sen

estimators in a multiple linear regression model. Olemiss. edu (2008).

[5] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. 2004. Least

angle regression. The Annals of statistics 32, 2 (2004), 407–499.
[6] Katharina Eggensperger, Marius Lindauer, and Frank Hutter. 2018. Neural Net-

works for Predicting Algorithm Runtime Distributions.. In IJCAI. 1442–1448.
[7] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. 2015. In-

tegrated Circuit (IC) Decamouflaging: Reverse Engineering Camouflaged ICs

within Minutes.. In NDSS.
[8] Hadi Mardani Kamali, Kimia Zamiri Azar, Kris Gaj, Houman Homayoun, and

Avesta Sasan. 2018. LUT-Lock: A Novel LUT-based Logic Obfuscation for FPGA-

Bitstream and ASIC-Hardware Protection. in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI) (2018), 1–6.

[9] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. Springer, 85–103.

[10] Soroush Khaleghi and Wenjing Rao. 2018. Hardware Obfuscation Using Strong

PUFs. In 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
321–326.

[11] Duo Liu, Cunxi Yu, Xiangyu Zhang, and Daniel Holcomb. 2016. Oracle-guided

incremental SAT solving to reverse engineer camouflaged logic circuits. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 433–438.

[12] Stéphane G Mallat and Zhifeng Zhang. 1993. Matching pursuits with time-

frequency dictionaries. IEEE Transactions on signal processing 41, 12 (1993),

3397–3415.

[13] IHS Technology Press Release: Top 5 most counterfeited parts represent a

$169 billion potential challenge for global semiconductor industry. [n. d.].

https://technology.ihs.com/405654/top5-most-counterfeited-parts-represent-

a-169-billion-potentialchallenge-for-global-semiconductor-market, 2. ([n. d.]).
http://www.test.org/doe/

[14] Andrew Y Ng. 2004. Feature selection, L 1 vs. L 2 regularization, and rotational

invariance. In Proceedings of the twenty-first international conference on Machine
learning. ACM, 78.

[15] Christopher Poultney, Sumit Chopra, Yann L Cun, et al. 2007. Efficient learning

of sparse representations with an energy-based model. In Advances in neural
information processing systems. 1137–1144.

[16] Shervin Roshanisefat, Hadi Mardani Kamali, and Avesta Sasan. 2018. SRCLock:

SAT-Resistant Cyclic Logic Locking for Protecting the Hardware. In Proceedings
of the 2018 on Great Lakes Symposium on VLSI (GLSVLSI ’18).

[17] Paul Smolensky. 1986. Information processing in dynamical systems: Foundations
of harmony theory. Technical Report. Colorado Univ at Boulder Dept of Computer

Science.

[18] Pramod Subramanyan, Sayak Ray, and SharadMalik. 2015. Evaluating the security

of logic encryption algorithms. In Hardware Oriented Security and Trust (HOST),
2015 IEEE International Symposium on. IEEE, 137–143.

[19] Pramod Subramanyan, Sayak Ray, and SharadMalik. 2015. Evaluating the security

of logic encryption algorithms. In Hardware Oriented Security and Trust (HOST),
2015 IEEE International Symposium on. IEEE, 137–143.

[20] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological) (1996), 267–288.

[21] Y. Xie and A. Srivastava. 2017. Delay locking: Security enhancement of logic

locking against IC counterfeiting and overproduction. In ACM/EDAC/IEEE Design
Automation Conference (DAC). 1–6.

[22] Y. Xie and A. Srivastava. 2018. Anti-SAT: Mitigating SAT Attack on Logic Locking.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2018), 1–1.

[23] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu. 2016. SARLock: SAT

attack resistant logic locking. In 2016 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST).

[24] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri. 2016. On Improving the Secu-

rity of Logic Locking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 9 (Sept 2016), 1411–1424.

[25] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed

Ashraf, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. 2017. Provably-secure

logic locking: From theory to practice. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1601–1618.

[26] H. Zhou, R. Jiang, and S. Kong. 2017. CycSAT: SAT-based attack on cyclic

logic encryptions. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 49–56.

[27] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

5

https://technology.ihs.com/405654/top5-most-counterfeited-parts-represent-a-169-billion-potentialchallenge-for-global-semiconductor-market, 2
https://technology.ihs.com/405654/top5-most-counterfeited-parts-represent-a-169-billion-potentialchallenge-for-global-semiconductor-market, 2
http://www.test.org/doe/

67, 2 (2005), 301–320.

APPENDIX A ALGORITHM

Algorithm 1: CNF-Net
Input: G = {G

1
, G

2
, ... Gi ..., GN }, the real runtime Ti for

instance Gi
Output: a neural network function with parameters Φ, Θ, parameters

of fully connected layers(τ), and distribution parameter σ
1 // data preparing

2 transform from obfuscated circuit Gi into CNF representation CN Fi
and derive bipartite graph

3 extract adjacency matrix A from this bipartite graph and calculate

power series : {A1, A2, ..., AN } ▷ Section (3.1)

4 compute distribution features based on power series ▷ Eq. (3)

5 θ = {Θ, Φ, τ , µ, σ }
6 initialize θ with standard Gaussian

7 // update CNF-Net

8 repeat
9 apply the energy kernel on laterals and clauses. ▷ Eq. (3)/

10 apply the energy kernel on the connection between laterals and

clauses ▷ Eq. (2)

11 calculate the overall energy E and then feed E into fully

connected layer ▷ Eq. (1)

12 get a intermediate predicted value t , and apply distribution e t as
predicted time calculate residues δ = T − e t

13 compute derivatives to update parameters: θ ← θ + α∇θ δ ,
where α is learning rate

14 until δ convergence;

The algorithm (1) first prepare CNF graph adjacency as obfus-

cated circuit representation (line 2). Then power series are extracted

based on CNF graph (line 3). The model computes feature maps

based on power series 4. All model parameters are initialized by

Gaussian distribution (line 5 to 6). In each training iteration, energy-

based kernel is applied to literals, clauses and their interaction (line

9 to 10). The aggregation of energy is treated as features of the tar-

geted obfuscated IC. To model the variance of runtime for similar or

exactly the same instance, a distribution kernel is applied in the last

layer. This distribution kernel can be replaced with any other suit-

able distributions such as logarithmic or exponential kernel. The

algorithm (1) presents such idea using normal distribution. Then

typical parameter optimization(i.e., Adam) of deep neural networks

is employed.

APPENDIX B RELATIONSHIP WITH SPATIAL
GRAPH NN

As a state-of-art of the spatial graph neural networks model, the

superiority of DCNN [1] beyond the other graph deep learning

models is the capacity in handling graphs with variable sizes and

considering multiple orders, which is also one advantage of our

model. Our study demonstrates that DCNN is a special case of our

CNF-NET:

Lemma B.1. CNF-Net is a generalization of DCNN, while DCNN
is a special case of CNF-Net when setting the feature aggregation to
mean function.

Figure 7: Comparison with DCNN

Figure 8: Real runtime compared with prediction time

Proof. DCNN can be extended to whole graph modeling by

taking the mean activation over the features on diffusion P∗t Xt :

Z = f (W c ⊙ 1
T
Nt P

∗
tXt /Nt) = f (W c ⊙ (

1

Nt
)⊤Nt︸ ︷︷ ︸

aggregation

P ∗tXt), (6)

where (1

Nt
)Nt is a Nt × 1 vector of value

1

Nt
), t indicates the graph

index, and P∗ is power series of adjacency matrix. Following the

same representation, we can rewrite CNF-Net as:

Z = f (W c ⊙ fE (·)︸︷︷︸
aggregation

P ∗tXt), (7)

where fE (·) represents a vector of

[
ZΘ(ϕ(i))

]df eat−1
i=0 , and df eat

indicate dimension of a feature and ϕ(i) is the i-th value along a

feature. Therefore fE (·) is a vector of dynamic size. □

APPENDIX C PREDICTION EFFICIENCY
Our task is to predict runtime efficiently. Otherwise, there is no

practical value for this method. As shown in Fig. (8), prediction time

(pink) using the proposed model is compared with real runtime in

blue (i.e., running SAT-based attack). CNF-Net took a stable and

little time to predict the runtime, which demonstrates its efficiency.

6

	Abstract
	1 Introduction
	2 Background and Related Work
	3 The proposed model: CNF-Net
	3.1 CNF Bipartite Graph Representation
	3.2 Energy-based Operators for CNF Graph

	4 Evaluation
	5 Conclusion
	References
	A Algorithm
	B Relationship with Spatial Graph NN
	C Prediction efficiency

