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ABSTRACT
Deep graph generation models have achieved great successes re-
cently, among which however, are typically unconditioned genera-
tive models that have no control over the target graphs given an
input graph. In this paper, we propose a novel Graph-Translation-
Generative-Adversarial-Networks (GT-GAN) that transforms the
input graphs into their target output graphs. GT-GAN consists of a
graph translator equipped with innovative graph convolution and
deconvolution layers to learn the translation mapping consider-
ing both global and local features, and a new conditional graph
discriminator to classify target graphs by conditioning on input
graphs. Extensive experiments on multiple synthetic and real-world
datasets demonstrate that our proposed GT-GAN significantly out-
performs other baseline methods in terms of both effectiveness
and scalability. For instance, GT-GAN achieves at least 10X and
15X faster runtimes than GraphRNN and RandomVAE, respectively,
when the size of the graph is around 50.
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1 INTRODUCTION
In recent years, deep learning on graphs has seen a surge of interests,
especially for graph representa16 tion and recognition tasks such as
graph classification [5, 7, 12, 15] and embedding [8, 9]. Most recently
researchers started to explore using deep generative models for
graph synthesis on practical applications such as designing of new
chemical molecular structure [19] and social interaction modeling
[23]. This has led to many of the recent advances in deep graph
generative models where some of these approaches are domain
dependent models [6, 14] while others are generic [10, 16, 18, 19],
although most of these models can only work on small graphs with
40 or fewer nodes.

However, there are two main drawbacks of existing deep graph
generative models. First, one significant limitation of the previ-
ous approaches is that most of these models are only suitable for
small graphs with 40 or fewer nodes, which is mainly due to their
one-node-per-step generation manner. More importantly, most of
the existing graph generation models are unconditioned and thus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19 workshop, August 04–08, 2019, Anchorage, Alaska
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ignore rich input graph information for generating a new graph.
In many applications, it is crucial to guide the graph generation
process by conditioning on an input graph, which can be cast as a
graph translation learning problem–translating the input graph to
the output graph.

One straightforward way is to build a translation system by using
a graph encoder-decoder architecture. However, there are several
challenges for this type of approaches: 1) how to learn one-to-more
mapping between the input graph and the target graphs. Different
from the plain graph generation problem, a conditional graph syn-
thesis task is to learn a distribution of target graphs conditioning on
the input graph, which aims to capture the underlying implicit prop-
erties of the graphs, such as their scale-free characteristic. 2) how
to jointly learn both local and global information for translation.
One needs to not only learn the translation mapping in the local
information (i.e. neighborhood of each node), but also in the global
property of the whole graph (e.g., node degree distribution 40 or
graph density).

To address the aforementioned challenges, we present a novel
neural network: Graph-Translation-Generative-Adversarial-Nets
(GT-GAN). We first propose a conditional GAN consisting of an
encoder-decoder translator and a conditional graph discriminator
to learn the one-to-more mapping (a conditional distribution) for
graph translation. To jointly embed the local and global information,
we present a novel graph encoder including both the edge and the
node convolution layers. In addition, we further propose a novel
graph U-net with graph skips and dedicated graph deconvolution
layers including both the edge and the node deconvolution layers.
Finally, GT-GAN is scalable with at most quadratic computation
and memory consumption in terms of the number of nodes in
a graph, making it suitable for at least modest-scale graphs (with
hundreds of nodes, compared to the tens of nodes inmost of existing
graph generative models). Our code and data are available at https:
//github.com/anonymous1025/Deep-Graph-Translation-.

2 RELATEDWORKS
Most of the existing GNN based graph generation for general
graphs have been proposed in the last two years and are based
on VAE [18, 19] and generative adversarial nets (GANs) [3], among
others [16, 23]. Most of these approaches generate nodes and edges
sequentially to form a whole graph, leading to the issues of be-
ing sensitive to the generation order and very time-consuming for
large graphs. Differently, GraphRNN [23] builds an autoregressive
generative model on these sequences with LSTM model and has
demonstrated its good scalability. A variety of graph-to-sequence
algorithms have been proposed. Applications of graph-to-sequence
algorithms include text generation [2, 20, 22], graph algorithms and
bAbI tasks [15, 20], among other. Recently, Sun et al. proposed a
graphRNN based model which generates a graph topology based
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Figure 1: Architecture of GT-GAN consisting of graph translator and conditional graph discriminator. New graph encoder and
decoder are specially designed for graph translation.

on another graph [21], which is contemporary with our work. How-
ever, it has no control on the size of the generated graphs and is
difficult to scale to even modest-scale graph due to its one-node-
per-step generation manner.

3 GT-GAN
Our goal is to learn an end-to-end translation mapping from an
input graph to a target graph. Let an input graphGX = (V, E,A, S)
such thatV is the set of N nodes, E ⊆ V ×V is the set of edges,
and A ∈ RN×N is an adjacency matrix (binary or weighted), where
GX can be weighted or unweighted, directed or undirected. Let
S ∈ RN×F be a matrix with each line representing a node feature
vector Si . Denote ei, j ∈ E as an edge from the node vi ∈ V to
vj ∈ V;Ai, j ∈ A therefore denotes the corresponding weight of the
edge ei, j . Similarly, we define a target graph GY = (V ′, E ′,A′, S ′)
that shares the same node sets and node features withGX but with
different topology and connection weights.

Formally, graph translation is to learn a translator from an input
graph GX ∈ GX with a random noiseU to generate a target graph
GY ∈ GY , where GX and GY denote the domains of the input and
target graphs, respectively. The translation mapping is denoted as
T : U ,GX → GY .

Overall Architecture and Loss function. We propose the
Graph-Translation GAN (GT-GAN) that consists of a graph transla-
tor T and a conditional graph discriminator D, as shown in Fig.1.
T is trained to produce target graphs that cannot be distinguished
from “real” graphs byD, that is, distinguishing the generated target
graph GY ′ = T(GX ,U ) from the real one GY based on the current
input graph GX . T and D undergo an adversarial training process
based on input and target graphs shown as below:

L(T ,D) =EGX ,GY [logD(GY |GX )]

+ EGX ,U [log(1 − D(T (GX ,U )|GX ))]
(1)

where T tries to minimize this objective against an adversarial
D that tries to maximize it, i.e. T ∗ = arg minT maxD L(T ,D).
An L1 loss is applied to the weight adjacent matrix of generated
target graphs and real target graphs:

Ll1(T ) = EW ,W ′,U [∥W ′ − T(W ,U )∥1] (2)
The training process is a trade-off game betweenLl1 andL(T ,D),

which jointly enforces T(GX ,U ) and GY to follow a similar topo-
logical pattern but may not necessarily the same. Thus, the final
objective is:

T ∗ = arg min
T

max
D

L(T ,D) + Ll1(D) (3)

where T ∗ is the optimal graph translator which generates graphs
that are as “real” as possible.

The graph translatorT is an encoder-decoder architecture, where
we propose a new graph encoder to obtain the node representations
of the input graph and propose the graph deconvolution with skips
to generate the target graph, as shown in Fig.1, which we elaborated
in the followings sections.

Edge Convolutions Layer of Graph Encoder. To learn the
local information, the proposed encoder learns each node represen-
tation based on its n-hop neighbors. To learn the global information,
it learns each node representation by looking for more “virtual
neighbors” regarding the latent relations from the whole graph.
Thus, we propose the “edge convolution” layer to learn a group of
multi-mode relations from the topology of the input graph, which
can include both the n-hop connections and the latent relations
that are derived from their adjacent edges/relations as shown in
Fig.2(a). And then the “node convolution” layer is used to embed
each node representations by aggregating its “virtual neighbors”
that related to each latent relations, as shown in Fig.2(b).

 

Figure 2: Graph convolution and deconvolution
In each “edge convolution” layer, each node pair’s latent relation

is computed by its adjacent edges or the extracted adjacent relations
from the last layer. In the directed graph, each node have in-coming
edge(s) and out-going edge(s). Thus, there are two learnable para-
metric vectors ϕ andψ as convolution filters for two directions to
convolute the adjacent edges/relations for each node pairs. The
relation El,mi, j in themth relation mode of the lth layer is learned
by the out-going edges/relations of node vi and the in-coming
edges/relations of node vj ,

El,mi, j =
∑Rl−1

n=1
(σ (

∑N

k1=1
El−1,n
i,k1

ϕl,mk1
) + σ (

∑N

k2=1
El−1,n
k2, j

ψ l,m
k2

))
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where E1,1
i, j ≡ A and ϕl,m ∈ RN×1 refers to the filter vector to be

learned and ϕl,mk1
refers to the element of ϕl,m that is related to

node vk1 . Rl−1 refers to the number of relation modes extracted for
the (l − 1)th layer of the graph encoder. σ refers to the activation
function RELU for all hidden layers.

NodeConvolutions Layer of Graph Encoder . After learning
the various modes of relations, the “node convolution“ layer learns
each node’s representations by aggregating its “virtual neighbors”
in terms of each mode of relation. Themth feature vector of node
representation tensor H̄m

i ∈ R1×F for node vi is computed as:

H̄m
i =

∑Rl−1

n=1
(σ (

∑N

k1=1
El−1,n
i,k1

µmk1
Sk1 ) + σ (

∑N

k2=1
El−1,n
k2,i

νmk2
Sk2 )),

where H̄i ∈ R
Rl×F and Rl refers to the number of feature vectors

in the “node comvolution” layer. Here µm ,νm ∈ RN×1 refer to the
filter vectors for the two directions to be learned and µmk1

refers to
the element of µm that is related to node vk1 . H̄i is then flattened
and transformed into a node representation vector Hi ∈ R

1×C by
a fully connected layer. C is the length of the node representation.
Note that our graph encoder is designed for a directed graph, and
it is easily generalized to an undirected graph, where the weight
vector is shared by both directions.

NodeDeconvolutionLayer ofGraphDecoder. The proposed
graph deconvolution technique incorporates both “node deconvo-
lution” and “edge deconvolution” layers.

First, the “node deconvolution” layer are used to generates the
latent multi-mode relations of the target graph based on the learned
latent node representations. As shown in Fig. 2(c), “node deconvo-
lution” is a reversed process of the “node” convolution. Since each
node has an influence to its relations connecting to other nodes.
Then the relation E1,m

i, j between node vi and node vj in themth
relation mode of the lth “node” deconvolution layer in the decoder
can be computed as follows:

E1,m
i, j =

∑C

n=1
(σ (Hn

i µ̄
m
j ) + σ (Hn

j ν̄
m
i )), (4)

where σ (Hn
i µ̄

m
j ) means the deconvolution contribution of node vi

to its relation with nodevj made by the nth element of its node rep-
resentations, and µ̄mj represents the element of the deconvolution
filter vector µ̄m ∈ R1×N that is related to node vj .

Edge Deconvolution Layer of Graph Decoder. We can now
recursively apply our proposed “edge deconvolution“ layer to de-
code the latent relation between each pair of nodes from the upper
layer to those of lower layer. As a reversed way of “edge” convo-
lution, the relation of each pair of nodes in the (l − 1)th layer can
make contribution to generating itself and its adjacent relations in
the lth layer, as shown in Fig. 2(d). Thus, the relation El,mi, j between
node vi and node vj in the lth layer is computed as follows:

El,mi, j =
∑R′

l−1
n=1

(σ (ϕ̄l,mj

∑N

k1=1
El−1,n
i,k1

) + σ (ψ̄ l,m
j

∑N

k2=1
El−1,n
k2, j

)),

where ϕ̄l,m
∑N
k1=1 E

l−1,n
i,k1

is interpreted as the decoded contribution
of node i to its relations with nodevj , and ϕ̄l,m refers to the element
of deconvolution filter vector that is related to node vj . R′

l−1 refers
to the number of relation modes extracted by the (l − 1)th layer
in the graph decoder. The output of the last “edge” deconvolution
layer denotes the edges of the target graph.

Skips for graph deconvolution. Based on the graph deconvo-
lution above, it is possible to utilize skips to link the extracted latent
relation sets of each layers in the graph encoder with those in the
graph decoder. Specifically, the output of the lth “edge deconvolu-
tion” layer with Rl channels in the decoder is concatenated with
the output of the lth “edge convolution” layer with R′

l channels in
encoder to form joint Rl + R′

l channels, which are then input into
the (l + 1)th deconvolution layer.

Conditional Graph Discriminator The graph discriminator
must distinguish between the “translated” target graph and the
“real” ones based on the input graphs, as this helps to train the
generator in an adversarial way. Technically, this requires the dis-
criminator to accept two graphs simultaneously as inputs (a target
graph and an input graph or a generated graph and an input graph),
and classify the two graphs as either related or not. Thus, we pro-
pose a conditional graph discriminator (CGD) which leverages the
same graph convolution layers in the translator for the graph classi-
fication, as shown in Fig.1. Specifically, the input and target graphs
are both ingested by CGD and stacked into a N × N × 2 tensor
which can be considered a 2-channel input. After obtaining the
node representations, the graph-level embedding is computed by
summing these node embeddings. Finally, a softmax layer is imple-
mented to distinguish the input graph-pair from the real graph or
generated graph.

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Datasets. Two groups of synthetic datasets are used: Scale-
free graphs set and Poisson-random graphs set. Each group has
several datasets with different graph sizes. Each dataset consists
of 5000 pairs of input and target graphs: half for training and the
remaining half for validating. For Scale-free Graph, each input
graph is generated as a directed scale-free network, whose degree
distribution follows power-law property [4]. To construct target
graphs, each weight between two connected nodes in input graph
will be added bym > 1. For Poisson-random graphs, each input
graph is a directed growing random network generated by [13].
Then for an input graph with |E | number of edges, k |E | number
of edges are randomly added to form the target graph, where k
follows the Poisson distribution with the mean of 5. We also test
our model to forecast future potential malicious authentication
graphs given the user’s normal authentication graph. Each user
authentication graph is a directed weighted graph, where nodes
represent computers and the weights of the edges represent the
authentication activities at certain frequencies. There are 78 pairs
of graphs (malicious and normal behavior) of graph size 50 and 315
pairs of graphs of graph size 300 from 97 users in two subsets. We
performed a 2-fold cross-validations and 3-fold cross-validation,
respectively, for the two subsets. We also test our model on the IOT
network malware confinement prediction (predicting optimal
network operation given a compromised one). There are three
subsets of graph pairs with different sizes (20, 40 and 60), where
the nodes represent devices and the node attributes indicating
the compromised status of the nodes. The weights of the edges
represent the distance between two devices. There are 334 pairs
of input (compromised IOT) and target graphs (optimal IOT) in
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each subset and each is divided into two parts for the 2-fold cross
validation.

4.1.2 Comparison Methods. Since there is no existing work on
deep graph translation, we compare against current state-of-the-
arts of graph generation methods: GraphRNN [23], GraphVAE [19],
GraphGMG [16], RandomVAE [18], and S-Generator which is a
supervised deterministic graph generation using only our graph
translator with L1 loss. All the comparison methods are directly
trained by the real target graphs without the conditions of input
graphs as they can only do graph generation instead of translation.
The learning rates for GraphGMG, GraphVAE, and RandomVAE
are 0.001 and the learning rate of GraphRNN is 0.003.

4.2 Performance
4.2.1 Model scalability Analysis. Fig.3 illustrates the scalability of
GT-GAN against two methods (GraphRNN and RandomVAE) in
terms of memory consumption and computational time, respec-
tively. As shown in Fig. 3, when the graph size increases up to 50,
the memory consumption of the GT-GAN maintains almost con-
stant and computational time grows slowly, both of which are less
than 1500MB and 300 seconds, respectively. In contrast, the mem-
ory consumption and computational time of RandomVAE increases
super-linearly as the graph size increases, making it hard to scale
even to the graph size of 50. Though the, memory consumption and
runtime of GraphRNN increases slightly as the graph size increases,
their costs were almost two times larger in memory requirement
and ten times slower in runtime than the proposed GT-GAN.

 

Figure 3: Scalability plots on memory and time cost of GT-
GAN, RandomVAE and GraphRNN

4.2.2 Results for the synthetic datasets. We diretly evaluated the
sparsity similarity between the generated and real target graphs
in terms of the node degree distribution. The four metrics used
to measure the correlation between two distributions were the
Jensen-Shannon distances (JS), the Hellinger Distance (HD), the
Bhattacharyya Distance (BD) and the Wasserstein Distances (WD).

Table 1 shows the distances between generated and real target
graphs in terms of node degree on the above metrics. The entry “Inf”
represents the distance more than 1000. The proposed GT-GAN
outperforms all baselines in almost every metrics, especially in
Bhattacharyya distance (by average 15%) and Hellinger distance for
all graph sizes. Fig. 4 shows the node degree distribution curve of
three generated and real target graphs by GT-GAN. The curves of
the generated graphs follow power-law rule correctly and become
more and more close to the real target graphs as the graph size
increases. Similar observations in direct evaluation results (e.g.
average degree, repository and density) of Poisson random graphs
and user authentication graphs can be found in Appendix B and C.

Table 1: Node degree distribution distance between the gen-
erated and real graphs for scale-free graphs

Graph size Methods JS HD BD WD
10 Random-VAE 0.42 0.98 Inf 7.58

GraphRNN 0.47 0.98 Inf 1.64
GraphVAE 0.67 1.00 Inf 2.85
GraphGMG 0.43 0.98 Inf 1.69
S-Generator 0.35 0.98 3.45 0.80
GT-GAN 0.35 0.98 3.44 0.77

20 RandomVAE 0.51 0.97 Inf 1.74
GraphRNN 0.50 0.98 Inf 1.44
S-Generator 0.36 0.96 2.84 0.67
GT-GAN 0.35 0.96 2.74 0.66

100 GraphRNN 0.48 0.88 Inf 0.90
S-Generator 0.14 0.68 0.64 0.30
GT-GAN 0.15 0.43 0.24 0.31

150 GraphRNN 0.42 0.74 Inf 0.95
S-Generator 0.08 0.31 0.11 0.29
GT-GAN 0.07 0.30 0.11 0.27

 

Figure 4: Examples of node degree distributions of generated
and target graphs for scale-free graphs

4.2.3 Results for the user authentication datasets. The performance
on the user authentication datasets is evaluated by the indirect eval-
uation. In indirect evaluation, the validation sets are split evenly
into two subsets. The first subset is for training a graph classifier
proposed in [17], using only the negative samples plus the gen-
erated target graphs. In addition, a “gold standard” classifier is
trained based on negative samples and real target graphs. The sec-
ond subset containing both the input and real target graphs validate
the classifiers trained above. Table 2 shows the average results of
graph classifiers for different methods on the user authentication
graphs. Classifiers trained by the graphs generated by GT-GAN
can effectively classify normal and hacked behaviors with average
AUC above 0.78 and performs consistently better than others when
graph size varies from 50 to 300. We refer readers to the detailed
evaluation process and more indirect results in Appendix D.

Table 2: Results for user authentication graphs

Graph size Method Precision Recall AUC F1

50 RandomVAE 0.32 0.51 0.26 0.39
GraphRNN 0.34 0.36 0.50 0.36
S-Generator 0.72 0.61 0.74 0.66
GT-GAN 0.79 0.68 0.78 0.73
Gold Standard 0.97 0.97 0.97 0.97

300 S-Generator 0.77 0.58 0.62 0.66
GT-GAN 0.84 0.66 0.79 0.74
Gold Standard 0.98 0.96 0.97 0.97

4.2.4 Results on IOT dataset. Table 3 compared the performance of
GT-GAN and comparisonmethods for the IOT dataset by examining
the edges of the generated and real target graphs for four metrics:
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MSE (mean squared error), R2 (coefficient of determination score),
Pearson Correlation (P) of adjacent matrix, and ACC (Accuray) for
the correct existence of edges among all the pairs of nodes. The
results show that GT-GAN performed almost the best for all the
three subsets. GT-GAN got highest Pearson Correlation of around
0.8 for all three subsets compared to the other methods which had
Pearson Correlations below 0.4.

Table 3: Results for the IOT datasets

Size Method R2 MSE P ACC (%)

20 GraphRNN 0.16 1775.58 0.23 83.97
GraphVAE 0.39 2109.64 0.32 81.19
GT-GAN 0.67 370.91 0.85 92.00

40 GraphRNN 0.44 1950.46 0.29 70.54
GraphVAE 0.73 2410.57 0.16 66.60
GT-GAN 0.69 408.50 0.86 93.94

60 GraphRNN 0.52 1831.43 0.04 61.07
GraphVAE 0.00 2453.61 0.04 50.64
GT-GAN 0.62 566.88 0.80 94.63

4.2.5 Ablation Experiments on the Encoders and Decoder. To fur-
ther validate the superiority of the proposed graph convolution
and deconvolution layer, an ablation experiment was conducted
by replacing the encoder and decoder with node embedding and
decoder methods normally used. The graph encoder was replaced
by the GCN [12] and DCNN [1], both of which consider edge and
node features, while the graph decoder was replaced by the decoder
in VGAE [11]. Table. 4 shows the results of the ablation study on
part of the scale-free (Scale), user authentication (Auth) and IOT
datasets. The encoder of GT-GAN outperformed both the GCN- and
DCNN- based encoders by a large margin on these datasets. For
example, on Auth-I, GT-GAN performed 43%, 50%, 31%, and 38%
better on average, when compared with the GCN and DCNN en-
coders in terms of precision, recall, AUC and F1-scores, respectively.
In addition, the decoder in GT-GAN was deemed both effective and
irreplaceable for graph generation. For example, on IOT-III, GT-
GAN performed 6.97%, 45.00%, and 83.33% better than the decoder
in VGAE in terms of ACC, P and R2, respectively.

Table 4: Ablation study on four datasets

Dataset Method JS HD BD WD
Scale-III GCN+decoder 0.18 0.48 0.27 18.84

DCNN+decoder 0.65 0.96 Inf 0.77
Encoder+VGAE 0.31 0.63 0.51 43.78
GT-GAN 0.15 0.43 0.24 0.31

P R AUC F1
Auth-I GCN+decoder 0.31 0.35 0.52 0.33

DCNN+decoder 0.59 0.55 0.55 0.57
Encoder+VGAE 0.49 0.46 0.61 0.47
GT-GAN 0.79 0.68 0.78 0.73

Auth-II DCNN+decoder 0.58 0.42 0.62 0.51
GT-GAN 0.84 0.66 0.79 0.74

R2 MSE P ACC(%)
IOT-III GCN+decoder 0.46 818.25 0.71 92.69

DCNN+decoder 0.52 721.98 0.74 93.26
Encoder+VGAE 0.12 1337.16 0.44 88.14
GT-GAN 0.62 566.88 0.80 94.63

5 CONCLUSION AND FUTUREWORKS
This paper focuses on a new problem: deep graph translation. To
achieve this, we propose a novel GT-GANwhich translates an input
graph to a target graph. To learn both global and local mapping
between graphs, a new graph encoder-decoder model have been
proposed while preserving the graph patterns in various scales. Ex-
perimental results show that our GT-GAN can discover the ground-
truth translation rules, and significantly outperform other baselines.
This paper opens a thread of research for deep graph translation in
many practical applications.
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A MORE EXPERIMENTAL RESULTS FOR
SCALE FREE GRAPH SET

Fig. 9 shows 18 examples for scale free dataset from size 50 to 150.
Table 5 shows the indirect evaluation on scale free dataset. The
indirect evaluation strategy is the same with the one used on user
authentication dataset.

Table 5: Indirect evaluation for scale-free graphs

Size Method P R AUC F1

10 RandomVAE 0.83 0.29 0.31 0.42
GraphRNN 0.31 0.11 0.49 0.16
GraphVAE 0.75 0.23 0.65 0.35
GraphGMG 0.42 0.12 0.49 0.18
S-Generator 0.46 0.83 0.43 0.59
GT-GAN 1.00 0.50 0.52 0.67
Gold Standard 0.81 0.74 0.82 0.77

50 RandomVAE 0.89 0.67 0.84 0.76
GraphRNN 0.52 0.53 0.70 0.52
S-Generator 0.50 1.00 0.37 0.67
GT-GAN 0.93 0.82 0.94 0.87
Gold Standard 0.94 0.90 0.97 0.91

100 GraphRNN 0.61 0.65 0.67 0.60
S-Generator 0.50 1.00 0.50 0.67
GT-GAN 0.72 0.69 0.68 0.70
Gold Standard 0.99 0.61 0.81 0.75

150 GraphRNN 0.73 0.92 0.92 0.81
S-Generator 1.00 0.50 0.50 0.67
GT-GAN 0.94 0.79 0.96 0.86
Gold Standard 0.99 0.93 0.96 0.95

B MORE EXPERIMENTAL RESULTS FOR
POISSON RANDOM GRAPH SET

Figure 5: Distribution of k for generated graphs and real
graphs in Poisson random graph set

For Poisson random graphs, the distributions of k in the real
target graphs and those generated graphs are compared. The mean
of edge increasing ratio k for generated graphs by our GT-GAN
is 3.6, compared to the real value of 5, which implies that the GT-
GAN generally is able to discover the underlying increasing ratio
between input and target graphs. More evaluation results (e.g. de-
gree and repository) can be found in Appendix B. We draw the

probability density curve of the proportion k. Fig. 5 shows the dis-
tribution of the k in graphs generated by GT-GAN and the real
graphs. The distribution plot is drew based on 3000 samples. Both
of the two distribution have main degree values in the range from
2 to 7, while there is difference in the max frequency due to the
limit of the samples amount. However, it prove that the proposed
GT-GAN do learn the distribution type of translation parameter
k in this task. Table 6 shows the indirect evaluation on Poisson
random dataset. Table 7 shows the distance measurement between
generated graphs and real graphs in several metrics. For the metric
"degree", we use Wasserstein distances to measure the distance of
two degree distribution. For other metrics, we calculate the MSE
between generated graphs and real graphs.

Table 6: Indirect evaluation for poisson-random graphs

Size Method P R AUC F1

10 RandomVAE 0.98 0.75 0.99 0.85
GraphRNN 0.98 0.99 0.99 0.98
GraphVAE 0.98 0.92 0.97 0.94
GraphGMG 0.98 0.98 0.98 0.98
S-Generator 0.50 1.00 0.50 0.66
GT-GAN 1.00 0.87 0.94 0.90
Gold Standard 0.99 1.00 1.00 0.99

50 RandomVAE 0.93 0.46 1.00 0.63
GraphRNN 1.00 0.99 0.99 0.99
S-Generator 0.49 0.98 0.35 0.65
GT-GAN 1.00 0.99 1.00 0.99
Gold Standard 0.99 1.00 1.00 0.99

100 GraphRNN 1.00 0.99 1.00 0.99
S-Generator 0.50 1.00 0.51 0.66
GT-GAN 0.90 1.00 1.00 0.94
optimal 1.00 1.00 1.00 1.00

150 GraphRNN 0.95 0.99 1.00 0.96
S-Generator 0.50 1.00 0.49 0.66
GT-GAN 0.97 1.00 1.00 0.98
Gold Standard 1.00 0.99 1.00 0.99

C MORE EXPERIMENTAL RESULTS FOR
USER AUTHENTICATION GRAPH SET

About Original Dataset. This data set spans one calendar year
of contiguous activity spanning 2012 and 2013. It originated from
33.9 billion raw event logs (1.4 terabytes compressed) collected
across the LANL enterprise network of approximately 24,000 com-
puters. Here we consider two sub dataset. First is the user log-on
activity set. This data represents authentication events collected
from individual Windows-based desktop computers, servers, and
Active Directory servers. Another dataset presents specific events
taken from the authentication data that present known red team
compromise events, as we call malicious event. The red team data
can used as ground truth of bad behavior which is different from
normal user. Each graph can represent the log-on activity of one
user in a time window. The event graphs are defined like this: The
node refers to the computers that are available to a user and the
edge represents the log-on activity from one computer to another
computer of the user.
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Table 7: MSE of Graph properties measurements for poisson
random graphs

Graph size Method Density Ave-Degree Reciprocity

10 RandomVAE 0.1772 2.8172 0.3917
GraphRNN 0.2665 2.2078 0.1344
GrapgGMG 0.3519 2.4286 0.1338
GraphVAE 0.2881 3.1986 0.3103
S-Generator 0.2993 1.5751 0.0737
GT-GAN 0.3084 1.7707 0.1327

50 RandomVAE Inf 23.680 0.5362
GraphRNN 0.0110 3.6000 0.0125
S-Generator 0.0120 2.9082 0.0125
GT-GAN 0.0155 3.2960 0.0047

100 GraphRNN 0.0123 3.5475 0.0034
S-Generator 0.0029 2.9167 0.0034
GT-GAN 0.0142 4.3730 0.0043

150 GraphRNN 0.0012 3.6619 0.0016
S-Generator 0.0013 2.9467 0.0016
GT-GAN 0.0061 5.0410 0.0019

Direct evaluation of User authentication Graph Set. For the user
authentication graphs, the real target graphs and those generated
are compared under well-recognized graph metrics including de-
gree of nodes, reciprocity, and density. We calculate the distance of
degree distribution and Mean Sqaured Error (MSE) for reciprocity
and density. 8 shows the mean square error of the generated graphs
and real graphs for all users.

Table 8: MSE of Graph properties measurements for user au-
thentication dataset

Graph size Method Density Reciprocity Average Degree

50 RandomVAE 0.0005 0.0000 6.4064
GraphRNN 0.0032 0.0000 2.7751
S-Generator 0.0244 0.0342 24.130
GT-GAN 0.0003 0.0000 0.0002

300 S-Generator 0.0113 0.0010 8.6839
GT-GAN 0.0004 0.0000 0.0006

Figure 6: Regular graphs, malicious graphs and generated
graphs of User 049

Case Studies on the generated target graphs. Fig. 6 shows the
example of User 049 with regular activity graph, real malicious ac-
tivity graph and malicious activity graph generated by our GT-GAN
from left to right. Only those of edges with difference among them
are drawn for legibility. It can be seen that, the hacker performed

attacks on Computer 192, which has been successfully simulated
by our GT-GAN. In addition, GT-GAN also correctly identified that
the Computer 192 is the end node (i.e., with only incoming edges)
in this attack. This is because GT-GAN can learn both the global
hacking patterns (i.e., graph density, modularity) but also can learn
local properties for specific nodes (i.e., computers). GT-GAN even
successfully predicted that the hacker connect from Computers 0
and 1, with Computers 7 and 14 as false alarms.

For User006 in Fig. 7, the red team attackers make more connec-
tions on Node 36 compared to user’s regular activity, as marked
in red rectangle. GT-GAN leans how to choose the Node 36 and it
generated more connections too in the Node 36

Figure 7: Regular graphs, malicious graphs and generated
graphs for User 006

D FLOWCHART OF INDIRECT EVALUATION
PROCESS

Fig. 8 shows the process of the indirect evaluation process.

Figure 8: Flow chart of validation

E ARCHITECTURE PARAMETER FOR
GT-GAN MODEL

Graph Generator: Given the graph size (number of nodes) N of
a graph. The output feature map size of each layer through graph
generator can be expressed as:

N × N × 1 → N × N × 5 → N × N × 10 → N × 1 × 10 →

N × N × 10 → N × N × 5 → N × N × 1
Discriminator: Given the graph size (number of nodes) N of

a graph. The output feature map size of each layer through graph
discriminator can be expressed as:

N ×N ×1 → N ×N ×5 → N ×N ×10 → N ×1×10 → 1×1×10
For the edge to edge layers, the size of two kernels in two direc-

tions are N × 1 and 1 × N . For the node to edge layer, the kernel
size is 1 × N
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Figure 9: Examples of node degree distrbution for generated graphs and real graphs
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