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ABSTRACT
The task of RDF-to-Text generation is to generate a corre-
sponding descriptive text given a set of RDF triplets. Most of
the previous approaches either cast this task as a sequence-
to-sequence problem or employ graph-based encoders for
modeling RDF triplets and decode a text sequence. However,
none of these methods can explicitly model both global and
local structure information within and between the triplets.
Furthermore, they did not exploit the target text as an impor-
tant additional context for modeling complex RDF triplets.
To address these issues, we propose to jointly learn local
information and global structure information via combining
graph encoder and graph-based triple encoder for the input
triplets. Furthermore, we also exploit Seq2Seq-based auto-
encoder to leverage target text as the context to supervise the
combination of input encoders. Experimental results on the
WebNLG dataset show that our proposed model outperforms
the state-of-the-art baselines.
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Knowledge Graph
FOOD-1

FOOD-2

INGREDIENT

POPULATED 
PLACE

ADMINSTRATION 
COUNTY

PERSON

Input : RDF Triple Graph 
region

leaderName

county

dishVariation

ingredient 

Output : Generated Text 
PERSON is the leader of POPULATEDPLACE(in the 
county of ADMINSTRATIONCOUNTY) which is where 
FOOD-1 originates from.  A variation on the pudding 
is FOOD-2 which has INGREDIENT as an ingredient.

Figure 1: A knowledge graph formulated by a set of RDF
triplets with generated text descriptions.

1 INTRODUCTION
RDF-to-text generation is a challenging task in natural lan-
guage generation (NLG), which is to transform a set of RDF
triplets into informative and faithful texts. Figure 1 illustrates
an example of an input RDF triple graph with generated text.
It hasmany fact-aware applications such as knowledge-based
question answering, entity summarization, and data-driven
news generation.

Traditionally, a RDF-to-text generation system mainly fo-
cused on the pipeline process of content selection [4] and
surface realization [2] with human-crafted features. How-
ever, a critical issue for error propagation has been largely
overlooked, which does harm to the quality of generated
text. Recently, as end-to-end deep learning has made great
progress, RDF-to-text generation has achieved promising per-
formance by using various sequence-to-sequence (Seq2Seq)
models [6, 11, 23] where RDF triplet elements are processed
and concatenated into a sequence.
However, simply transforming the RDF triplets into a se-

quence may lose important higher-order information. Since
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RDF triplets(After Entity Masking) : 
<FOOD-1, region, PP>
<PP, leaderName, PERSON>…

GTR-LSTM inputs: 
(FOOD-1, null), (PP, region),(FOOD-1, 
null),(FOOD-2, dishVariation), (PP, 
region),……

Target(Context) Text Auto-Encoder : 
PERSON is the leader of PP which is 
where FOOD-1 originates from……
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Figure 2: The framework of the combined encoder model with target text auto-encoder.

RDF triplets can be naturally represented as a knowledge
graph, two graph-based approaches are recently proposed
for RDF-to-text generation. Trisedya et al. [22] presented a
graph-based triple encoder to capture both intra-triple and
inter-triple entity relationships. However, since the encoder
block is still based on recurrent neural networks, it often
fails to capture rich local structure information between enti-
ties and relationships. On the other hand, Marcheggiani and
Perez-Beltrachini [17] proposed a graph encoder based on a
modified Graph Convolutional Networks (GCN) [13], which
directly encodes graph-structured RDF triplets and decodes a
text sequence. However, this graph-to-sequence (Graph2Seq)
model usually focuses on local structure information of the
graph and thus may fail to capture global information within
and between the triplets to better capture rich local context
information.

To address the aforementioned issues, we propose a novel
neural network architecture by exploiting graph-based neu-
ral networks with context information for RDF-to-text gen-
eration. To this end, we first present to exploit both power
of graph encoder and graph-based triple encoder to jointly
learn structure information locally and globally and then
leverage separate attentions to better decode the text se-
quence. The combined encoders can focus on multiple per-
spectives of the input RDF graph. The GCN encoder could
explicitly model the local structure information between the
intra-triplet relationships, while GTR-LSTM mainly focuses
on modeling global long-range dependency information be-
tween the inter-triplet relationships. We further exploit a

Seq2Seq-based auto-encoder with a single-layer bidirectional
Long-Short Term Memory Networks (LSTM) [9] to leverage
target text. The decoded target text could be considered as
the auxiliary context to supervise the combination of graph
and graph-based encoders for better representing complex
RDF inputs. Similar ideas have also been exploited in [16, 21]
for neural machine translation and text summarization tasks.
To summarize, we highlight our main contributions as

follows:
• We propose a novel graph-based encoder model by
combining GCN encoder and graph-based triple en-
coder (GTR-LSTM) for explicitly modeling themultiple
perspectives of the input RDF triplets.

• We enhance our graph-based encoder model with a
Seq2Seq-based auto-encoder to leverage target text
as the auxiliary context to supervise our combined
graph-based encoder.

• The experiment results on theWebNLG dataset corrob-
orate the advantages of our model over state-of-the-art
models in BLEU and METEOR metrics.

2 OUR PROPOSED MODEL
Formally, we define the RDF-to-text generation task as fol-
lows. The input side includes a set of triplets, which is de-
noted as S = {t1, t2, ...tn} where ti is a triplet consisting of
subject si , relationship ri and object oi . The aim is to gener-
ate a set of natural language sentences Y = ⟨w1,w2, ...wT ⟩

that represent the correct and concise semantics of entities
and their relationships in the given input. To fit for graph
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encoders, all the input triplets are represented as a directed
labeled graph G = (V ,E) as a whole where V represents all
of the nodes and E denotes a set of edges between the nodes
in V . In this section, we introduce how to combine the two
graph encoders we adopt and the target text auto-encoder.

Combined Encoders
We propose a combined strategy to integrate a GCN encoder
and a GTR-LSTM triple encoder for the input RDF triplets,
which is expected to jointly learn the local and global struc-
ture information of the RDF triplets input.

GTR-LSTM Triple Encoder. For the graph G, V is a set
of entity nodes(vi ), and E is a set of directed edges in which
ei, j represents the relationship between vi and vj . The rep-
resentation of vj is computed as: r j = f (ri ,vj , ei, j ), where
vi is a parent node of vj in the graph and f (·) is a single
GTR-LSTM unit, following the implementation of Trisedya
et al. [22]. For the nodes having multiple (vk , ek, j ,vj ) triples,
vj has multiple representations {r ji , r jk , ...} preserved in a
final set of entity node representations RGTR−LSTM .
Graph Convolutional Encoder. Each node v ∈ V is

represented with hv
′ at current layer and hv at previous

layer. The node embedding can be updated as follows

hv
′ = ReLU (

∑
u ∈N (v)

дu,v (Wdir (u,v)hu + blab(u,v))) (1)

where N (v) is the neighbour nodes of v , and Wdir (u,v) is
a direction-specific parameter matrix, in which dir (u,v) ∈
{in,out , loop} [18]. And blab(u,v) ∈ Rd is an embedding of
the label of the edge. дu,v are learned scalar gates which
weight the importance of each edge. GCN layers are stacked
to multiple layers using residual connections [8] and dense
connections [10].
Both encoders generate a set of node representations. In

general, RGCN = {h0,h1,h2...} captures the local structure
information within the RDF triplets better while RGTR−LSTM
= {r0, r1, r2, ...} mainly focuses on the global structure infor-
mation between the RDF triplets.

This motivates us to obtain a graph embeddingGi by com-
bining RGCN and RGTR−LSTM through applying an average
pooling on Ri ∈ {RGCN ,RGTR−LSTM }.

ZGi = avд(Ri ) (2)

where avд(·) denotes the average operator. The combined
graph embedding ZG is computed as,

ZG = σ (Wд[ZG1 ;ZG2 ] + bд) (3)

where σ is a non-linearity(ReLU),Wд and bд are learnable
parameters. ZG is fed into the decoder at initial hidden state
and input. We then further apply the separate attentions by
computing the align weights vector at decoding time step t

as follows:

αt (i) =
exp(score(hi , st ))

exp(
∑V

k=1 score(hk , st ))
(4)

βt (j) =
exp(score(r j , st ))

exp(
∑M

k=1 score(rk , st ))
(5)

where hi ∈ RGCN and r j ∈ RGTR−LSTM . And V = |RGCN |

and M = |RGTR−LSTM | are the lengths of representations
sequence. The score(·) function estimates the similarity of
hi , r j and st . Then, we compute GCN-level context vector cu
and GTRLSTM-level context vertor cv as follows:

cu =
V∑
i=1

αt (i)hi (6)

cv =
M∑
j=1

βt (j)r j (7)

Next, we compute final attentional hidden state at this
time step as:

s̃t = tanh(Wc · [cu ; cv ; st ] + b) (8)

whereWc and b are learnable parameters. Finally, we employ
the loss function with a negative log likelihood:

LG =
1
T

T∑
t=1

− log P(yt |y0:t−1,ZG ) (9)

Auto-encoder Supervision
The target texts are well-written and contain almost the same
information as the input triplets. Therefore, we explicitly ex-
ploit the target text as the auxiliary context to supervise
graph encoder learning. At the training phase, target text
encoder compresses reference text Y into ZY . Except condi-
tioned on ZY , the loss function LAE is the same as equation
9. LAE is computed as:

LAE =
1
T

T∑
t=1

− log P(yt |y0:t−1,ZY ) (10)

The supervision of target text auto-encoder is realized by
minimizing the distance loss between ZG and ZY . Ldis is
added into the loss function as regularization item:

Ldis =
λ

Nh
d(zG , zY ) (11)

whereNh is the hidden size of target text encoder andd(ZG ,ZY )
is a L2 constraint. λ is a hyper-parameter.
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Workflow of the Overall Framework
The overall architecture of our proposed model is depicted
in Figure 2. The encoders receive differently preprocessed
RDF triplets set as input. Both encoders generate a set of
node representations Ri and a graph embedding ZGi . Then
auto-encoder generates a representation ZY for the target
text. ZG and ZY are fed into the decoder as initial hidden
state and input, respectively. Attention mechanism is applied
on encoders outputs RGCN and RGTR−LSTM . The model is
trained to optimize an overall loss function:

Loss = LG + LAE + Ldis (12)

3 GRAPH CONSTRUCTIONS
In this section, we describe how to transform RDF triplets
set to input graphs for two encoders.

Entity Masking. Entity masking can improve the gen-
eralization ability of our model. Considering that multiple
entities in a set of triplets may belong to the same type,
we assign an eid to each entity in the set. Therefore, each
entity is replaced with its eid and type. For example, the
entity “Bakewell pudding”, know as “FOOD-1” in figure1, is
replace by “ENTITY-1 FOOD” while the entity “Bakewell
tart”(“FOOD-2”) is replace by “ENTITY-2 FOOD”.

RDF Triplets to Graph. For GTR-LSTM triple encoder,
we first choose a starting node with 0 in-degree and employ
topological sort traversal algorithm to the graph. The tra-
verse order of figure1 is (FOOD-1, POPULATEDPLACE(PP),
FOOD-1, FOOD-2, PP, PERSON, PP, ADMINSTRATIONCOUNTY,
FOOD-2, INGREDIENT). Each node receives one of its par-
ent nodes embedding as a hidden state. For GCN encoder,
we treat relations as additional nodes [18] and the new rela-
tion node is connected to the subject and object by two new
relations(i.e., A0 and A1), respectively. The original triplet
(FOOD-1, region, PP) is separated into two new triplets (re-
gion, A0, FOOD-1) and (region, A1, PP) with “region” being
a node in the input graph.

4 EXPERIMENTS
Datasets
We use the WEBNLG dataset [5] for the task of mapping
RDF-triples to text. An example of the dataset is a ⟨S,T ⟩ pair,
consisting of a source side triple set and a target side refer-
ence text. Here, one triple set may correspond to multiple
reference texts. Each RDF triple is represented as <subject,
relationship, object> , where the subject and object are con-
stants or entities. The dataset 1 is avaliable. Thewhole dataset
is divided into 18102 training pairs, 2495 validation pairs and
2269 testing pairs. As mentioned in section 3, to enhance the

1https://gitlab.com/shimorina/webnlg-dataset/tree/master/webnlg_
challenge_2017

generalization capability of the model, we map the subjects
and objects in the triple set to entity types using the officially
provided dictionary and DBpedia lookup API2.

Experimental Settings
We implement the baseline model and our proposed model
based on OpenNMT 3 released by Klein et al. [14]. We use
Adam[12] as optimization method with an initial learning
rate 0.001 and learnable parameters are updated every 64
instances. We train 10000 steps(about 35 epochs) on GPU
and evaluate on validation set every 500 steps. The word
embeddings is sharing between source and target text. Copy
mechanism[7] is used in every model.

Sequential EncodersWeused a standard attention-based[1,
15] sequence-to-sequence model with one layer bidirectional
LSTM encoder and one layer LSTM decoder as baseline. The
RDF triplets are simply transformed into a sequence and fed
into the encoder. The embeddings and hidden units are set
to 300 dimensions.

GTR-LSTM Encoder The GTR-LSTM model consists of
a GTR-LSTM encoder and one layer LSTM decoder. GTR-
LSTM Encoder is re-implemented according to Trisedya et al.
[22]. Both encoder and decoder embeddings and hidden units
use 300 dimensions. Each node receives one of its parent
nodes embedding as a hidden state and the concatenation
of entity embedding and relation embedding as input. Since
one node may have multiple parent nodes, this kind of nodes
may have multiple representations preserved in a final set
of entity node representations RGTR−LSTM .
GCNEncoder The GCNmodels consist of a GCN encoder

and one layer LSTM decoder. We follow the implementation
in [17] and the code4 is available. All encoder and decoder
embeddings and hidden units use 300 dimensions. We ex-
tend the GCN-based model with copy mechanism [20]. We
experimented on 2,3 and 4 layers with residual connection.

Combined Graph Encoders with Target Text Auto-
encoder The combined model consists of a GCN encoder, a
GTR-LSTM encoder, a target text auto-encoder and LSTM
decoder. We then further apply the separate attentions on
the combined graph encoders. All encoder and decoder em-
beddings and hidden units are 300 dimensions and copy
mechanism is also a default setting.

Metrics and Results
For our experiments, we adopt the standard evaluation met-
rics of the WebNLG challenge, including BLEU [19] and
METEOR [3]. BLEU looks at n-grams overlap between the
2The query result of ‘Bakewell pudding’ using DBpedia lookup
API is http://lookup.dbpedia.org/api/search/KeywordSearch?QueryString=
Bakewellpudding.
3http://opennmt.net/
4https://github.com/diegma/graph-2-text

https://gitlab.com/shimorina/webnlg-dataset/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/tree/master/webnlg_challenge_2017
http://lookup.dbpedia.org/api/search/KeywordSearch?QueryString=Bakewell pudding
http://lookup.dbpedia.org/api/search/KeywordSearch?QueryString=Bakewell pudding
http://opennmt.net/
https://github.com/diegma/graph-2-text
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RDF Triples In-
put

(William Anders, dateOfRetirement, 1969-09-01) (William Anders, nationality, United States) (William Anders,
occupation, Fighter pilot) (William Anders, birthPlace, British Hong Kong ) (William Anders, was a crew member of,
Apollo 8)

Reference Out-
put

william anders is an american who was born in british hong kong . he became a fighter pilot and later a member of the
crew on apollo 8 . he retired on 1 september 1969.

GCN american william anders was born in british hong kong . he was a fighter pilot and a crew member of apollo 8 .
GTR-LSTM william anders , a united states national , was born in united states . he was a fighter pilot and crew member on apollo 8

. he retired in 1969-09-01 .
Our Model william anders is a united states national who was born in british hong kong . he was a fighter pilot and a crew member

of apollo 8 . he retired in 1969-09-01 .
Table 1: Sample outputs of different models.

Model BLEU METEOR
Bi-LSTM 52.60 38.3

GTR-LSTM 54.54 39.9
GCN(2 Layers) 54.76 40.3
GCN(3 Layers) 54.93 40.3
GCN(4 Layers) 54.55 40.2
GCN(2 Layers) +
GTR-LSTM+AE 56.69 40.7

Table 2: BLEU and METEOR on WebNLG test dataset.

Model BLEU METEOR
Full Model 56.69 40.7

-AE 55.31 40.2
-Ldis 56.22 40.4
-GCN 54.92 40.1

-GTR-LSTM 55.49 40.6
Table 3: Ablation study on WebNLG test dataset.

output and reference text with a penalty for shorter outputs.
METEOR modifies the precision and recall computations,
replacing them with a weighted F-score based on mapping
unigrams and a penalty function for incorrect word order.
For RDF-to-text generation, our proposed model is able to
better encode the global and local graph structure of the in-
put RDF triplets. For instance, our proposed model is about
2.0 BLEU points higher than those of the other baselines on
the WebNLG dataset as shown in Table 2.

Qualitative Analysis
In addition, we further manually inspected the outputs of
different models. As shown in Table 1, we found that the
models involving GCN encoder perform better on covering
correct relations between entities; target text auto-encoder
and GTR-LSTM encoder perform better on generating texts
associated with input context information among the RDF
triplets. This result is expected since GCN encoder pays more
attention to the local structure information and can predict

the intra-triplet relationship more accurately and effectively.
Meanwhile, GTR-LSTM mainly focuses on the inter-triplet
relationships, which helps model long-range dependency
and associate with more input context information.

Ablation Study
As shown in Table 3, there are four key factors in our pro-
posed model that may affect the quality of generated text.
The first two are the target text auto-encoder and Ldis . The
first one is the target text auto-encoder, which will help to
integrate target side context information. The second factor
Ldis minimizes the distance between graph representation
and text representation. The other two are the GCN encoder
and the GTR-LSTM encoder, which encode the local and
global information of the input triplets set. We separate each
of these four components from the full model. Experiment
results are listed in Table 3. The performance of both Full
Model - GCN and Full Model - GTR-LSTM decreases by at
least 1.77 and 1.20 BLEU points. This result is expected, since
it is difficult for one single graph-based encoder to fully en-
code both global and local structure information completely.
We also observe that integrating context information helps
the graph encoder learn better semantic representations for
the RDF triplets. Finally, the contribution of Ldis is shown
to be marginal compared to the full model.

5 CONCLUSION
We propose a novel approach via exploiting graph-based neu-
ral networks with context information for RDF-to-text gen-
eration. Our approach jointly learns structure information
locally and globally via the combination of a graph encoder
and a graph-based triple encoder to learn intra-triplet and
inter-triplet relationships. We further exploit Seq2Seq-based
auto-encoder for the target text as the auxiliary context to
supervise our combined encoder. The experiments show that
our proposed model outperforms the state-of-the-art base-
lines. In future work, we plan to investigate the contribution
of two graph encoders in a quantitative way and make fur-
ther improvement on this model.
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