Neural-Symbolic Reasoning over Knowledge Graph for Multi-stage Explainable Recommendation

Yikun Xian, Zuohui Fu, Qiaoying Huang, S. Muthukrishnan, Yongfeng Zhang

Task: KG-based Explainable Recommendation

- **Challenge:**
 - Unknown target: items (target node) are NOT known before path finding.
 - Large node degree: this leads to large search space.

Method: A Neural-Symbolic Reasoning Approach

1. Neural-Symbolic Representation Learning
 - $$\ell_{path}(\Theta; \{L_u\}) = \sum_{L_u} \log P(L_u|u; \Theta)$$
 - $$\ell_{rank}(\Theta; \{L_u\}) = \sum_{L_u} \sum_{i^-} \sigma \left(s(i^-, r|L_u|, u, h|L_u|) - s(i^+, r|L_u|, u, h|L_u|) \right)$$
 - $$\ell_{all}(\Theta) = \sum_{u} \ell_{path}(\Theta; \{L_u\}) + \lambda \ell_{rank}(\Theta; \{L_u\})$$

2. Neural-Symbolic Explainable Recommendation
 (Generate explanations in two stages)

Output: Coarse-grained Explanation

- **Abstract meta-layout**

Output: Fine-grained explanation

- **Concrete paths**

- **Recommendations**

Diagram:

- Nodes: user A, item A, item B, user B, item D, feature A, feature B, item C, brand A, category A, item E, item F
- Relations: purchase, mention, described, produced, belong to, also buy, also view, buy together
- **Relations R**
 - purchase
 - mention
 - described
 - produced
 - belong to
 - also buy
 - also view
 - buy together

Diagram:

- Nodes: ROOT, $$\phi_{r_1}$$, $$\phi_{r_2}$$, $$\phi_{r_3}$$, $$\phi_{r_4}$$, $$\phi_{r_5}$$
- Edges: $$r_1$$, $$r_2$$, $$r_3$$, $$r_4$$, $$r_5$$, $$r_6$$
- Connections: $$f_1$$, $$f_2$$, $$f_3$$, $$f_4$$

Concrete paths:

- $$r_1$$ from $$l_1$$ to $$l_2$$
- $$r_2$$ from $$l_2$$ to $$l_3$$
- $$r_3$$ from $$l_3$$ to $$l_4$$
- $$r_4$$ from $$l_4$$ to $$l_5$$
- $$r_5$$ from $$l_5$$ to $$l_6$$
Main Results

Influence of Ranking Loss

<table>
<thead>
<tr>
<th>Measures (%)</th>
<th>CDs & Vinyl</th>
<th>Clothing</th>
<th>Cell Phones</th>
<th>Beauty</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDCG</td>
<td>Recall</td>
<td>HR</td>
<td>Prec.</td>
<td>NDCG</td>
</tr>
</tbody>
</table>

Effectiveness of Layout

<table>
<thead>
<tr>
<th>Dataset</th>
<th>NDCG</th>
<th>Recall</th>
<th>HR</th>
<th>Prec.</th>
<th>NDCG</th>
<th>Recall</th>
<th>HR</th>
<th>Prec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>4.545</td>
<td>7.229</td>
<td>10.192</td>
<td>1.087</td>
<td>6.293</td>
<td>9.256</td>
<td>15.564</td>
<td>1.918</td>
</tr>
<tr>
<td>prior</td>
<td>6.255</td>
<td>10.842</td>
<td>15.097</td>
<td>1.659</td>
<td>6.880</td>
<td>10.393</td>
<td>17.258</td>
<td>2.224</td>
</tr>
<tr>
<td>heuristic</td>
<td>6.313</td>
<td>11.086</td>
<td>15.531</td>
<td>1.692</td>
<td>7.061</td>
<td>10.948</td>
<td>18.099</td>
<td>2.270</td>
</tr>
</tbody>
</table>

Case Study:

Case (1)

- **ROOT**
 - **purchase**
 - **belong_to**
 - **rev_belong_to**
 - **bought_together**
 - **rev_bought_together**
 - **mention**
 - **rev_described_by**
 - **Skin Care**
 - **Category**
 - **Rev_Bought_Together**
 - **Soap**
 - **Rev_Belong_To**
 - **Shampoo**
 - **Rev_Described_By**
 - **Facial Cream**
 - **user**
 - **mention**
 - **absorb**
 - **rev_described_by**
 - **vitamin**
 - **conditioner**
 - **lotion**
 - **facial cleanser**
 - **vitamin serum**