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ABSTRACT
Community detection is a fundamental problem in machine learn-
ing. While deep learning has shown great promise in many graph-
related tasks, developing neural models for community detection
has received surprisingly little attention. The few existing approaches
focus on detecting disjoint communities, even though communities
in real graphs are well known to be overlapping. We address this
shortcoming and propose a graph neural network (GNN) based
model for overlapping community detection. Despite its simplicity,
our model outperforms the existing baselines by a large margin in
the task of community recovery. We establish through an extensive
experimental evaluation that the proposed model is effective, scal-
able and robust to hyperparameter settings. We also perform an
ablation study that confirms that GNN is the key ingredient to the
power of the proposedmodel. A reference implementation as well as
the new datasets are available under https://tinyurl.com/dlg-nocd.

ACM Reference Format:
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1 INTRODUCTION
Graphs provide a natural way of representing complex real-world
systems. Community detection methods are an essential tool for
understanding the structure and behavior of these systems. Detect-
ing communities allows us to analyze social networks [14], detect
fraud [30], discover functional units of the brain [13], and predict
functions of proteins [32]. The problem of community detection
has attracted significant attention of the research community and
numerous models and algorithms have been proposed [38].

In the recent years, the emerging field of deep learning for graphs
has shown great promise in designing more accurate and more scal-
able algorithms. While deep learning approaches have achieved
unprecedented results in graph-related tasks like link prediction
and node classification [5], relatively little attention has been dedi-
cated to their application for unsupervised community detection.
Several methods have been proposed [7, 10, 43], but they all have
a common drawback: they only focus on the special case of dis-
joint (non-overlapping) communities. However, it is well known
that communities in real networks are overlapping [41]. Handling
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overlapping communities is a requirement not yet met by existing
deep learning approaches for community detection.

In this paper we address this research gap and propose an end-
to-end deep learning model capable of detecting overlapping com-
munities. To summarize, our main contributions are:
• Model: We introduce a graph neural network (GNN) based
model for overlapping community detection.
• Data: We introduce 4 new datasets for overlapping commu-
nity detection that can act as a benchmark and stimulate
future research in this area.
• Experiments:We perform a thorough evaluation of ourmodel
and show its superior performance compared to established
methods for overlapping community detection, both in terms
of speed and accuracy. We highlight the importance of the
GNN component of our model through an ablation study.

2 BACKGROUND
Assume that we are given an undirected unweighted graphG, rep-
resented as a binary adjacency matrix A ∈ {0, 1}N×N . We denote
as N the number of nodes V = {1, ...,N }; and as M the number
of edges E = {(u,v ) ∈ V × V : Auv = 1}. Every node might be
associated with a D-dimensional attribute vector, that can be repre-
sented as an attribute matrix X ∈ RN×D . The goal of overlapping
community detection is to assign nodes into C communities. Such
assignment can be represented as a non-negative community affili-
ation matrix F ∈ RN×C

≥0 , where Fuc denotes the strength of node
u’s membership in community c (with the notable special case of
binary assignment F ∈ {0, 1}N×C ). Some nodes may be assigned to
no communities, while others may belong to multiple.

Even though the notion of "community" seems rather intuitive,
there is no universally agreed upon definition of it in the literature.
However, most recent works tend to agree with the statement that
a community is a group of nodes that have higher probability to
form edges with each other than with other nodes in the graph [11].
This way, the problem of community detection can be considered
in terms of the probabilistic inference framework. Once we posit a
community-based generative model p (G |F ) for the graph, detecting
communities boils down to inferring the unobserved affiliation
matrix F given the observed graphG.

Besides the traditional probabilistic view, one can also view com-
munity detection through the lens of representation learning. The
community affiliation matrix F can be considered as an embedding
of nodes into RC

≥0, with the aim of preserving the graph structure.
Given the recent success of representation learning for graphs [5],
a question arises: "Can the advances in deep learning for graphs
be used to design better community detection algorithms?". As we
show in Section 4.1, simply combining existing node embedding
approaches with overlapping K-means doesn’t lead to satisfactory
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results. Instead, we propose to combine the probabilistic and repre-
sentation points of view, and learn the community affiliations in
an end-to-end manner using a graph neural network.

3 THE NOCD MODEL
Here, we present the Neural Overlapping Community Detection
(NOCD) model. The core idea of our approach is to combine the
power of GNNs with the Bernoulli–Poisson probabilistic model.

3.1 Bernoulli–Poisson model
The Bernoulli–Poisson (BP) model [33, 40, 45] is a graph generative
model that allows for overlapping communities. According to the
BP model, the graph is generated as follows. Given the affiliations
F ∈ RN×C

≥0 , adjacency matrix entries Auv are sampled i.i.d. as

Auv ∼ Bernoulli(1 − exp(−FuFTv )) (1)

where Fu is the row vector of community affiliations of node u (the
u’s row of the matrix F ). Intuitively, the more communities nodes
u and v have in common (i.e. the higher the dot product FuFTv is),
the more likely they are to be connected by an edge.

This model has a number of desirable properties: It can produce
various community topologies (e.g. nested, hierarchical), leads to
dense overlaps between communities [41] and is computationally
efficient (Section 3.3). Existing works propose to perform infer-
ence in the BP model using maximum likelihood estimation with
coordinate ascent [40, 42] or Markov chain Monte Carlo [33, 45].

3.2 Model definition
Instead of treating the affiliation matrix F as a free variable over
which optimization is performed, we generate F with a GNN:

F := GNNθ (A,X ) (2)

A ReLU nonlinearity is applied element-wise to the output layer
to ensure non-negativity of F . See Section 4 and Appendix B for
details about the GNN architecture.

The negative log-likelihood of the Bernoulli–Poisson model is

− logp (A|F ) = −
∑

(u,v )∈E

log(1 − exp(−FuFTv )) +
∑

(u,v )<E

FuF
T
v (3)

Real-world graph are usually extremely sparse, which means that
the second term in Equation 3 will provide a much larger contri-
bution to the loss. We counteract this by balancing the two terms,
which is a standard technique in imbalanced classification [18]

L (F ) =−E(u,v )∼PE
[
log(1−exp(−FuFTv ))

]
+E(u,v )∼PN

[
FuF

T
v
]

(4)

where PE and PN denote uniform distributions over edges and
non-edges respectively.

Instead of directly optimizing the affiliation matrix F , as done
by traditional approaches [40, 42], we search for neural network
parameters θ⋆ that minimize the (balanced) negative log-likelihood

θ⋆ = argmin
θ

L (GNNθ (A,X )) (5)

Using a GNN for community prediction has several advantages.
First, due to an appropriate inductive bias, the GNN outputs sim-
ilar community affiliation vectors for neighboring nodes, which

improves the quality of predictions compared to simpler models
(Section 4.2). Also, such formulation allows us to seamlessly incor-
porate the node features into the model. If the node attributes X
are not available, we can simply useA as node features [22]. Finally,
with the formulation from Equation 2, it’s even possible to predict
communities inductively for nodes not seen at training time.

3.3 Scalability
One advantage of the BP model is that it allows to efficiently eval-
uate the loss L (F ) and its gradients w.r.t. F . By using a caching
trick [40], we can reduce the computational complexity of these
operations from O (N 2) to O (N +M ). While this already leads to
large speed-ups due to sparsity of real-world networks (typically
M ≪ N 2 ), we can speed it up even further. Instead of using all
entries of A when computing the loss (Equation 4), we sample a
mini-batch of S edges and non-edges at each training epoch, thus
approximately computing ∇L inO (S ). In Appendix E we show that
this stochastic optimization strategy converges to the same solution
as the full-batch approach, while keeping the computational cost
and memory footprint low.

While we subsample the graph to efficiently evaluate the training
objective L (F ), we use the full adjacency matrix inside the GNN.
This doesn’t limit the scalability of our model: NOCD is trained
on a graph with 800K+ edges in 3 minutes on a single GPU (see
Section 4.1). It is straightforward to make the GNN component even
more scalable by applying the techniques such as [8, 44].

4 EVALUATION
Datasets. We use the following real-world graph datasets in our
experiments. Facebook [27] is a collection of small (50-800 nodes)
ego-networks from the Facebook graph. Larger graph datasets (10K+
nodes) with reliable ground-truth overlapping community informa-
tion and node attributes are not openly available, which hampers
the evaluation and development of new methods. For this reason
we have collected and preprocessed 4 real-world datasets, that sat-
isfy these criteria and can act as future benchmarks. Chemistry,
Computer Science, Medicine, Engineering are co-authorship
networks, constructed from the Microsoft Academic Graph [1].
Communities correspond to research areas in respective fields, and
node attributes are based on keywords of the papers by each author.
Statistics for all used datasets are provided in Appendix A.

Model architecture. For all experiments, we use a 2-layer Graph
Convolutional Network (GCN) [22] as the basis for the NOCD
model. The GCN is defined as

F := GCNθ (A,X ) = ReLU(Â ReLU(ÂXW (1) )W (2) ) (6)

where Â = D̃−1/2ÃD̃−1/2 is the normalized adjacency matrix,
Ã = A+IN is the adjacencymatrix with self loops, and D̃ii =

∑
j Ãi j

is the diagonal degree matrix of Ã. We considered other GNN ar-
chitectures, as well as deeper models, but none of them led to any
noticeable improvements. The two main differences of our model
from standard GCN include (1) batch normalization after the first
graph convolution layer and (2) L2 regularization applied to all
weight matrices. We found both of these modifications to lead to
substantial gains in performance. We optimized the architecture
and hyperparameters only using the Computer Science dataset —
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Table 1: Recovery of ground-truth communities,measured byNMI (in %). Results for NOCD are averaged over 50 initializations
(see Table 4 for error bars). Best result for each row in bold. DNF — did not finish in 12 hours or ran out of memory.

Dataset BigCLAM CESNA EPM SNetOC CDE SNMF DW/NEO G2G/NEO NOCD-G NOCD-X
Facebook 348 26.0 29.4 6.5 24.0 24.8 13.5 31.2 17.2 34.7 36.4
Facebook 414 48.3 50.3 17.5 52.0 28.7 32.5 40.9 32.3 56.3 59.8
Facebook 686 13.8 13.3 3.1 10.6 13.5 11.6 11.8 5.6 20.6 21.0
Facebook 698 45.6 39.4 9.2 44.9 31.6 28.0 40.1 2.6 49.3 41.7
Facebook 1684 32.7 28.0 6.8 26.1 28.8 13.0 37.2 9.9 34.7 26.1
Facebook 1912 21.4 21.2 9.8 21.4 15.5 23.4 20.8 16.0 36.8 35.6
Chemistry 0.0 23.3 DNF DNF DNF 2.6 1.7 22.8 22.6 45.3
Computer Science 0.0 33.8 DNF DNF DNF 9.4 3.2 31.2 34.2 50.2
Engineering 7.9 24.3 DNF DNF DNF 10.1 4.7 33.4 18.4 39.1
Medicine 0.0 14.4 DNF DNF DNF 4.9 5.5 28.8 27.4 37.8

no additional tuning was done for other datasets. More details about
the model configuration and the training procedure are provided
in Appendix B. We denote the model working on node attributes X
as NOCD-X, and the model using the adjacency matrix A as input
as NOCD-G. In both cases, the feature matrix is row-normalized.

Assigning nodes to communities. In order to compare the
detected communities to the ground truth, we first need to con-
vert the predicted continuous community affiliations F into binary
community assignments. We assign node u to community c if its
affiliation strength Fuc is above a fixed threshold ρ. We chose the
threshold ρ = 0.5 like all other hyperparameters — by picking the
value that achieved the best score on the Computer Science dataset,
and then using it in further experiments without additional tuning.

Metrics. We found that popular metrics for quantifying agree-
ment between true and detected communities, such as Jaccard and
F1 scores [26, 40, 42], can give arbitrarily high scores for completely
uninformative community assignments. See Appendix F for an
example and discussion. Instead we use overlapping normalized
mutual information (NMI) [28], as it is more robust andmeaningful.

4.1 Recovery of ground-truth communities
We evaluate the NOCD model by checking how well it recovers
communities in graphs with known ground-truth communities.

Baselines. In our selection of baselines, we chose methods
that are based on different paradigms for overlapping community
detection: probabilistic inference, non-negative matrix factorization
(NMF) and deep learning. Some methods incorporate the attributes,
while other rely solely on the graph structure.

BigCLAM [40], EPM [45] and SNetOC [33] are based on the
Bernoulli–Poisson model. BigCLAM learns F using coordinate as-
cent, while EPM and SNetOC perform inference with Markov chain
Monte Carlo (MCMC). CESNA [42] is an extension of BigCLAM
that additionally models node attributes. SNMF [36] and CDE [26]
are NMF approaches for overlapping community detection.

We additionally implemented two methods based on neural
graph embedding. First, we compute node embeddings for all the
nodes in the given graph using two established approaches – Deep-
Walk [29] and Graph2Gauss [4]. Graph2Gauss takes into account
both node features and the graph structure, while DeepWalk only
uses the structure. Then, we cluster the nodes using Non-exhaustive
Overlapping (NEO) K-Means [37] — which allows to assign them to
overlapping communities. We denote the methods based on Deep-
Walk and Graph2Gauss as DW/NEO and G2G/NEO respectively.

To ensure a fair comparison, all methods were given the true
number of communitiesC . Other hyperparameters were set to their
recommended values. An overview of all baseline methods, as well
as their configurations are provided in Appendix C.

Results: Recovery. Table 1 shows how well different methods
recover the ground-truth communities. Either NOCD-X or NOCD-
G achieve the highest score for 9 out of 10 datasets. We found that
the NMI of both methods is strongly correlated with the reconstruc-
tion loss (Equation 4): NOCD-G outperforms NOCD-X in terms
of NMI exactly in those cases, when NOCD-G achieves a lower
reconstruction loss. This means that we can pick the better per-
forming of two methods in a completely unsupervised fashion by
only considering the loss values.

Results:Hyperparameter sensitivity. It’s worth noting again
that both NOCD models use the same hyperparameter config-
uration that was tuned only on the Computer Science dataset
(N = 22K ,M = 96.8K ,D = 7.8K). Nevertheless, both models
achieve excellent results on datasets with dramatically different
characteristics (e.g. Facebook 414 with N = 150,M = 1.7K ,D = 16).

Results: Scalability. In addition to displaying excellent re-
covery results, NOCD is highly scalable. NOCD is trained on the
Medicine dataset (63K nodes, 810K edges) using a single GTX1080Ti
GPU in 3 minutes, while only using 750MB of GPU RAM (out of
11GB available). See Appendix D for more details on hardware.

EPM, SNetOC and CDE don’t scale to larger datasets, since they
instantiate very large dense matrices during computations. SNMF
and BigCLAM, while being the most scalable methods and having
lower runtime than NOCD, achieved relatively low scores in recov-
ery. Generating the embeddings with DeepWalk and Graph2Gauss
can be done very efficiently. However, overlapping clustering of the
embeddings with NEO-K-Means was the bottleneck, which led to
runtimes exceeding several hours for the large datasets. As the au-
thors of CESNA point out [42], the method scales to large graphs if
the number of attributesD is low. However, asD increases, which is
common for modern datasets, the method scales rather poorly. This
is confirmed by our findings — on the Medicine dataset, CESNA
(parallel version with 18 threads) took 2 hours to converge.

4.2 Do we really need a graph neural network?
Our GNN-based model achieved superior performance in com-
munity recovery. Intuitively, it makes sense to use a GNN for the
reasons laid out in Section 3.2. Nevertheless, we should ask whether
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Table 2: Comparison of the GNN-based model against simpler baselines. Multilayer perceptron (MLP) and Free Variable (FV)
models are optimizing the same objective (Equation 4), but represent the community affiliations F differently.

Attributes Adjacency
Dataset GNN MLP GNN MLP Free variable
Facebook 348 36.4 ± 2.0 11.7 ± 2.7 34.7 ± 1.5 27.7 ± 1.6 25.7 ± 1.3
Facebook 414 59.8 ± 1.8 22.1 ± 3.1 56.3 ± 2.4 48.2 ± 1.7 49.2 ± 0.4
Facebook 686 21.0 ± 0.9 1.5 ± 0.7 20.6 ± 1.4 19.8 ± 1.1 13.5 ± 0.9
Facebook 698 41.7 ± 3.6 1.4 ± 1.3 49.3 ± 3.4 42.2 ± 2.7 41.5 ± 1.5
Facebook 1684 26.1 ± 1.3 17.1 ± 2.0 34.7 ± 2.6 31.9 ± 2.2 22.3 ± 1.4
Facebook 1912 35.6 ± 1.3 17.5 ± 1.9 36.8 ± 1.6 33.3 ± 1.4 18.3 ± 1.2
Chemistry 45.3 ± 2.3 46.6 ± 2.9 22.6 ± 3.0 12.1 ± 4.0 5.2 ± 2.3
Computer Science 50.2 ± 2.0 49.2 ± 2.0 34.2 ± 2.3 31.9 ± 3.8 15.1 ± 2.2
Engineering 39.1 ± 4.5 44.5 ± 3.2 18.4 ± 1.9 15.8 ± 2.1 7.6 ± 2.2
Medicine 37.8 ± 2.8 31.8 ± 2.1 27.4 ± 2.5 23.6 ± 2.1 9.4 ± 2.3

it’s possible achieve comparable results with a simpler model. To
answer this question, we consider the following two baselines.

Multilayer perceptron (MLP): Instead of a GCN (Equation 6),
we use a simple fully-connected neural network to generate F .

F = MLPθ (X ) = ReLU(ReLU(XW (1) )W (2) ) (7)

This is related to the model proposed by [19]. Same as for the GCN-
basedmodel, we optimize theweights of theMLP,θ = {W (1) ,W (2) },
to minimize the objective Equation 4.

min
θ
L (MLPθ (X )) (8)

Free variable (FV): As an even simpler baseline, we consider
treating F as a free variable in optimization and solve

min
F ≥0
L (F ) (9)

We optimize the objective using projected gradient descent with
Adam [20], and update all the entries of F at each iteration. This can
be seen as an improved version of the BigCLAM model. Original
BigCLAM uses the imbalanced objective (Equation 3) and optimizes
F using coordinate ascent with backtracking line search.

Setup. Both for the MLP and FV models, we tuned the hyper-
parameters on the Computer Science dataset (just as we did for
the GNN model), and used the same configuration for all datasets.
Details about the configuration for both models are provided in
Appendix B. Like before, we consider the variants of the GNN-based
and MLP-based models that use eitherX orA as input features. We
compare the NMI scores obtained by the models on all 11 datasets.

Results. The results for all models are shown in Table 2. The
two neural network based models consistently outperform the free
variable model. When node attributes X are used, the MLP-based
model outperforms the GNNversion for Chemistry and Engineering
datasets, where the node features alone provide a strong signal.
However, MLP achieves extremely low scores for Facebook 686 and
Facebook 698 datasets, where the attributes are not as reliable. On
the other hand, when A is used as input, the GNN-based model
always outperforms MLP. Combined, these findings confirm our
hypothesis that a graph-based neural network architecture is indeed
beneficial for the community detection task.

5 RELATEDWORK
The problem of community detection in graphs is well-established
in the research literature. However, most of the works study detec-
tion of non-overlapping communities [3, 35]. Algorithms for over-
lapping community detection can be broadly divided into methods
based on non-negative matrix factorization [23, 26, 36], probabilistic
inference [24, 33, 40, 45], and heuristics [12, 15, 25, 31].

Deep learning for graphs can be broadly divided into two cat-
egories: graph neural networks and node embeddings. GNNs [17,
22, 39] are specialized neural network architectures that can oper-
ate on graph-structured data. The goal of embedding approaches
[4, 16, 21, 29] is to learn vector representations of nodes in a graph
that can then be used for downstream tasks. While embedding
approaches work well for detecting disjoint communities [7, 34],
they are not well-suited for overlapping community detection, as
we showed in our experiments. This is caused by lack of reliable
and scalable approaches for overlapping clustering of vector data.

Several works have proposed deep learning methods for com-
munity detection. [43] and [6] use neural nets to factorize the
modularity matrix, while [7] jointly learns embeddings for nodes
and communities. However, neither of these methods can handle
overlapping communities. Also related to our model is the approach
by [19], where they use a deep belief network to learn community
affiliations. However, their neural network architecture does not
use the graph, which we have shown to be crucial in Section 4.2;
and, just like EPM and SNetOC, relies on MCMC, which heavily lim-
its the scalability of their approach. Lastly, [9] designed a GNN for
supervised community detection, which is a very different setting.

6 DISCUSSION & FUTUREWORK
We proposed NOCD— a graph neural network model for overlap-
ping community detection. The experimental evaluation confirms
that the model is accurate, flexible and scalable.

Besides strong empirical results, our work opens interesting
follow-up questions. We plan to investigate how the two versions
of our model (NOCD-X and NOCD-G) can be used to quantify the
relevance of attributes to the community structure. Moreover, we
plan to assess the inductive performance of NOCD [17].

To summarize, the results obtained in this paper provide strong
evidence that deep learning for graphs deserves more attention as
a framework for overlapping community detection.
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A DATASETS

Table 3: Dataset statistics. K stands for 1000.

Dataset Network type N M D C

Facebook 348 Social 224 3.2K 21 14
Facebook 414 Social 150 1.7K 16 7
Facebook 686 Social 168 1.6K 9 14
Facebook 698 Social 61 270 6 13
Facebook 1684 Social 786 14.0K 15 17
Facebook 1912 Social 747 30.0K 29 46
Computer Science Co-authorship 22.0K 96.8K 7.8K 18
Chemistry Co-authorship 35.4K 157.4K 4.9K 14
Medicine Co-authorship 63.3K 810.3K 5.5K 17
Engineering Co-authorship 14.9K 49.3K 4.8K 16

B MODEL CONFIGURATION
B.1 Architecture
We picked the hyperparameters and chose the model architecture
for all 3 models by only considering their performance (NMI) on the
Computer Science dataset. No additional tuning for other datasets
has been done.

GNN-based model. (Equation 6) We use a 2-layer graph con-
volutional neural network, with hidden size of 128, and the output
(second) layer of size C (number of communities to detect). We
apply batch normalization after the first graph convolution layer.
Dropout with 50% keep probability is applied before every layer.
We add weight decay to both weight matrices with regularization
strength λ = 10−2. The feature matrixX (orA, in case we are work-
ing without attributes) is normalized such that every row has unit
L2-norm.

We also experimented with the Jumping Knowledge Network
[39] and GraphSAGE [17] architectures, but they led to lower NMI
scores on the Computer Science dataset.

MLP-based model. (Equation 7) We found the MLP model to
perform best with the same configuration as described above for the
GCN model (i.e. same regularization strength, hidden size, dropout
and batch norm).

Free variable model (Equation 9)We considered two initial-
ization strategies for the free variable model: (1) Locally minimal
neighborhoods [15] — the strategy used by the BigCLAM and
CESNA models and (2) initializing F to the output of an untrained
GCN. We found strategy (1) to consistently provide better results.

B.2 Training
GNN- and MLP-based models. We train both models using
Adam optimizer [20] with default parameters. The learning rate is
set to 10−3. We use the following early stopping strategy: Every
50 epochs we compute the full training loss (Equation 4). We stop
optimization if there was no improvement in the loss for the last
10 × 50 = 500 iterations, or after 5000 epochs, whichever happens
first.

Free variable model. We use Adam optimizer with learning
rate 5 · 10−2. After every gradient step, we project the F matrix to

ensure that it stays non-negative: Fuc = max{0, Fuc }. We use the
same early stopping strategy as for the GNN and MLP models.

C BASELINES

Table 4: Overviewof the baselines. See text for the discussion
of scalability of CESNA.

Method Model type Attributed Scalable
BigCLAM [40] Probabilistic ✓
CESNA [42] Probabilistic ✓ ✓∗

SNetOC [33] Probabilistic
EPM [45] Probabilistic
CDE [26] NMF ✓
SNMF [36] NMF ✓
DW/NEO [29, 37] Deep learning
G2G/NEO [4, 37] Deep learning ✓

NOCD Deep learning +
probabilistic ✓ ✓

• We used the reference C++ implementations of BigCLAM
and CESNA, that were provided by the authors (https://
github.com/snap-stanford/snap). Models were used with the
default parameter settings for step size, backtracking line
search constants, and balancing terms. Since CESNA can
only handle binary attributes, we binarize the original at-
tributes (set the nonzero entries to 1) if they have a different
type.
• We implemented SNMF ourselves using Python. The F ma-
trix is initialized by sampling from the Uniform[0, 1] distri-
bution. We run optimization until the improvement in the
reconstruction loss goes below 10−4 per iteration, or for 300
epochs, whichever happens first. The results for SNMF are
averaged over 50 random initializations.
• We use the Matlab implementation of CDE provided by the
authors. We set the hyperparameters to α = 1, β = 2, κ = 5,
as recommended in the paper, and run optimization for 20
iterations.
• For SNetOC and EPM we use the Matlab implementations
provided by the authors with the default hyperparameter
settings. The implementation of EPM provides to options:
EPM and HEPM. We found EPM to produce better NMI
scores, so we used it for all the experiments.
• We use the TensorFlow implementation of Graph2Gauss
provided by the authors. We set the dimension of the em-
beddings to 128, and only use the µ matrix as embeddings.
• We implemented DeepWalk ourselves: We sample 10 random
walks of length 80 from each node, and use the Word2Vec
implementation from Gensim (https://radimrehurek.com/
gensim/) to generate the embeddings.The dimension of em-
beddings is set to 128.
• For NEO-K-Means, we use the Matlab code provided by the
authors. We let the parameters α and β be selected automat-
ically using the built-in procedure.

https://github.com/snap-stanford/snap
https://github.com/snap-stanford/snap
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
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D HARDWARE AND SOFTWARE
The experiments were performed on a computer running Ubuntu
16.04LTS with 2x Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
CPUs, 256GB of RAM and 4x GTX1080Ti GPUs. Note that training
and inference were done using only a single GPU at a time for
all models. The NOCD model was implemented using Tensorflow
v1.1.2 [2]

E CONVERGENCE OF THE STOCHASTIC
SAMPLING PROCEDURE

Instead of using all pairs u,v ∈ V when computing the gradients
∇θL at every iteration, we sample S edges and S non-edges uni-
formly at random. We perform the following experiment to ensure
that our training procedure converges to the same result, as when
using the full objective.

Experimental setup. We train the model on the Computer
Science dataset and compare the full-batch optimization procedure
with stochastic gradient descent for different choices of the batch
size S . Starting from the same initialization, we measure the full
loss (Equation 4) over the iterations.

Results. Figure 1 shows training curves for different batch sizes
S ∈ {1000, 2500, 5000, 10000, 20000}, as well as for full-batch train-
ing. The horizontal axis of the plot displays the number of entries
of adjacency matrix accessed. One iteration of stochastic training
accesses 2S entries Ai j , and one iteration of full-batch accesses
2N + 2M entries, since we are using the caching trick from [40]. As
we see, the stochastic training procedure is stable: For batch sizes
S = 10K and S = 20K , the loss converges very closely to the value
achieved by full-batch training.

Figure 1: Convergence of the stochastic sampling procedure.

F QUANTIFYING AGREEMENT BETWEEN
OVERLAPPING COMMUNITIES

A popular choice for quantifying the agreement between true and
predicted overlapping communities is the symmetric agreement
score [26, 40, 42]. Given the ground-truth communities S∗ = {S∗i }i
and the predicted communities S = {Sj }j , the symmetric score is

defined as
1

2|S∗ |

∑
S∗i ∈S

∗

max
Sj ∈S

δ (S∗i , Sj ) +
1

2|S|

∑
Sj ∈S

max
S∗i ∈S

∗
δ (S∗i , Sj ) (10)

where δ (S∗i , Sj ) is a similarity measure between sets, such as F1-
score or Jaccard similarity.

We discovered that these frequently used measures can assign
arbitrarily high scores to completely uninformative community
assignments, as you can in see in the following simple example.
Let the ground truth communities be S∗1 = {v1, ...,vK } and S∗2 =
{vN−K , ...,vN } (K nodes in each community), and let the algorithm
assign all the nodes to a single community S1 = V = {v1, ...,vN }.
While this predicted community assignment is completely uninfor-
mative, it will achieve symmetric F1-score of 2K

N+K and symmetric
Jaccard similarity of K

N (e.g., if K = 600 and N = 1000, the scores
will be 75% and 60% respectively). These high numbers might give
a false impression that the algorithm has learned something useful,
while that clearly isn’t the case. As an alternative, we suggest using
overlapping normalized mutual information (NMI), as defined in
[28]. NMI correctly handles the degenerate cases, like the one above,
and assigns them the score of 0.
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