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ABSTRACT
Existing neural semantic parsers either only consider the
word sequence for encoding or decoding, and ignore impor-
tant syntactic information useful to parsing purposes. In this
paper, we present a novel Graph Neural Networks (GNN)
based neural semantic parser, namely Graph2Tree consist-
ing of a graph encoder and a hierarchical tree decoder, that
embraces the advantages of both worlds. In addition, we
conduct a first study on the impacts of different syntactic
graph constructions on the performance of GNNs for se-
mantic parsing. We find that both noisy information and
structural complexity introduced by a graph construction,
due to imperfection of dependency tree parser or complex
constituency tree, could lead to significantly detrimental
effect on the performance of GNN-based semantic parsers.
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1 INTRODUCTION
Semantic parsing is the task of translating natural language
utterances into machine-interpretable meaning representa-
tions like logical forms or executable queries. Recent years
have seen a surge of interests in developing neural semantic
parsers with sequence-to-sequence models. These parsers
have achieved tremendous contributions [7, 11, 15].

Due to the fact that the meaning representations are usu-
ally structured objects (e.g. tree structures), much efforts
have been devoted to develop structure-oriented decoders,
including tree decoders [1, 7], grammar constrained decoders
[8, 12, 23, 24], action sequences for semantic graph genera-
tion [6], and modular decoders based on abstract syntax trees
[18, 25]. Despite the impressive results these approaches
have achieved, they only consider the word sequence infor-
mation and ignore other rich syntactic information, such as
dependency parsing tree or constituency tree, available at
the encoder side.

Lately researchers have proved the important applications
of the Graph Neural Networks (GNNs) in various NLP tasks,
including the neural machine translation [3, 4], information
extraction [26], and AMR-to-text [20]. In the semantic pars-
ing field, a general Graph2Seq model [22] is proposed to in-
corporate these dependency and constituency trees with the
word sequence and then create a syntactic graph as encoding
input. However, their approach simply treats a logical form
as a sequence, neglecting the rich information in a structured
object like tree in the decoder architecture.

To address the aforementioned issues, we present a novel
GNN-based neural semantic parser, namely Graph2Tree con-
sisting of a graph encoder and a hierarchical tree decoder,
that embraces the advantages of both worlds. Specifically,
our graph encoder learns from a syntactic graph that could
be constructed from both word sequence and the correspond-
ing dependence parsing tree or constituency tree. Our tree
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Dependency :
{u'dep': u'compound', u'jobs', u'ada'}, 
{u'dep': u'nsubj', u'are', u'jobs'}, 
{u'dep': u'case', u'austin', u'outside'},
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Figure 1: Overall Architecture of Graph2Tree Model

decoder decodes the logic forms from the learned graph-
level vector representations to explicitly capture the com-
positional structure of logical form. We also introduce an
attention mechanism to learn soft alignments between a
syntactic graph and a logic form.
In addition, we conduct a first study on the impacts of

different syntactic graph constructions on the performance
of GNNs for semantic parsing. We find that both noisy in-
formation and structural complexity introduced by a graph
construction, due to imperfection of dependency tree parser
or complex constituency tree, could lead to significantly detri-
mental effect on the performance of GNN-based semantic
parsers.

Our experiments on benchmark datasets JOBS ,GEO , and
ATIS demonstrate that, with right choices of constructed syn-
tactic graph, our Graph2Tree model could match or outper-
form the performance of Seq2Seq, Seq2Tree, and Graph2Seq
models.

2 GRAPH2TREE FOR SEMANTIC PARSING
We aim to learn a semantic parser that translates a syntactic
graph and its logic form representation. As shown in Figure
1, our Graph2Tree model consists of a graph encoder that
encodes a syntactic graph into a vector representation and a
tree decoder that learns to generate logic form conditioned
on the encoded graph-level vector.

Graph Encoder. In addition to the original sequence
structure, their corresponding syntactic relations can be nat-
urally incorporated into the input sequence which formu-
lates an expressive graph data structure. As a result, we seek

to exploit a graph neural network [14] to effectively learn
high-quality vector representation from graph input. Specifi-
cally, we adapt the graph encoder in [21] that is an inductive
node embedding algorithm. Conceptually, the model first
generates the bi-directional node embedding (forward and
backward embeddings). Each directional node embedding
learns its vector representation by aggregating information
from a node local neighborhood within K hops of the graph.

Given the graph G = (V, E), we first generate the feature
vector av for all nodes ∀v ∈ V from v’s text attribute using
Long Short Term Memory (LSTM). These feature vectors are
used as initial node embeddings. The graph encoder repeats
the following process K times:

h0v⊢ = av ,h0⊢v = av ,∀v ∈ V (1)

hk
N⊢(v) = Mk

⊢ ({h
k−1
u⊢ ,∀u ∈ N⊢(v)}) (2)

hkv⊢ = σ (Wk · CONCAT(hk−1v⊢ ,h
k
N⊢(v))) (3)

hk
N⊣(v) = Mk

⊣ ({h
k−1
u⊣ ,∀u ∈ N⊣(v)}) (4)

hkv⊣ = σ (Wk · CONCAT(hk−1v⊣ ,h
k
N⊣(v))) (5)

where k ∈ {1, ...,K} is the iteration index andN is the neigh-
borhood function of nodev .Mk

⊢ andMk
⊣ are the forward and

backward aggregator functions,Wk denotes weight matrices,
σ is a non-linearity function. Node v’s forward (backward)
representationhkv⊢ (hkv⊣) aggregates the information of nodes
in N⊢(v) (N⊣(v)).

After the bi-directional node embeddings are learned, we
can feed the obtained node embeddings into a fully-connected
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neural network and apply the element-wisemax-pooling op-
eration on all node embeddings to compute the graph-level
vector representation.

Tree Decoder As we mentioned in 1, the meaning repre-
sentations we want to decode in semantic parsing task are
usually structured (like tree structure). And actually, tradi-
tional sequence decoder take them as sequences and there-
fore need to memorize more redundant auxiliary information
to recover the structure, which may bring some negative ef-
fects to accuracy.

To solve this problem, the goal of tree decoder is to faith-
fully learn the compositional nature of logic form representa-
tion. We choose to adapt the hierarchical tree decoder in [7]
because of its simplicity and empirically good performance.
As shown in Figure 1, the graph-level vector representation
is encoded and then feed to the hierarchical tree decoder.
Following [7], in our tree structure, we define "nonterminal"
⟨n⟩ token to start decoding a subtree and special tokens ⟨/s⟩
to denote the end of sequence. The tree decoder first uses
LSTM to decode the logic form at depth 1 of the subtree
that corresponds to parts of logical form t until token⟨/s⟩ is
predicted. And then it generates the parts of logical forms by
conditioning on the corresponding nonterminal node’s hid-
den representation. To fully utilize the nonterminal node’s
information, a parent-feeding scheme is employed to provide
additional input of nonterminal node embedding to augment
with the inputs and fed into LSTM.

Various attention mechanisms have been proposed [2, 16]
to incorporate the hidden vectors of the inputs into account
in the decoding processing. In particular, the context vec-
tor sj depends on a set of node representations (h1,...,hV ) to
which the encoder maps the input graph. In our model, differ-
ent nodes(word nodes, compositional nodes et al.) construct
the syntactic graph input. And it’s a more natural way to
give different attention on them. So we propose to compute
separate attention mechanisms over different node represen-
tations corresponding to the original word tokens and the
parsing tree nodes to compute the final context vector s̃j for
decoding tree structured outputs. Our model is then jointly
trained to maximize the conditional log-probability of the
correct description given a syntactic graph G.

3 CONSTRUCTING SYNTACTIC GRAPHS
To apply GNNs, the first step is to construct a syntactic
graph. The syntactic graph is constructed from input word
sequence with other syntactic information. How to construct
such graphs is critical to this type of parser and influences
the parsing results. In this section, we first introduce two
existing methods for syntactic graph construction [22], and
then discuss the potential issues of these constructed graphs
due to imperfect dependency and constituent parse trees.

PP

SQ

are there ada jobs outside austin
Sentence Level FeatureConstituency Feature

VBP EX

NP

FW NNS IN NN

NP

PP

ROOT

NP

Level 1

Level 2

Level 3

are there ada jobs outside austin

expl compound

nsubj case

nmod

Sentence Level FeatureDependency Feature

Wrong Dependency Tag

Figure 2: Graph with word sequence and dependency tree

Combining Word Sequence with Dependency Parse
Tree. The dependency parse tree not only represents various
grammatical relationships between pairs of text words, but
also be shown that the dependency parse tree plays an impor-
tant role in transforming texts into logical forms Reddy et al.
[19]. Therefore, the first method integrates two types of fea-
tures by adding dependency linkages between corresponding
word pairs in word sequence. Concretely, we transform a
dependency label into a node, and it is linked respectively
with two word nodes which belong to it. Figure 2 illustrates
an example of constructed syntactic graph from a text using
this method.
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Figure 3: Graph with word sequence and constituency tree
CombiningWord Sequence with Constituency Tree.

The constituency tree contains the phrase structure informa-
tion which is also critical to the describe the word relation-
ships and has shown to provide useful information for trans-
lation [10]. Since the leaf nodes in the constituency tree are
the word nodes in the text, this method merges these nodes
with the identical ones in the bi-directional word sequence
chain to create the syntactic graph. Figure 3 illustrates an
example of constructed syntactic graph from a text using the
second method.

Discussions on Graph Construction. Compared to the
word sequence alone, these two types of graph construction
clearly capture more syntactic structural information. How-
ever, as the graph structure becomes more complex, GNNs
models are likely to be more sensitive to noises, compared
to the word sequence.

The first observation is the noises in the dependency tree
associated with the input texts. We find out that some depen-
dency label could be incorrectly assigned due to the imperfec-
tion of the dependency tree parser. For example, the symbol
’\+’ in the logical form represents a negative meaning, so
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words in the source text of dependency parse tree, such as
not, no, outside, exclude, and without, should be linked it.
Sometimes the word outside is nevertheless missed because
the parser consider it does not have the negative meaning.
Thus, we can see that the noise could be easily introduced
into syntactic graph and usually this factor is ignored in
previous work.
The other factor is the graph complexity. Sometimes the

constituency tree generated is complicated with multiple
layers. When the hops considered in the Graph2Tree and
Graph2Seq parsers are not good enough, the proper word
relationships probably will not be discovered and buried
deeply due to the long path distance between two words.
Instead, useless information may be considered in generating
the logical form, leading to the wrong results. This factor is
also not well studied in previous work so far.

4 EXPERIMENTS
We carry out experiments to evaluate the effectiveness of
Graph2Tree, with the goal of answering: i) With what syn-
tactic graphs, will GNN-based methods perform well? ii)
With properly constructed graph inputs, does Graph2Tree
perform better compared to baselines?

Datasets and preprocess. We evaluate our framework
on three benchmark datasets JOBS, GEO, and ATIS. The
first one is JOBS, a set of 640 qeuries to a database of job
listings, the second is GEO, a set of 880 queries to a data-
base of U.S. geography, while the last one ATIS is a set of
5410 quries to a flight booking system. We use the standard
train/dev/test split as previoues works. For data preprocess-
ing, We use the preprocessed version provided by Dong and
Lapata [7], where natural language utterances are lower-
cased and stemmed with Bird et al. [5], and entity mentions
are replaced by numbered markers. For graph construction,
we use dependency parser and constituency parser from
CoreNLP Manning et al. [17]. We choose the logical form
accuracy as our evaluation.

Table 1: The impact of different graph constructions on per-
formance of SP on JOBS . WO+DEP stands for Word Order
+ Dependency, and WO+CON stands for Word Order + Con-
stituency, respectively

Methods Graph2Tree Graph2Seq
Word Order 91.4 87.1

Output correction: WO+DEP 92.1 88.6
Original condition: WO+DEP 91.5 85.0

Constituency two layer cut: WO+CON 91.4 86.4
Constituency one layer cut: WO+CON 92.9 88.6
Constituency tree all layer: WO+CON 92.1 85.0

Settings. We use Adam optimizer Kingma and Ba [13]
and batch size is set to 20. In JOBS and GEO, our hyper-
parameters are cross-validated on the training set. For ATIS,
we tuned them on the development set. The learning rate is

Table 2: The impact of different graph constructions on per-
formance of SP on GEO

Methods Graph2Tree Graph2Seq
Word Order 87.1 84.6

Output Correction: WO+DEP 87.5 85.7
Original Condition: WO+DEP 87.1 84.3

Constituency two layer cut: WO+CON 87.5 84.3
Constituency one layer cut: WO+CON 88.2 85.7
Constituency tree all layer: WO+CON 87.1 83.9

set to 0.001. In graph encoder, the BiRNN we use is a one-
layer bi-lstm with hidden size 150, and the hop size in GNN is
choose from {2,3,4,5,6}. The decoder we employ is a one-layer
lstm with hidden size 300. The dropout rate is chosen from
{0.1,0.3,0.5}.We use Relu Glorot et al. [9] as our non-linear
function and inference strategy in decoding logical forms is
greedy search.

GraphConstructions Schemes. For the noise factor, we
test two conditions. The first one is the original condition
which include the errors introduced by the dependency tree
generator. For example, the CoreNLP sometimes does not
correctly mark the word outside with the \+ symbol and
therefore introduce noises to the graph. The second con-
dition is called the output correction. In this condition,
we manually remove all output results related to the nega-
tive meaning symbol, representing the best results we can
obtain without any influence of noises introduced by the
corresponding wrong tags of \+.

For the structural complexity, we also test three conditions
w.r.t. Word Order + Constituency construction. We choose
to remove different layers of non-terminal nodes in con-
stituency tree to construct the syntactic graph with word
sequence nodes. By constructing syntactic graph with differ-
ent partial information in constituency tree, we can obtain
syntactic graphs with various structural complexity.

Table 3: Exact-match accuracy comparison on JOBS andGEO

Methods JOBS GEO AT IS
Jia and Liang (2016) - 85.0 76.3

Dong and Lapata (2016)-Seq2Seq 87.1 85.0 84.2
Dong and Lapata (2016)-Seq2Tree 90.0 87.1 84.6

Rabinovich et al. (2017) 92.9 85.7 85.3
Xu and Wu (2018)-Graph2Seq 88.6 85.7 83.8

Graph2Tree 92.9 88.2 84.6

Table 4: Experiments on Ablation Study

Methods JOBS GEO
full model(constituency graph) 92.9 88.2

without const tree 90.0 86.8
without word order 87.1 85.4

without separate attention 83.6 77.1
replace separate attention with uniform attention 90.7 87.1

without bilstm 89.3 86.4

Results and Discussions Table 1 and 2 show the com-
parison results on datasets JOBS and GEO . We can observe
that in general the Graph2Tree, which is proposed in this
work, outperforms the Graph2Seq in generating high-quality
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Table 5: Output results of "what jobs can a delphi developer
find in san antonio on windows ?"

Methods Prediction results
Reference str job ( ANS ) , language ( ANS , ’delphi’ ) , title ( ANS , ’developer’ ) ,

loc ( ANS , ’san antonio’ ) , platform ( ANS , ’windows’ )
Graph2tree job ( ANS ) , language ( ANS , ’delphi’ ) , title ( ANS , ’developer’ ) ,

loc ( ANS , ’san antonio’ ) , platform ( ANS , ’windows’ )
Graph2seq job ( ANS ) , language ( ANS , ’delphi’ ) , title ( ANS , ’developer’ ) ,

platform ( ANS , ’windows’ )
Seq2seq job ( ANS ) , language ( ANS , ’delphi’ ) , title ( ANS , ’developer’ ) ,

loc ( ANS , ’san antonio’ )

logical forms from graph based inputs, no matter what type
of graph construction is used.

In terms of graph construction, if the parsing errors, which
are introduced by the imperfection of CoreNLP tool, remain
in the graph, the performance of both parsers degrades and is
even not comparable to that with onlyWord Order. Similarly,
the hop size of constituency tree, i.e. the structural complex-
ity, has large impacts of the performance as well. If structural
information is overwhelming or little, the performance of
parsers drops as well.
On the contrary, when the noises caused by inputs is

controllable or reduced by certain approach, the performance
ofWord Order + Dependency could be significantly improved;
when the right layers are selected, the performance of Word
Order + Constituency could also be improved. For example,
the logical form accuracies of Word Order + Constituency
in the one layer cut is higher thanWord Order respectively.
In fact, these accuracies are higher or comparable to other
existing parsers achieved, as shown in Table 3. Therefore,
the proper graph construction with consideration of noise
and structural complexity play an important role in graph
based semantic parsers.

Figure 4: Graph with word sequence and dependency tree

As shown in Table 5, we also present different decoding re-
sults from our model and baseline models of sentence "what
jobs can a delphi developerfind in san antonio on windows ?".
And as shown in Figure 4, we present dependency parsing
result of this sentence. We see that the noun key word "jobs"
is actually far away form its attribute words "windows" and
"san antonio". The traditional sequence decoder is hard to
learn a good representation due to the information loss in
sequence encoder. But with the syntactic graph input contain-
ing dependency information, for example, to the word "jobs",
its important relation with word "windows" can be linked in
2 hops. In contrast, if we treat original sequence structure as

a line graph, it then needs 10 hops from the word "jobs" to
the word "windows". Therefore, syntactic graph with graph
encoder is a more effective way to learn a high-quality repre-
sentation for decoding. And that is part of reasons why our
Graph2tree model outperforms the performance of Seq2Seq,
Seq2Tree, and the results in table 5 also confirms our analy-
sis. Finally, as shown in Table 4, we perform ablation study
on constitution tree based graph. We observe that separate
attentions on different parts of nodes (from constituency tree
or word tokens) and using constituency tree are two most
important factors on the final performance.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented a Graph2Tree model consisting
of a graph encoder and a hierarchical tree decoder, which
could make full use of structured inputs (text) and structured
outputs (logic form). We studied the impacts of different
syntactic graph constructions on the performance of GNN-
based semantic parsers and shed light on how to construct
a proper choice of graph for this type of neural semantic
parsing.
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