

Neural-Symbolic Reasoning over Knowledge Graph for Multi-stage Explainable Recommendation

Yikun Xian, Zuohui Fu, Qiaoying Huang, S. Muthukrishnan, Yongfeng Zhang

Task: KG-based Explainable Recommendation

Method: A Neural-Symbolic Reasoning Approach

- 1. Neural-Symbolic Representation Learning
- $\ell_{path}(\Theta; \{L_u\}) = \sum_{L_u} \log P(L_u|u; \Theta)$
- $\ell_{rank}(\Theta; \{L_u\}) = \sum_{L_u} \sum_{i^-} \sigma \left(s(i^-, r_{|L_u|}, u, h_{|L_u|}) s(i^+, r_{|L_u|}, u, h_{|L_u|}) \right)$
- $\ell_{all}(\Theta) = \sum_{u} \ell_{path}(\Theta; \{L_u\}) + \lambda \ell_{rank}(\Theta; \{L_u\})$
- 2. Neural-Symbolic Explainable Recommendation (Generate explanations in two stages)

Challenge:

- Unknown target: items (target node) are NOT known before path finding.
- Large node degree: this leads to large search space.

Output: Coarse-grained Explanation

Output: Fine-grained explanation

Main Results

Dataset	CDs & Vinyl				Clothing			Cell Phones			Beauty					
Measures (%)	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.
DeepCoNN	4.218	6.001	13.857	1.681	1.310	2.332	3.286	0.229	3.636	6.353	9.913	0.999	3.359	5.429	9.807	1.200
CKE	4.620	6.483	14.541	1.779	1.502	2.509	4.275	0.388	3.995	7.005	10.809	1.070	3.717	5.938	11.043	1.371
HeteroEmbed	5.563	7.949	17.556	<u>2.192</u>	3.091	<u>5.466</u>	<u>7.972</u>	0.763	5.370	9.498	13.455	1.325	6.399	<u>10.411</u>	<u>17.498</u>	<u>1.986</u>
PGPR	<u>5.590</u>	7.569	16.886	2.157	2.858	4.834	7.020	0.728	5.042	8.416	11.904	1.274	5.449	8.324	14.401	1.707
NSER (Ours)	6.868	9.376	19.692	2.562	3.689	6.340	9.275	0.975	6.313	11.086	15.531	1.692	7.061	10.948	18.099	2.270

Influence of Ranking Loss

Effectiveness of Layout

Dataset		Cell Pl	nones		Beauty					
Method	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.		
uniform	4.545	7.229	10.192	1.087	6.293	9.256	15.564	1.918		
prior	6.255	10.842	15.097	1.659	6.880	10.393	17.258	2.224		
heuristic	6.313	11.086	15.531	1.692	7.061	10.948	18.099	2.270		

Case Study:

