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ABSTRACT
In recent years, graph neural networks (GNN) gains increasing
attention in both academia and industry. By incorporating both the
features and structural information of entities, GNN not only lever-
ages the power of deep learning, but also preserves the advantages
of graph analysis, such as being intuitive for modeling and analysis.
However, due to additional complexity for neural training, GNN
suffers more from performance challenges than traditional network
analysis does, especially when the underlying graph scales up. In
this paper, we focus on random walk based graph embedding for
representation learning, a fundamental branch of GNN, to develop
a high performance platform for industrial use. The platform is
built on top of a graph engine, which supports several highly effi-
cient operators on data manipulation in graph embedding, such as
neighborhood walking and negative sampling. A dynamic sched-
uler is utilized to assign operators between the graph engine and a
deep learning framework. Experimental results on representative
datasets show that our platform is significantly more efficient than
the baseline methods; while still can derive graph embeddings of
high quality.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Informa-
tion systems→Databasemanagement system engines; •Applied
computing → Enterprise architecture frameworks.
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1 INTRODUCTION
Graph, as a natural data representation to entities and their inter-
connections, is nowadays ubiquitous in a wide range of real-world
applications. Graph Neural Network (GNN) explores graph using
deep learning. Among various GNN methods, graph embedding is
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to learn a representation of graph vertices into a low-dimensional
vector space, and the representation can preserve both the vertex
feature information and the topological information. DeepWalk [8]
and Node2Vec [4] are two representative examples of random walk
based graph embedding algorithms.

Motivated by many real use cases, we seek an efficient platform
for large scale graph embedding. After a thorough study on state-
of-the-art, we observed that the performance bottleneck is largely
caused by the graph data access/manipulation, in contrast to traidi-
toinal deep leanring where the training computation dominates the
execution time; besides, we found that almost every step of a ran-
dom walk based graph embedding is highly parallelizable, making
it promising to implement a high performance framework. Thus,
we present an integrated platform for end-to-end graph embedding,
which includes 1) a high performance distributed graph engine
that provides optimial access to graph data; 2) a group of graph
operators e.g. sampling built on top of our graph engine; and 3) a
model training layer that learns the representation.

The rest of the paper is organized as follows: in Section 2, some
background and related work is addressed. We investigate the prob-
lems and present our platform in Section 3, followed by an extensive
empirical study in Section 4. Finally, the work is concluded in Sec-
tion 5.

2 BACKGROUND AND RELATEDWORK

Algorithm 1: Random-walk graph embedding
Input: a graph G = (V , E), number of walks r , walk length l
Output: vertex embedding h

1 for iter ← 1 to r do
2 for each vertex v ∈ V do
3 walks += random_walk_sampler(G,v, l );
4 end
5 end
6 dl_input ← preprocess(walks);
7 h← training(dl_input) ;

Graph embedding has been well studied in literature, which es-
sentially represents each vertex of the input graph as a vector in
a low dimensional space; while preserving the similarity implied
by vertex features as well as the topology. In general, graph em-
bedding techniques can be divided into the following categories
[11]: 1) matrix factorization [9][12] that obtains the embedding by
factorizing the matrix used to represent graph property; 2) random
walk based graph embedding [8][4][2] that performs random walk
on the graph and then feeds the processed information to a neural
network training model like Word2Vec [6] ; 3) graph deep learning
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that is based on either auto-encoder [10] or graph convolutional
network with unsupervised learning [5].

Random walk based graph embedding starts off by conducting
random walk on graph, using various walking strategies [8][4][2].
Using the generated walking paths, the technique generates vertex
pairs for the training step. The last step is to learn the represen-
tation using neural network models e.g. Word2Vec [6]. A general
framework of random walk based graph embedding algorithms is
shown in Algorithm 1.

3 FRAMEWORK
3.1 Observations
Random-walk-based graph embedding methodologies often con-
sists of two parts, namely the random walk sampler and the em-
bedding learning. We conducted extensive study on open source
implementations of those algorithms, and below are some key ob-
servations. More details are available in the experiment section.
• Both biased and unbiased random walk samplers suffer from
serious performance deterioration because of poorly de-
signed storage structure. A reasonable and efficient graph
storage structure is highly preferable, especially when the
graph size is at a large-scale.
• When comparing the execution time of random walk sam-
pler against embedding learning, random walk sampler dom-
inates the execution time of the whole procedure. This is
to say, in a large-scale system, it is critical to improve the
efficiency of random walk sampler.
• To generate random walk paths, the sampler origins from
one vertex and starts walking based on the graph structure.
There is no conflicting resource requirement if multiple sam-
plers starting from different vertices walk on the same graph
simultaneously. Therefore, random walk sampler is highly
parallelizable.

3.2 Our platform
To tackle the issues stated in the above section, we devise a novel
GNN platform illustrated in Figure 1, with emphasis on both data
manipulation and model training for GNN.

Graph

Deep
Learning
Framework

Random Walker Pair Generator

Negative Sampler

SchedulerBatch GeneratorTraining

Deploy

Operators

Models

Graph
Engine

Figure 1: System Architecture and Workflow

Essential engines: The proposed system is built on top of two
essential engines, i.e., a graph engine and a neural network frame-
work such as Tensorflow. In contrast to many existing GNN frame-
works/platforms, a comprehensive graph engine is utilized as a
core fundamental component in our design, in charge of both GNN
data import and the support of data-oriented operators, which is
motivated by the first observation described in Section 3.1. Note
that there is a graph database in the graph engine, which imple-
ments the data management based on the property graph model
(PGM). The PGM consists of both the graph topology (structural
information) and the attributes associated with each vertex and
edge, a.k.a. properties. The other fundamental component is a deep
learning framework, such as TensorFlow, to support the operators
for training models, such as those training a Word2Vec model using
the loss for cross entropy.

Operator management: All the operators involved in our GNN
computation, no matter for data processing or model training, are
managed at the operator layer shown in Figure 1. A few operators
are illustrated at the layer in the figure, although more are avail-
able for use. Note that the operators are actually implemented by
calling the APIs of the two essential platforms. For instance, the
operator of random walker enables local random walk from any
designated roots in a graph. The operator calls the graph engine
to obtain the neighbors of a vertex and determines according to
user configuration which neighbors to explore. An operator can
invoke another operators, as long as they are orchestrated by users
through the scheduler module. A group of orchestrated operators
form up a model.

Model management: This layer consists of pre-built and user-
defined models through the orchestration of the operators. Two
relevant modules, the deployer and the scheduler, are introduced.
The former deploys amodel to infrastructurewith the graph engines
and deep learning framework installed; the latter allocate operators
invoked by a model and improve the workload balance through
dynamic task scheduling.

In our platform, a sampleworkflow of randomwalk based graph
embedding is shown in Figure 1. After the graph is digested and
processed into the graph database, with the support of graph engine,
the operator in the operator layer can work on the graph. Specifi-
cally for two graph embedding methods DeepWalk and Node2Vec,
a random walker sampler first starts to transform the graph into a
list of paths based on certain transition probabilities, i.e.,

P(vi = v |vi−1 = u) =

{
pu ,v , if (u,v) in E
0, otherwise

(1)

where u is the current vertex, v is the next vertex in the path,
and pu ,v denotes the transition probability from u to v . DeepWalk
and Node2Vec use uniform and biased transition probabilities, re-
spectively. Compared to original implementation with no support
from graph engine, our random walker sampler utilizes the graph
engine service to achieve extremely higher efficiency during the
sampling process. To further accelerate the process, walking paths
are fed into pair generation operator to do the preprocess before
the information is finally ready for the training part.

Both DeepWalk and Node2Vec use the Word2Vec [6] model to
train graph embedding for each vertex. There has been some study
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on how to efficiently train the Word2Vec model for large vocabu-
laries [7]. Moreover, some work is devoted to the acceleration on
GPU for the training part [1], so the optimization of the Word2Vec
model training is beyond the scope of this paper.

4 EMPIRICAL STUDY
In this section, we evaluate the performance of our platform in
along with a comparison with open source implementations of
DeepWalk [8] and Node2Vec [4]. Section 4.1 summarizes different
datasets in the test and experiment infrastructure. Section 4.2 gives
details of the experiment results from various perspectives.

4.1 Datasets and Infrastructure
The experiment is conducted on various datasets of different sizes.
Table 1 lists all the datasets used in our experiments.

Table 1: Summary of the datasets

Dataset # Vertices # Total edges # Classes

Blogcatalog 10,312 333,983 39
Gowalla 196,591 950,327 N/A
Amazon 334,863 925,872 N/A
Youtube 1,134,890 2,987,264 N/A
Reddit 232,965 11,606,919 N/A

Please note that the dataset Youtube and Reddit are only used on
our proposed platformwhile all other datasets are tested in both our
platform and the baselines. Because of the large size of Youtube and
Reddit datasets, neither baseline can finish in a reasonable amount
of time.

All experiments are conducted on a 44-cores linux server with
Intel(R) Xeon(R) CPU E5-2699 v4@ 2.20GHz and 1.5Tmainmemory.
Details about parameter setting in the test will be given when
presenting the experimental results.

4.2 Results
In the a computation platform, it is critical to have the storage
and data structure reasonably designed. We first study how differ-
ent structures have impact on the efficiency. Specifically, we use
different data structures to store the graph in main memory and
test how the efficiency varies for breadth first search, as random
walk sampler is in general BFS, DFS or a combination of Both. As
shown in Figure 2 showing result for the dataset amazon, adjacency
list gains the highest efficiency in terms of both running time and
traversed edge per second (TEPS). It is orders of magnitude faster
when compared with adjacency matrix, and almost 2 times faster
than the structure that stores edges of each vertex as a dictionary.
This observation indicates that when graph is stored with some
structure similar with adjacency list, the computation cost is much
lower. This structure is what we use in our graph engine. Due to
space limit, results on other datasets and for depth first search (DFS)
are omitted. They show very similar results with Figure 2.

Another observation shown during our study on random walk
based graph embedding is that in random walk based graph embed-
ding, it often takes significantly longer for random walk sampling
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Figure 2: Efficiency Comparison on Different Structures

part to finish rather than embedding training part, especially for
more advanced and complicated algorithm like Node2Vec. Figure
3 illustrates the running time comparison between random walk
sampling and embedding training in Node2Vec. In the test, we set
number of walks as 40 while the length of each walk is also 40. As
we can see, in all three datasets, the execution time of random walk
sampling dominates. It can occupies as much as 96.5% of the whole
execution time for graph with relatively high average node degree
like Blogcatalog. Therefore, improving the efficiency of random
walk sampling can greatly help the overall performance of graph
embedding platform.
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Figure 4a and Figure 4b evaluate the sampling time of our graph
embedding platform compared with the open source implemen-
tations of DeepWalk and Node2Vec, respectively. Our proposed
planform uses the in-house powerful graph engine service with
random walk operator and preprocess operator. Therefore, it shows
superior performance improvement over original DeepWalk and
Node2Vec. For example, for the dataset Gowalla, DeepWalk uses
roughly 401 seconds to do random walk sampling. On our high
performance graph embedding platform, it only take 21.87 seconds,
which results in a 20X speedup. The improvement is further ampli-
fied in Node2vec with biased random walk. To complete the biased
random walking sampling in Node2Vec for the dataset Gowalla,
the original implementation uses 9,359 seconds, while our platform
needs only 171.92 seconds, indicating a more than 50X speedup.
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Figure 4: Efficiency Comparison

While the performance in terms of efficiency has been greatly
improved in our platform, we still want to preserve the quality of
the embedding as before. Here, we further evaluate the quality of
the embedding in the context of node classification. To be specific,
we use the dataset Blogcatalog that has the label information to
learn its embedding on each vertex, then feed the embedding into
a downstream logistic regression model. The quality of the em-
bedding can be measured as the node classification accuracy. The
result is plotted in Figure 5 with x-axis indicating the portion of

labeled data used. As it shows, in both DeepWalk and Node2Vec,
the quality of the embedding from our platform is comparable with
the original implementations in all settings.
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Figure 6: Efficiency on Multi-thread (Youtube)
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Figure 7: Efficiency on Multi-thread (Reddit)

The result of the multi-thread test of our high performance graph
embedding platform on dataset Youtube and Reddit are shown in
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Figure 6 and 7, respectively. We vary the number of threads from 1
to 32, and then record the corresponding random walk sampling
time. The datasets are not tested in either original DeepWalk or
original Node2Vec as the datasets are of large size and cannot be
done in a reasonable amount of time. As demonstrated in Figure
6 and 7, both DeepWalk and Node2Vec in our platform are highly
parallelizable with respect to the number of threads.

5 CONCLUSION
In this work, we propose an integrated graph neural network frame-
work with the focus on random walk based graph embedding. In
our framework, we take advantage of our internal graph engine
service to provide graph storage and fast access in a distributed
fashion. To better assist graph embedding, some common opera-
tors such as biased and unbiased random walk based sampling are
implemented on top of the graph engine. After sampling, a graph
structure can be converted to regular vectorized input suitable for
word embedding training. Therefore, a model training layer based
on general deep learning library such as Tensorflow can kick in
and output the embedding of the vertices in the graph.

Note that the overall structure of our framework is generic and
suitable for other graph neural network methods as well. In the
future, we will integrate other graph neural network methods such
as graph convolutional networks (GCN) into our platform. Thus
our platform can be a unified and powerful graph neural network
platform for more industrial and practical large-scale applications.

REFERENCES
[1] John F. Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and Jiangchang Mao. 2015.

Machine learning at the limit. In 2015 IEEE International Conference on Big Data,
Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015. IEEE Computer
Society, 233–242. https://doi.org/10.1109/BigData.2015.7363760

[2] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 135–144. https:
//doi.org/10.1145/3097983.3098036

[3] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowl.-Based Syst. 151 (2018), 78–94. https://doi.
org/10.1016/j.knosys.2018.03.022

[4] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning
for Networks. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
855–864. https://doi.org/10.1145/2939672.2939754

[5] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, 4-9 December 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (Eds.). 1025–1035. http://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[7] Erik Ordentlich, Lee Yang, Andy Feng, Peter Cnudde, Mihajlo Grbovic, Ne-
manja Djuric, Vladan Radosavljevic, and Gavin Owens. 2016. Network-Efficient
Distributed Word2Vec Training System for Large Vocabularies. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowl-
edge Management (CIKM ’16). ACM, New York, NY, USA, 1139–1148. https:
//doi.org/10.1145/2983323.2983361

[8] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’14). ACM, New
York, NY, USA, 701–710. https://doi.org/10.1145/2623330.2623732

[9] Xiaobo Shen, Shirui Pan, Weiwei Liu, Yew-Soon Ong, and Quan-Sen Sun. 2018.
Discrete Network Embedding. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., Jérôme Lang (Ed.). ijcai.org, 3549–3555. https://doi.org/10.24963/ijcai.
2018/493

[10] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 1225–1234. https://doi.org/10.1145/
2939672.2939753

[11] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2019. A Comprehensive Survey on Graph Neural Networks. CoRR
abs/1901.00596 (2019). arXiv:1901.00596 http://arxiv.org/abs/1901.00596

[12] Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang.
2018. Binarized attributed network embedding. In IEEE International Conference
on Data Mining, ICDM 2018, Singapore, November 17-20, 2018. IEEE Computer
Society, 1476–1481. https://doi.org/10.1109/ICDM.2018.8626170

https://doi.org/10.1109/BigData.2015.7363760
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1145/2939672.2939754
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/2983323.2983361
https://doi.org/10.1145/2983323.2983361
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.24963/ijcai.2018/493
https://doi.org/10.24963/ijcai.2018/493
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://doi.org/10.1109/ICDM.2018.8626170

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Framework
	3.1 Observations
	3.2 Our platform

	4 Empirical Study
	4.1 Datasets and Infrastructure
	4.2 Results

	5 Conclusion
	References

