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ABSTRACT

Low-dimensional representations, or embeddings, of a graph’s nodes
facilitate tasks such as link prediction and node classification. Em-
beddings learn similarities among nodes, either implicitly, as a
side-effect of adapting word embedding methods to graphs, or ex-
plicitly, by reconstructing a similarity measure. As the similarity
matrix is large and dense, past research has resorted to heuristic or
linear factorization methods, compromising the solution quality.

In this paper we propose FREDE (FRequent Directions Embed-

dings), a nonlinear sketching-based embedding method that pro-
vides, at any iteration, an error guarantee that renders it practically
indistinguishable from the optimal SVD factorization.

Starting out from the observation that embeddings strive to pre-
serve the covariance among rows of the similarity matrix, FREDE
operates on each row individually, progressively improving the
overall embedding quality; thereby, it is the first, to our knowledge,
embedding method that combines (i) linear space complexity, (ii) a
nonlinear transform as its basis, and (iii) nontrivial error guarantees.
Our experimental evaluation on variably sized networks shows that
FREDE performs almost as well as SVD and clearly outperforms
previous embedding algorithms in various data mining tasks.
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1 INTRODUCTION

Graph embeddings [5, 13] empower data practitioners with a multi-
purpose tool for effectively solving different graph tasks, such as
node classification and link prediction. Neural graph embeddings [5,
13, 17, 19] computing nonlinear transformations via unsupervised
learning outperform their linear counterparts [11, 21] in quality.

Recently, NetMF [14] established a connection between neural
graph embeddings and the factorization of a matrix of nonlinear
pairwise similarities among nodes, under certain conditions on
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Figure 1: FREDE reaches 99% of full SVDperformancewhilst

processing only 10% of a similarity matrix on PPI dataset.

the algorithm parameters. NetMF performs Singular Value Decom-
position (SVD) on a dense similarity matrix. Contrary to neural
methods such as DeepWalk and node2vec, NetMF achieves the
global optimum of its objective function by virtue of the SVD.

In this paper, we propose FREDE, an incremental, linear-space

algorithm that produces embeddings with error guarantees. We
observe that embeddings seek to preserve the covariance among
embeddings of nodes; we thus adapt the Frequent Directions (FD)
algorithm [4, 8] to sketch a similarity matrix on per-row basis.
FREDE provides error guarantees even after it has accessed a subset
of similarity matrix rows. Figure 1 shows that it already achieves
the same accuracy as SVD after it has only processed 10% of rows.
We summarize our contributions as follows:
• we show that matrix factorization based embedding methods
only need optimize for the covariance of embeddings;
• we propose FREDE, a novel graph embedding method that di-
rectly minimizes covariance error via sketching and is much lighter
than matrix-factorization-based methods.
• we design FREDE as an anytime algorithm with time complexity
linear in the number of processed rows;
• we confirm that FREDE is competitive against the state-of-the-
art graph embedding methods.

Algorithm Complexity

method Nonlinear Error bounds Space Time

DeepWalk [13]
✔ ✘

O(dn) O(dn logn)
Node2vec [5] O(n3) O(dnb)
LINE [17] ✔ ✘ O(dn) O(dnb)
HOPE [11] ✘ ✔ O(dn) O(d2m)
AROPE [21] ✘ ✘ O(dn) O(dm + d2n)
VERSE [19] ✔ ✘ O(dn) O(dnb)
NetMF [14] ✔ ✔ O(n2) O(dn2)

FREDE (ours) ✔ ✔ O(dn) O(dn2)

Table 1: Comparison with previous work in terms of fullfilled (✔)

and missing (✘) properties; complexities in terms of the dimension-

ality d , number of nodes n, edgesm, and negative samples b .
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2 RELATEDWORK

We focus on embedding nodes of simple graphs with no additional
information on nodes or edges. We discuss two major categories in
which related work belongs to in terms of their desirable properties:
• nonlinearity: applying nonlinear transformations; most em-
bedding methods except HOPE [11] and AROPE [21] are nonlinear.
• error-boundness: returning a solution with optimal or non-
trivial error guarantees; closed-form methods are error-bounded,
except AROPE [21] that abandons such guarantees for scalability.

Neural graph embeddings. Advances in natural language pro-
cessing [6, 10] provided scalable methods that derive vector rep-
resentations of words. DeepWalk [13] imported such methods to
graphs by materializing a corpus of random walks, treating nodes
encountered on the walk as words in a text. LINE [17] extended
DeepWalk by exploiting graph edges rather than random walks;
Node2vec [5] boosted it with a customizable generation of random
walks; and VERSE [19] generalized it to a method that preserves any
similarity measure among nodes, with Personalized PageRank [12]
as the default option. Such neural graph embeddings reach scalabil-
ity through stochastic gradient descent and sampling; they provide
no closed-form solution, and hence do not offer any comprehensible
quality guarantees either.

Matrix factorization embeddings. In another vein than neural
embeddings, matrix factorization relies on the explicit decomposi-
tion of similarity matrices among nodes. GraRep [2] factorizes, by
Singular Value Decomposition (SVD), the concatenation of dense
log-transformed DeepWalk transition probability matrices over dif-
ferent numbers of steps. GraRep is neither scalable (O(n3)), nor
interpretable, as the concatenation provides no guarantees on the
resulting representation. HOPE [11] overcomes the scalability draw-
back by applying a generalized form of SVD on special similarity
matrices in the form AB−1; HOPE achieves optimality due to the
SVD guarantees of the Eckart–Young–Mirsky theorem, but its over-
all performance is hindered by its linear nature [19]. AROPE [21]
applies eigenvalue filtering on symmetric similarity matrices; it
forfeits the theoretical guarantees for the sake of performance.

Connecting the neural and factorization worlds. NetMF [14]
extended an analysis of word embeddings [6] to suggest a connec-
tion between matrix factorization and neural graph embeddings:
under certain probability independence assumptions, DeepWalk,
LINE, and node2vec implicitly apply SVD on dense log-transformed
similarity matrices. NetMF proposes novel closed-form solutions to
compute such similarity matrices directly with optimal error guar-
antees. However, it yields a quadratic space complexity that hinders
its application to large graphs with more than 100 000 nodes.

3 PRELIMINARIES AND PROBLEM SETTING

Here, we show that graph embedding methods implicitly minimize
the covariance error in relation to a similarity matrix among graph
nodes. Arguably, this interpretation is more economic than explain-
ing embeddings in terms of minimizing reconstruction error [14].
Then, in Section 4, we describe FREDE, a novel, incremental al-
gorithm that offers linear space complexity and error guarantees
through covariance sketching.

3.1 Problem setting and notation

A graph is a pair G = (V ,E) with n vertices V = (v1, . . . ,vn ),
|V | = n, and edges E ⊆ V ×V , |E | =m. A graph is represented by an
adjacency matrix A for whichAi j = 1 if (i, j) ∈ E is an edge between
node i and node j , otherwise Ai j = 0. The matrix D is the diagonal
matrix with the degree of node i as entry Dii , i.e, Dii =

∑n
j=1Ai j .

The normalized adjacency matrix is the matrix P = D−1A that
represents the transition probability from one node to any of its
neighbors. We represent arbitrary interactions among nodes with a
similarity matrix S, as done in previous work [11, 19, 21]. The row i
of a matrix A is denoted as Ai .

We seek to find a d-dimensional embedding, represented as a
n × d matrix W that provably retains most of the information in S.

3.2 Graph embeddings as matrix factorization

We now cast the problem of learning graph embeddings as matrix

factorization. We first introduce the problem of factorization by
minimization of the approximation error to pave the way on the
study of the covariance error and its properties.

One way to preserve the similarities contained in the matrix S is
to find an approximate matrix S̃ that minimizes the reconstruction
error [11, 14, 21].

Definition 1 (Reconstruction error). The reconstruction
error between S and S̃ is the Frobenius norm of the difference among

the S and S̃, i.e., ∥S − S̃∥2F =
√∑n

i=1
∑n
j=1(Si j − S̃i j )2.

In other words, the reconstruction error acts element-wise and
discards row dependencies.

In the case of symmetric S, there exists an eigendecomposition
S = UΛU⊤. The optimal rank-k approximation [S]k =WW⊤ of S
minimizing the reconstruction error is W = U:k

√
Λ:k , obtained by

the product of the first k eigenvectors U:k and a diagonal matrix of
square roots of the first k eigenvalues Λ:k .

In the non-symmetric case, the best rank-k approximation can
be obtained by taking the first k singular vectors and values [S]k =
U:kΣ:kV⊤:k on the Singular Value Decomposition S = U ΣV⊤.

The analysis in [14], for instance, shows that Deepwalk [13]
objective is equivalent to SVD on the dense similaritymatrix created
from large powers of the adjacency matrix

S = log

(
|E |

bT

( T∑
r=1

Pr
)
D−1

)
,

whereT is the window size for the random-walk andb is the number
of negative samples. The d−dimensional Deepwalk embedding
is the result of multiplying the d left singular vectors Ud by the
square root of the first d singular values Σd , i.e., Ud

√
Σd . The major

shortcoming of such approach is the O(n2)memory requirement

to store the dense similarity matrix S.
One solution to the scalability challenge is to apply SVD on

the similarity matrix directly [11, 18] discarding the nonlinearity;
however, that incurs a significant quality loss [19].



Towards Incremental Construction of Graph Embeddings DLG’19, August 5, 2019, Anchorage, USA

3.3 Matrix sketching

As the non-linear matrix factorization can not eschew its quadratic
memory complexity, we turn our attention to an alternative ap-
proach, namely matrix sketching. Matrix sketching aims at a low-
dimensional sketch of a matrix S that retains most of the information
in S without striving for matrix reconstruction. One representative
objective for matrix sketching is covariance:

Definition 2 (Covariance error). The covariance error is the
normalized difference between covariance matrices

cek (S,W) =
∥S⊤S −W⊤W∥2
∥S − [S]k ∥2F

≤
∥S⊤S −W⊤W∥2

∥S∥2F
= ce(S,W).

Many sketching techniques allow row-wise processing of the
matrix S with guarantees on the quality of the covariance. This is
a valuable property as it allows to build the sketch incrementally
(Section 4.3).

Frequent Directions [4, 8] sketches a matrix by iteratively filling
the sketch with the incoming rows, performing SVD on the sketch
when the sketch cannot add more rows, and shrinking the accu-
mulated vectors with a low-rank SVD approximation. This allows
incremental computation with bounded covariance error ce ≤ ϵ
with setting d = O(n/ϵ).

4 INCREMENTAL GRAPH EMBEDDINGS

We show that SVD-based embedding methods aim to preserve
covariance; this fact suggests that we could apply a sketching algo-
rithm as an embedding method. Still, it would be inefficient to apply
sketching algorithms to previously introduced dense similarity ma-
trices that cannot be partially materialized. Instead, we use the PPR
matrix as S and incrementally construct a graph embedding aiming
to preserve the covariance of S.

4.1 Embedding as covariance optimization

Here we show that SVD based methods (notably, HOPE and NetMF)
instead of preserving reconstruction loss aim to preserve covariance
by dropping either the left or right singular vectors. First note
that the columns of U are eigenvectors of the covariance matrix
SS⊤ = UΣ2U⊤, while the columns of V are eigenvectors of S⊤S =
VΣ2V⊤. Methods likeHOPE,NetMF andGraRep have optimization
objectives expressed as:

min
W

∥SS⊤ −WW⊤∥2
∥S − [S]k ∥2F

.

Since the similarity matrix is a square matrix, both rows and
columns describe nodes. In what follows we apply sketching algo-
rithms that optimize the covariance among columns,

min
W

∥S⊤S −W⊤W∥2
∥S − [S]k ∥2F

.

When the similarity matrix is symmetric, as in AROPE, the two
formulations are equivalent. The unnormalized form of the above
objective is the PIP similarity [20], i.e., the unnormalized covariance
error of observations defined over rows: ∥S⊤S−W⊤W∥2. While PIP
was defined merely as a similarity measure between embeddings,
we upgrade it to an optimization objective and show that previous
work explicitly optimizes for it.

4.2 Effective and efficient similarity matrices

Previous work [11, 19] pointed out that embeddings based on
higher-order similaritymatrices achieve good performance in down-
stream tasks. VERSE [19] suggests using Personalized PageRank
(PPR), which encodes higher-order similarity information and al-
lows efficient row-wise computation.

Definition 3. Given a starting node distribution s , damping factor

α , and the transition probability matrix P, the Personalized PageRank
vector PPRi · is defined by the recursive equation:

PPRi · = αs + (1 − α)PPR⊤i ·P (1)

Following [6, 14] we prove that, under mild assumptions, VERSE
equipped with the PPR similarity implicitly factorizes the log(PPR)
matrix up to an additive constant.

Theorem 4.1. VERSE implicitly factorizes a matrix of the form

log(PPR) + logn − logb = XX⊤. (2)

Proof. Consider the VERSE objective function for the uniform
sampling distribution and PPR similarity:

L =

n∑
i=1

n∑
j=1

[
PPRi j logσ (x⊤i xj ) + bEj ′∼Qi logσ (−x

⊤
i xj ′)

]
. (3)

where σ (x) = (1 + e−x )−1 is the sigmoid and Qi is the noise
sample distribution. Since PPR is right-stochastic and Qi is uniform,
i.e. Pr(Qi = j) = 1

n , we separate two terms in Eq. 3:

L =

n∑
i=1

n∑
j=1

PPRi j logσ (x⊤i xj ) +
b

n

n∑
i=1

n∑
j ′=1

logσ (−x⊤i xj ′).

Writing down an individual loss term for vertices i and j,

Li j = PPRi j logσ (x⊤i xj ) +
b

n
logσ (−x⊤i xj ).

We now substitute zi j = x⊤i xj and, following [6, 14], we operate
under the assumption that individual zi j terms are independent
given a sufficiently large embedding dimension. Taking the deriva-
tive with respect to zi j , we solve for the condition

∂Li j

∂zi j
= PPRi j logσ (−zi j ) +

b

n
logσ (zi j ) = 0,

to obtain the solution zi j = log n ·PPRi j
b = x⊤i xj in the real do-

main. In matrix form, that is

log(PPR) + logn − logb = XX⊤.
□

Note that a solution is algebraically impossible, as it implies
approximating a non-symmetric matrix by a symmetric one. Thus,
Equation (2) is foreordained to fail — it does not ultimately explain
what a VERSE embedding does. Still, it provides a matrix whose
covariance we can sketch efficiently in row-streaming fashion.

Equipped with the right algorithms and similarity, we can now
introduce FREDE, the first incremental graph embedding algorithm.
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Algorithm 1 FREDE algorithm

1: function FREDE(G,n,d)
2: W← zeros(2d,n) ▷ all zeros matrixW ∈ R2d×n
3: Σ̂← I(2d) ▷ identity matrix Σ̂ ∈ R2d×2d
4: for v ∈ V do

5: x ← PersonalizedPageRank(v)
6: x ← logx + logn ▷ VERSE similarity row
7: Insert x into the last zero valued row ofW
8: if W has no zero valued rows then
9: U, Σ,V⊤ ← SVD(Σ̂W), σ ← Σd,d
10: Σ̂←

√
ReLU(Σ2 − σ 2Id ) ▷ ReLU(·) = max(·,0)

11: Σ̂d : ← Id
12: W← V⊤
13: return Σ̂,W[:d, :]
14: function GetEmbedding(k ≤ d) ▷ Anytime
15: return Σ̂1/2W⊤[:k, :] ▷ first k rows

4.3 FREDE algorithm

FREDE lowers the O(d2n) retrieval time and obtains a more accu-
rate covariance estimation as follows. The matrix XX⊤ has equal
row and column ranks, hence we can rewrite the decomposition
commutatively, as log(PPR) + logn − logb = X⊤X. Then, we treat
the rows of the PPR matrix as a column basis for our embedding
(n × d), and apply the row-stream sketching algorithm described in
Section 3.3.

Algorithm 1 presents the details of FREDE; it passes through the
rows of the PPR matrix, applies Frequent Directions as a sketch,
and conveniently keeps track of singular values so to avoid recal-
culations at the time of output.

Quite significantly, FREDE can produce valid embeddings after
it has processed only a part of the graph. Since the bounds on the
covariance error still hold for the subset of the processed rows, the
sketch embedding maintains optimality guarantees as it progresses
through the input matrix.

Theweighting of singular values in embeddingmethods has been
discussed in [7, 16]. It has been shown that raising singular values
to a value from the interval [0, 0.5] is beneficial for the downstream
tasks, although not explained theoretically. In line with previous
work, we use the square root of singular values for the embeddings.

5 EXPERIMENTS

We evaluate FREDE against state-of-the-art graph embedding algo-
rithms, NetMF [14], and SVD exact matrix factorization. We run all
experiments on commodity servers with 20 cores and 384Gb RAM.
For each dataset, we repeat the experiment 10 times and report the
average among the results.

Competingmethods and baselines.We evaluate FREDE against
the following state-of-the-art graph embedding methods:

• DeepWalk [13]: This approach learns an embedding by sam-
pling fixed-length random walks from each node and applying
word2vec-based learning on those walks. We use the default pa-
rameters described in the paper, i.e., walk length t = 80, number of
walks per node γ = 80, and window size T = 10.

Size Statistics

dataset |V | |E | |L| Avg. deg. Density

PPI 4k 77k 50 19.9 5.1 × 10−3
POS 5k 185k 40 38.7 8.1 × 10−3
BlogCatalog 10k 334k 39 64.8 6.3 × 10−3
CoAuthor 52k 178k — 6.94 1.3 × 10−4
VK 79k 2.7M — 34.1 8.7 × 10−4

Table 2: Dataset characteristics: number of vertices |V |, num-

ber of edges |E |; number of node labels |L|; average node de-

gree; density defined as |E |/
( |V |
2

)
.

• VERSE [19]: This approach learns similarity measures via sam-
pling by optimizing a single-layer neural network. We use person-
alized PageRank as similarity measure with the default parameters
described in the paper, i.e., α = 0.85 and nsamples= 106.
• NetMF [14]: This approach computes the DeepWalk matrix
with a closed-form solution and performs SVD on that matrix. To
compare NetMF on quality, we use their optimal method NetMF-
small, as NetMF-large is heuristic and considerably slower than
DeepWalk. We use the same parameters as in DeepWalk – window
size T = 10, and set bias b = 1 as in the original paper.
• SVD: full SVD decomposition of the precomputed PPR similarity
matrix. We use the same PPR settings as VERSE, namely α = 0.85.

Parameter settings.We set default embedding dimension d = 128
for all the methods unless indicated otherwise [5, 13], and use
α = 0.85 for personalized PageRank for the default value [12, 19].
We use Intel MKL library to perform SVD using the function gesdd.
For classificationwe use LIBLINEAR [3].We repeat each experiment
10 times and evaluate each embedding 10 times in order to reduce
the noise introduced by the embedding and classification processes.

Datasets. We assess our methods on 4 real datasets; the data char-
acteristics are described in Table 2.
• PPI [5, 15]: a protein-protein interaction dataset, where labels
represent hallmark gene sets of specific biological states.
• POS [5, 9]: a word co-occurrence network built from Wikipedia
data. The labels indicate parts of speech (POS) induced by Stanford
NLP parser.
• MS citation graph [1, 19]: a paper citation graph generated from
Microsoft Academic graph. We extract the induced graph of papers
published in the 15 major data mining conferences and use the
conference identifiers as labels.
• VK [19]: a Russian all-encompassing social network. Labels rep-
resent self-identified sex of users. The graph is available as two
snapshots: one made in November 2016 and one in May 2017. We
predict the links that appeared in this timeframe.

5.1 Sketching quality

The optimal rank-k covariance approximation can be obtained via
SVD on the full similarity matrix S̃⊤S̃ = VdΣ2dV

⊤
d . We numerically

compute the covariance using the definition in Section 4.1 on the
smallest dataset, PPI. Figure 2 reports the covariance error (ce) as a
function of the dimension d . FREDE approaches the optimal SVD
solution as the dimensionality d increases.
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Operator Result

Average (a + b)/2
Concat [a1, . . . , ad , b1, . . . , bd ]
Hadamard [a1 ∗ b1, . . . , ad ∗ bd ]
Weighted L1 [|a1 − b1 |, . . . , |ad − bd |]
Weighted L2 [(a1 − b1)2, . . . , (ad − bd )2]

Table 3: Edge embedding strategies for link prediction task

for nodes u,v ∈ V and corresponding embeddings a, b ∈ Rd .

5.2 Node classification

We now turn our attention on the quality of FREDE on node classi-
fication task. In a partially labelled graph, node classification aims
at predicting the correct labels for the unlabelled nodes. We report
results for all the methods on PPI, POS, and BlogCatalog graphs.

We evaluate the accuracy in terms of Micro-F1 measure as it
is common in the literature [13, 17]. Tables 4, 5, and 6 report the
results with the different datasets.

Our results confirm the superiority of our similarity matrix
choice over NetMF across the tested datasets. Surprisingly, FREDE
outperforms its exact solution given by SVD on two out of three
datasets tested. We attribute that to the fact that the sketching can
be seen as iterative filtering of the data, allowing us to reduce the
noise.

5.3 Link prediction

Link prediction is the task of predicting the appearance of a link
between pairs of nodes in a graph. We evaluate link prediction on
two datasets – CoCit and VK (Tables 7, 8).

As a baseline, we train a logistic regression classifier on tradi-
tional link prediction features (node degree, number of common
neighbors, Adamic-Adar index, Jaccard coefficient, and preferential
attachment index). Features are constructed from embeddings ac-
cording to the rules outlined in the Table 3. We then run a logistic
regression classifier to distinguish between links that will appear in
the graph versus those that will not. Negative sampling of the non
appearing links is used for them to be equally represented in the
training data. We use 50% of links for training and remaining 50%
for testing. FREDE outperforms all competing methods on CoCit.

22 23 24 25 26 27 28 29 210

10−6

10−4

10−2

d

ce

FREDE SVD

Figure 2: Covariance error wrt. embedding dimensionality d .

labelled nodes, %

method 10% 30% 50% 70% 90%
DeepWalk 16.33 19.74 21.34 22.39 23.38
NetMF 18.58 22.01 23.87 24.65 25.30
VERSE 16.45 19.89 21.64 23.08 23.84
FREDE 19.56 23.11 24.38 25.11 25.52
SVD 18.31 22.12 23.66 25.03 25.78

Table 4: Micro-F1 classification results in PPI dataset.

labelled nodes, %

method 10% 30% 50% 70% 90%
DeepWalk 43.42 47.12 48.96 49.86 50.18
NetMF 43.42 46.98 48.52 49.23 49.72
VERSE 40.80 44.70 46.60 47.65 48.24
FREDE 46.59 49.23 50.45 51.02 51.30
SVD 44.69 48.86 50.57 51.53 52.20

Table 5: Micro-F1 classification results in POS dataset.

labelled nodes, %

method 10% 30% 50% 70% 90%
DeepWalk 36.22 39.84 41.22 42.06 42.53
NetMF 36.62 39.80 41.05 41.70 42.17
VERSE 35.82 40.06 41.63 42.63 43.14
FREDE 35.69 38.88 39.98 40.54 40.75
SVD 37.60 40.99 42.10 42.66 43.47
Table 6: Micro-F1 classification results in BlogCatalog dataset.

method Average Concat Hadamard L1 L2
DeepWalk 68.97 68.43 66.61 78.80 77.89
VERSE 79.62 79.25 86.27 75.15 75.32
FREDE 81.28 80.95 86.83 81.70 82.37
Baseline 77.53
Table 7: Link prediction results on theMS coauthorship graph. Best

results per method are underlined.

method Average Concat Hadamard L1 L2
DeepWalk 69.98 69.83 69.56 78.42 77.42
VERSE 74.56 74.42 80.94 77.16 77.47
FREDE 74.68 74.59 77.63 74.25 73.60
Baseline 78.84
Table 8: Link prediction results on the VK social graph. Best

results per method are underlined.

6 CONCLUSION

We introduced FREDE, an incremental graph embedding algorithm
that represents a nonlinear similarity matrix among nodes opti-
mally with respect to an objective close to the optimal low-rank
approximation by SVD. We have shown that previous graph em-
bedding methods aim to preserve the covariance (i.e., dot-product
among rows) of the similarity matrix. We took this analysis to its
logical conclusion by adapting row-wise matrix sketching to graph
embeddings, achieving both scalability and a closed-form optimal
solution for covariance preservation.

Our experiments show that FREDE outperforms previous em-
bedding methods on graph mining tasks, while it fares comparably
to SVD in covariance preservation, and better in node classification
thanks to its sketch-based nature that filters out noise in the data.
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