
Learning Dual Graph Representations for AMR-to-Text
Generation

Leonardo F. R. Ribeiro
Research Training Group AIPHES

and UKP Lab
Technische Universität Darmstadt
ribeiro@aiphes.tu-darmstadt.de

Claire Gardent
CNRS/LORIA
Nancy, France

claire.gardent@loria.fr

Iryna Gurevych
Research Training Group AIPHES

and UKP Lab
Technische Universität Darmstadt

gurevych@ukp.informatik.tu-darmstadt.de

ABSTRACT
Generating text from graph-based data, such as Abstract Meaning
Representation (AMR), is a challenging task due to the inherent
difficulty in how to properly encode the structure of a graph with la-
beled edges. To address this difficulty, we propose a new model that
encodes the different but complementary perspectives of structural
information contained in the AMR graph. Our architecture learns
parallel and complementary representations of nodes using state-of-
the-art graph encoders. Experimental results demonstrate that the
dual graph representation leads to improvements in AMR-to-Text
generation, achieving 24.32 BLEU on LDC2015E86 dataset, outper-
forming recent models and 27.87 BLEU on LDC2017E10 dataset,
outperforming state of the art by 3.33 points.

KEYWORDS
AMR, Text Generation, Graph Neural Networks

1 INTRODUCTION
Abstract Meaning Representation (AMR; Banarescu et al. [1]) is
a linguistically-grounded semantic formalism that represents the
meaning of a sentence as a rooted directed graph, where nodes are
concepts and edges are semantic relations. As AMR abstracts away
from surface word strings and syntactic structure producing a lan-
guage neutral representation of meaning, it is potentially beneficial
in many semantic related NLP tasks, including text summarization
[18] and machine translation [27].

The purpose of AMR-to-Text generation is to produce a text
which verbalises the meaning encoded by the input AMR graph.
This is a challenging task as capturing complex structural infor-
mation stored in graph-based data is not trivial. Recently, Graph
Neural Networks (GNNs) have emerged as a powerful class of meth-
ods for learning richer graph representation [4, 32]. Previous work
have applied GNNs to the task of AMR-to-Text generation [2, 8, 28]
directly encoding the graphs. However, they rely on anonymiza-
tion thereby losing more precise semantic meaning or do not well
exploit the graph structure information.

In this paper, we explore the usefulness of encoding different
views of the AMR graph. Pre-neural work on Data-to-Text gen-
eration focus on modeling different views of the input. Carroll
and Oepen [6] propose a bottom-up surface realiser which uses a
chart-based generation strategy, whereas Narayan and Gardent [21]
present a hybrid bottom-up and top-downmodel for text generation
with lexicalist grammars. Inspired by these pre-neural approaches,
we create top-down and bottom-up graph perspectives and employ
graph encoders to learn their graph contextualized representation.

Therefore, for each concept or relation, each graph encoder spe-
cializes in learning a different representation (in an incoming or
outgoing perspective). Recent work [2, 8, 15, 19, 28] aggregate all
the immediate neighborhood information of a node at the same
time. To alleviate this issue, we develop parallel and complementary
representations of the AMR graph. Thereby, we ease the burden
on the neural model in representing every relation at once. More-
over, it is not required to add positional information [2], since the
graphs do not become essentially undirected. Indeed, Moryossef
et al. [20] show that high-quality structured inputs enhance the
text generation process.

Our proposed models learn richer node representations employ-
ing graph encoders based on different classes of GNNs1. Experi-
ments on two AMR datasets demonstrate the effectiveness of our
approach, leading to improvements that outperform state-of-the-art
models in AMR-to-Text generation, including the one that leverages
additional syntactic information [5].

2 RELATEDWORK
Early work on AMR-to-Text generation employs statistical methods
[10, 24] and applies linearization of the graph by means of a depth-
first traversal. Recent approaches have exhibited success using
encoder-decoder neural architectures. Konstas et al. [16] achieve
promising results on this task. However, they strongly rely on the
addition of silver training data and anonymization of named entities
– our approach, in contrast, allows to omit both of these steps.

A graph-to-sequence model was first introduced by Xu et al.
[33] that use a inductive node embedding approach based on the
GraphSAGE [12]. Marcheggiani and Perez-Beltrachini [19] show
that explicitly encoding the structure of the graph is beneficial with
respect to sequential encoding, evaluating their model on two tasks,
WebNLG [11] and SR11Deep [3].

Song et al. [28] and Beck et al. [2] apply recurrent networks in
their models to learn node embeddings for AMR graphs, in order
to generate sentences. In particular, Song et al. [28] use a graph
LSTM as the graph encoder, whereas Beck et al. [2] apply a gated
recurrent unit (GRU). We go a step further in that direction and
develop parallel encodings of graphs which are able to highlight
different graph properties. Koncel-Kedziorski et al. [15] propose
an attention model for graph encoding based on Graph Attention
Networks (GAT) [30], that generates sentences from knowledge
graphs.

1Our code is available at https://github.com/UKPLab/dlg19-dualgraph2text

https://github.com/UKPLab/dlg19-dualgraph2text

DLG’19 Workshop, KDD’19, August 5, 2019, Anchorage, Alaska, US -

Cao and Clark [5] factor the generation process leveraging syn-
tactic information to improve the performance. However, they lin-
earize both AMR and constituency graphs, which implies that im-
portant parts of the graphs cannot well be represented (e.g., coref-
erence). Our work is related to Damonte and Cohen [8] who show
that GCNs alone cannot accomplish good performance for AMR-
to-Text generation. They use stacking of GCN and LSTM layers to
improve the model capacity. However, our model is substantially
different: (i) we learn dual representation capturing top-down and
bottom-up adjuvant views of the graph, (ii) employ more effective
graph encoders (with different neighborhood aggregations) than
GCN and (iii) apply copy and coverage mechanisms and do not
utilize entity anonymization [16].

3 MODEL IMPLEMENTATION
3.1 Graph preparation
Let G = (V ,E,R) denote a rooted directed AMR graph with nodes
vi ∈ V and labeled edges (vi , r ,vj) ∈ E, where r ∈ R is a relation
type. n = |V | andm = |E | denote the number of nodes and edges,
respectively. We convert each AMR graph into an unlabeled con-
nected bipartite graph Gt = (Vt ,Et), transforming each labeled
edge (vi , r ,vj) ∈ E into two unlabeled edges (vi , r), (r ,vj) ∈ Et ,
with |Vt | = n +m and |Et | = 2m. This process, called Levi Transfor-
mation [2], turns original edges into nodes creating an unlabeled
graph. The new graph allows us directly representing the relation-
ship between nodes using embeddings.

Finally, we create a graph Gr = (Vt ,Er), where each directed
edge ek = (vi ,vj) ∈ Et becomes ek = (vj ,vi) ∈ Er , that is, we
reverse the direction of original edges. Note that Gt and Gr are
top-down and bottom-up perspectives of the original graph, respec-
tively.

3.2 Model
We represent each node with a node embedding ni ∈ Rd , gener-
ated from the word contained in the node. In order to explicitly
encode structural information, our encoder starts with two graph
encoders, denoted by GEt and GEr , that compute representations
for nodes in Gt and Gr , respectively. The goal of GEs is to capture
the richer structural representation of each vertex considering the
graph structure, that is, each GE focuses on the structure of its
particular graph, Gt or Gr . Note that Gt and Gr capture top-down
and bottom-up perspectives of the graph structure. Moreover, each
graph encoder is forced to focus on its own perspective, learning
node representations based on its specific view of the graph. In
particular, for each node vi ∈ Vt , the GE receives its embedding
and the graph structure and computes its node representation:

hti = GEt (ni ,Gt),

hri = GEr (ni ,Gr)

Each nodevi is represented by two different hidden representations,
hti and h

r
i . Note that we learn two representations per relation and

node of the original AMR graph. The final hidden states hti and h
r
i ,

and embedding ni contain different information regarding vi . We
concatenate them building a final node representation:

ri =
[
hti ∥ h

r
i ∥ ni

]

Figure 1: Encoder architecture. The encoder receives the two
representations of theAMRgraph and generates richer node
representations that are used in the decoder.

The final representation ri is employed in a sequence input of
a bidirectional LSTM [25]. For each AMR graph, we generate a
node sequence by depth-first traversal order. In particular, given
a representation sequence from r1 to rN , the hidden forward and
backward states of ri are defined as:

−→
h i = LSTMf (ri ,

−→
h i−1),

←−
h i = LSTMb (ri ,

←−
h i−1),

where LSTMf is a forward LSTM and LSTMb is a backward LSTM.
Then we obtain the final hidden states by concatenating them as
hi = [

−→
h i ∥
←−
h i], which saves the information of both the preceding

and the following nodes. Figure 1 shows the proposed encoder
architecture.

Finally, an attention-based decoder is leveraged to generate sen-
tences, attending to edges and nodes hidden representations. Pre-
vious work [2, 5, 8] use anonymization to handle names and rare
words, alleviating the data sparsity. Differently, to avoid repetition
and to address out-of-vocabulary issues for rare target words, we
employ copy and coverage mechanisms [26].

3.3 Graph Neural Networks
For each GE, we employ distinct strategies for neighborhood ag-
gregation, adopting three GNNs: Gated Graph Neural Networks
(GGNN, Li et al. [17]), Graph Attention Networks (GAT, [30]) and
Graph Isomorphic Networks (GIN, [32]).

Gated Graph Neural Networks. GGNN employs gated recurrent
units to encode node representations. In particular, the l-th layer

Learning Dual Graph Representations for AMR-to-Text Generation DLG’19 Workshop, KDD’19, August 5, 2019, Anchorage, Alaska, US

1 4 7 10 13 16 19
diameter (d)

10 4

10 3

10 2

10 1

100

P[
D

 k
]

1 4 7 10 13 16 19
degree (d)

10 5

10 4

10 3

10 2

10 1

100

Figure 2: Distribution of the AMR graph diameter (left) and
node degree (right) in the training set for LDC2015E85 (red)
and LDC2017T10 (blue) datasets.

of a GGNN is calculated as:

h(l)i = GRU
(
h(l−1)i ,

∑
j ∈N(i)

W1h
(l−1)
j

)
whereN(i) is the immediate neighborhood ofvi and GRU is a gated
recurrent unit [7].

Graph Attention Networks. GAT applies attentive mechanisms
to improving the exploitation of non trivial graph structure. They
encode node representations by attending over its neighbors, fol-
lowing a self-attention strategy:

h(l)i = αi,iW2h
(l−1)
i +

∑
j ∈N(i)

αi, jW2h
(l−1)
j

where attention coefficients αi, j are computed as:

αi, j =
exp

(
σ
(
a⊤[W2h

(l−1)
i ∥W2h

(l−1)
j]

))
∑

k∈N(i)
exp

(
σ
(
a⊤[W2h

(l−1)
i ∥W2h

(l−1)
k]

))
where σ is the activation function and ∥ denotes concatenation.
W1,W2 and a are model parameters.

Graph Isomorphic Networks. GIN is a GNN as powerful as theWL
test [31] in representing isomorphic and non-isomorphic graphs
with discrete attribute. Its l-th layer is defined as:

h(l)i = hW
(
h(l−1)i +

∑
j ∈N(i)

h(l−1)j

)
where hW is a multi-layer perceptron (MLP).

Each of these GNNs applies different neighborhood aggregation
and has achieved expressive results onmany graph tasks [17, 30, 32].

4 EXPERIMENTS
4.1 Data
We use two AMR corpora, LDC2015E85 and LDC2017T10 with the
default split of 16833/1368/1371 and 36521/1368/1371 instances for
training, development and testing, respectively2. Figure 2 shows
the distribution of AMR graph diameter and node degree for both
datasets. The AMR graph structures are similar for most examples.
Note that 90% of AMR graphs in both datasets have diameter less
2The datasets can be found at https://amr.isi.edu/download.html

Model BLEU METEOR
LDC2015E86

Song et al. (2018) [28] 23.28 30.10
Damonte et al. (2019) [8] 24.40 23.60
Cao et al. (2019) [5] 23.50 -
seq2seq 22.55 ± 0.17 29.90 ± 0.31
graph2seq-GIN 22.93 ± 0.20 29.72 ± 0.09
graph2seq-GAT 23.42 ± 0.16 29.87 ± 0.14
graph2seq-GGNN 24.32 ± 0.16 30.53 ± 0.30

LDC2017T10
Song et al. (2018) [28] 24.86 31.56
Back et al. (2018) [2] 23.30 -
Damonte et al. (2019) [8] 24.54 24.07
Cao et al. (2019) [5] 26.80 -
seq2seq 22.73 ± 0.18 30.15 ± 0.14
graph2seq-GIN 26.90 ± 0.19 32.62 ± 0.04
graph2seq-GAT 26.72 ± 0.20 32.52 ± 0.02
graph2seq-GGNN 27.87 ± 0.15 33.21 ± 0.15

Table 1: BLEU and METEOR scores on the test set of
LDC2015E86 and LDC2017T10 datasets.

or equal than 11 and 90% of nodes have degree of 4 or less. Very
similar graphs pose difficulty for the graph encoder by making it
harder to learn the differences between their similar structures.
Therefore, the word embeddings used as input play an important
role in helping the model to deal with language information. That
is one of the reasons why we concatenate this information in the
final node representation ri .

4.2 Implementation details
We extract vocabularies from the training sets and the word embed-
dings are initialized from GloVe pretrained word embeddings [23]
on Common Crawl. Hyper parameters are tuned on the develop-
ment set of LDC2015E86 dataset. For GIN, GAT and GGNN graph
encoders, we set the number of layers to 2, 5 and 5, respectively.
To regularize the model, during training we apply dropout [29]
between graph layers with a rate of 0.3. The graph encoder hidden
vector sizes are set to 300 and hidden vector sizes for LSTMs are
set to 900.

Our models are trained end-to-end to minimize the negative joint
log likelihood of the target text vocabulary and the copied node, and
are trained for 15 epochs with early stopping based on development
accuracy. For our models and baseline we used a two-layer LSTM
decoder. We use Adam optimization [13] as the optimizer with an
initial learning rate of 0.001 and 20 as batch size. Beam search with
beam size of 5 is used for decoding.

4.3 Results
We compare our models against several state-of-the-art results re-
ported on these datasets [2, 5, 8, 28]. We call our models graph2seq-
GIN (isomorphic encoder), graph2seq-GAT (graph-attention en-
coder) and graph2seq-GGNN (gated-graph encoder), according to
the graph encoder utilized. As a baseline, we train an attention-
based encoder-decoder model with copy and coverage mechanisms

https://amr.isi.edu/download.html

DLG’19 Workshop, KDD’19, August 5, 2019, Anchorage, Alaska, US -

AMR graph (a / agree :ARG0 (a2 / and :op1 (c / country :wiki China :name (n / name :op1
China)) :op2 (c2 / country :wiki Kyrgyzstan :name (n2 / name :op1 Kyrgyzs-
tan))) :ARG1 (t / threaten-01 :ARG0 (a3 / and :op1 (t2 / terrorism) :op2 (s
/ separatism) :op3 (e / extremism)) :ARG2 (a4 / and :op1 (s3 / security :mod
(r / region)) :op2 (s4 / stability :mod r)) :time (s2 / still) :ARG1-of (m /
major-02)) :medium (c3 / communique :mod (j / joint)))

REF China and Kyrgyzstan agreed in a joint communique that terrorism, separatism and extremism still pose major
threats to regional security and stability.

seq2seq In the joint communique, China and Kyrgyzstan still agreed to threaten terrorism, separatism, extremism and
regional stability.

Song et. al (2018) [28] In a joint communique, China and Kyrgyzstan have agreed to still be a major threat to regional security, and regional
stability.

graph2seq-GGNN At a joint communique, China and Kyrgyzstan agreed that terrorism, separatism and extremism are still a major
threat to region security and stability.

Table 2: Examples of text generation from AMR graphs. REF is the reference sentence.

[26], and use a linearized version of the graph generated by depth-
first traversal order as input. We use both BLEU [22] and METEOR
[9] as evaluation metrics3. In order to mitigate effects of random
seeds, we report the averages for 4 training runs of each model
along with their standard deviation. Table 1 shows the comparison
between our model, the baseline and other neural models on the
test set of the two datasets.

For both datasets, our approach significantly outperforms the
seq2seq baselines. In LDC2015E86, graph2seq-GGNN achieves a
BLEU score of 24.32, 4.46% higher than Song et al. [28], who also
use the copy mechanism. This indicates that our architecture can
learn to generate better signals for text generation. On the same
dataset, we have competitive result to Damonte and Cohen [8],
however we do not rely on preprocessing anonymisation avoid
losing more precise semantic signals. In LDC2017T10, graph2seq-
GGNN achieves a impressive BLEU score of 27.87, which is 13.56%
higher than the best state-of-the-art model that does not employ
external information [8].

We also outperform Cao and Clark [5] improving BLEU scores by
3.48% and 4%, in LDC2015E86 and LDC2017T10, respectively. In con-
trast to their work, we do no rely on (i) leveraging supplementary
syntactic information and (ii) we do not require an anonymiza-
tion pre-processing step. graph2seq-GIN and graph2seq-GAT have
comparable performance on both datasets, with graph2seq-GIN
having a slightly better performance in both BLEU and METEOR
scores on LDC2017T10. Interestingly, graph2seq-GGNN has the
better performance among our models. This suggests that graph
encoders based on RNNs are very effective in text generation mod-
els. Our results empirically show that it is possible to incorporate
more refined structured biases into the model, without relying on
entity anonymization, positional embeddings and other artificial
modifications in the topology of the graph.

Table 2 shows example outputs of seq2seq, Song et al. [28] and
graph2seq-GAT. REF denotes the reference output sentence. While
this is a single example, it suggests that computing dual node rep-
resentation is beneficial for this task, which is supported by quanti-
tative results.

3For BLEU, we use the multi-BLEU script from the MOSES decoder suite [14].
For METEOR, we use the original meteor-1.5.jar script (https://github.com/cmu-
mtlab/meteor)

Model BLEU METEOR SIZE
biLSTM 22.50 30.42 57.6
GEt + biLSTM 26.33 32.62 59.6
GEr + biLSTM 26.12 32.49 59.6
GEt + GEr + biLSTM 27.37 33.30 61.7

Table 3: Ablation study on LDC2017T10 datasets. BLEU and
METEOR scores on the development set of LDC2017T10 and
number of model parameters (millions) including embed-
dings.

4.4 Ablation study
In Table 3, we report an ablation study on the impact of each compo-
nent of our model on the development set of LDC2017T10 dataset,
by removing the graph encoders. We also report the number of
parameters used in each model. The first thing we notice is the huge
increase in metric scores (17% in BLEU) when applying the graph
encoder layer (only withGEt), as the neural model receives signals
regarding the graph structure of the input. The dual representation
(with GEt and GEr) helps the model with a different view of the
graph, increasing BLEU andMETEOR scores by 1,04 and 0.68 points,
respectively. The complete model has slightly more parameters than
the model without graph encoders (57.6M vs 61.7M).

5 CONCLUSION
We have studied the problem of generating text from AMR graphs.
We have shown that our models exceed in producing text fromAMR
graphs, in comparison to state-of-the-art techniques [2, 5, 8, 28]. It
overcomes their limitations by using a dual graph-encoder which
jointly creates two parallel and adjuvant representations of the
graph. We showed that encoding the dual representation enhances
the overall performance. Finally, different models to generate graph
representations tend to capture different properties [4], and choos-
ing the most suitable graph encoder and architecture is important
when considering different graph-based NLP tasks.

ACKNOWLEDGMENTS
This work has been supported by the German Research Founda-
tion through the research training group “Adaptive Preparation of
Information from Heterogeneous Sources” (AIPHES, GRK 1994/1).

https://github.com/cmu-mtlab/meteor
https://github.com/cmu-mtlab/meteor

Learning Dual Graph Representations for AMR-to-Text Generation DLG’19 Workshop, KDD’19, August 5, 2019, Anchorage, Alaska, US

REFERENCES
[1] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf

Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for Sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse. Association
for Computational Linguistics, Sofia, Bulgaria, 178–186. https://www.aclweb.
org/anthology/W13-2322

[2] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. 2018. Graph-to-Sequence
Learning using Gated Graph Neural Networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Melbourne, Australia, 273–283. https:
//www.aclweb.org/anthology/P18-1026

[3] Anja Belz, MikeWhite, Dominic Espinosa, Eric Kow, Deirdre Hogan, and Amanda
Stent. 2011. The First Surface Realisation Shared Task: Overview and Evaluation
Results. In Proceedings of the Generation Challenges Session at the 13th European
Workshop on Natural Language Generation. Association for Computational Lin-
guistics, Nancy, France, 217–226. https://www.aclweb.org/anthology/W11-2832

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017.
Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing
Magazine 34, 4 (July 2017), 18–42. https://doi.org/10.1109/MSP.2017.2693418

[5] Kris Cao and Stephen Clark. 2019. Factorising AMR generation through syntax. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT).

[6] John Carroll and Stephan Oepen. 2005. High Efficiency Realization for a Wide-
coverage Unification Grammar. In Proceedings of the Second International Joint
Conference on Natural Language Processing (IJCNLP’05). Springer-Verlag, Berlin,
Heidelberg, 165–176. https://doi.org/10.1007/11562214_15

[7] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724–1734. https://doi.org/10.3115/v1/D14-1179

[8] Marco Damonte and Shay B. Cohen. 2019. Structural Neural Encoders for AMR-
to-text Generation. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

[9] Michael Denkowski and Alon Lavie. 2014. Meteor Universal: Language Specific
Translation Evaluation for Any Target Language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation.

[10] Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime Carbonell. 2016. Gen-
eration from Abstract Meaning Representation using Tree Transducers. In Pro-
ceedings of the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies. Associa-
tion for Computational Linguistics, San Diego, California, 731–739. https:
//doi.org/10.18653/v1/N16-1087

[11] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-
Beltrachini. 2017. The WebNLG Challenge: Generating Text from RDF Data.
In Proceedings of the 10th International Conference on Natural Language Genera-
tion. Association for Computational Linguistics, Santiago de Compostela, Spain,
124–133. https://doi.org/10.18653/v1/W17-3518

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.). Curran Associates, Inc., 1024–1034. http://papers.nips.cc/
paper/6703-inductive-representation-learning-on-large-graphs.pdf

[13] Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations (ICLR).

[14] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration
Sessions (ACL ’07). Association for Computational Linguistics, Stroudsburg, PA,
USA, 177–180. http://dl.acm.org/citation.cfm?id=1557769.1557821

[15] Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh
Hajishirzi. 2019. Text Generation from Knowledge Graphs with Graph Trans-
formers. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT).

[16] Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer.
2017. Neural AMR: Sequence-to-Sequence Models for Parsing and Generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
146–157. https://doi.org/10.18653/v1/P17-1014

[17] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. CoRR abs/1511.05493 (2016).

[18] Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Abstract Meaning Representation
for Multi-Document Summarization. In Proceedings of the 27th International Con-
ference on Computational Linguistics. Association for Computational Linguistics,
Santa Fe, New Mexico, USA, 1178–1190. https://www.aclweb.org/anthology/
C18-1101

[19] Diego Marcheggiani and Laura Perez-Beltrachini. 2018. Deep Graph Convo-
lutional Encoders for Structured Data to Text Generation. In Proceedings of
the 11th International Conference on Natural Language Generation. Associa-
tion for Computational Linguistics, Tilburg University, The Netherlands, 1–9.
https://www.aclweb.org/anthology/W18-6501

[20] Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019. Step-by-Step: Separating
Planning fromRealization inNeural Data-to-Text Generation. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT).

[21] Shashi Narayan and Claire Gardent. 2012. Structure-Driven Lexicalist Genera-
tion. In Proceedings of COLING 2012. The COLING 2012 Organizing Committee,
Mumbai, India, 2027–2042. https://www.aclweb.org/anthology/C12-1124

[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics (ACL
’02). Association for Computational Linguistics, Stroudsburg, PA, USA, 311–318.
https://doi.org/10.3115/1073083.1073135

[23] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, 1532–1543. https://doi.org/10.3115/v1/
D14-1162

[24] Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob. 2016. Generating English
from Abstract Meaning Representations. In Proceedings of the 9th International
Natural Language Generation conference. Association for Computational Linguis-
tics, Edinburgh, UK, 21–25. https://doi.org/10.18653/v1/W16-6603

[25] Mike Schuster, Kuldip K. Paliwal, and A. General. 1997. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing (1997).

[26] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Vancouver, Canada, 1073–
1083. https://doi.org/10.18653/v1/P17-1099

[27] Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, and Jinsong Su. 2019.
Semantic Neural Machine Translation Using AMR. Transactions of the Association
for Computational Linguistics 7 (March 2019), 19–31. https://doi.org/10.1162/
tacl_a_00252

[28] Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2018. A Graph-to-
Sequence Model for AMR-to-Text Generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Melbourne, Australia, 1616–1626.
https://www.aclweb.org/anthology/P18-1150

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929–1958. http://dl.acm.org/
citation.cfm?id=2627435.2670313

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Confer-
ence on Learning Representations (2018). accepted as poster.

[31] Boris Weisfeiler and AA Lehman. 1968. A reduction of a graph to a canonical
form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsia (1968), 12–16.

[32] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[33] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, Michael Witbrock, and Vadim
Sheinin. 2018. Graph2Seq: Graph to Sequence Learning with Attention-based
Neural Networks. arXiv preprint arXiv:1804.00823 (2018).

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/P18-1026
https://www.aclweb.org/anthology/P18-1026
https://www.aclweb.org/anthology/W11-2832
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1007/11562214_15
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/W17-3518
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://doi.org/10.18653/v1/P17-1014
https://www.aclweb.org/anthology/C18-1101
https://www.aclweb.org/anthology/C18-1101
https://www.aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/C12-1124
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://www.aclweb.org/anthology/P18-1150
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313

	Abstract
	1 Introduction
	2 Related work
	3 Model implementation
	3.1 Graph preparation
	3.2 Model
	3.3 Graph Neural Networks

	4 Experiments
	4.1 Data
	4.2 Implementation details
	4.3 Results
	4.4 Ablation study

	5 Conclusion
	Acknowledgments
	References

