DLGMA'20 Workshop

Lagrangian Propagation Graph Neural Networks

Matteo Tiezzi¹, Giuseppe Marra^{2,1}, Stefano Melacci¹, Marco Maggini¹, Marco Gori¹

¹DIISM, University of Siena, Italy ²DINFO, University of Florence, Italy e-mail: **mtiezzi@diism.unisi.it**

DLGMA'20 Workshop

Lagrangian Propagation Graph Neural Networks

Matteo Tiezzi, Giuseppe Marra, Stefano Melacci, Marco Maggini, Marco Gori mtiezzi@diism.unisi.it

Propose a novel constrained formulation approach to learning w.r.t. GNNs [Scarselli 2009] Avoid epoch-wise fixed-point convergence, still take advantage of the multi-hop diffusion

- Jointly optimize transition function and node state representation
- Diffusion as a differential optimization process, aimed at fulfilling the constraints
- Mixed strategy:
 - Still rely on BackPropagation to learn the transition and output functions
 - Exploit constraints to define the diffusion mechanism

