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Graph Neural ODEs (GDEs)

Objective: develop the continuous–depth paradigm for deep learning.

Graph Neural Networks{
Hs+1 = Hs + FG (s,Hs ,Θs)
H0 = Xe

, s ∈ N

where F is a matrix–valued nonlinear function conditioned on graph G and Θs is
the tensor of trainable parameters of the s-th layer.

Graph Neural ODEs (GDEs) [Proposed]{
Ḣs = FG (s,Hs ,Θ)
H0 = Xe

, s ∈ S ⊂ R (1)

where F : S ×Rn×d ×Rp → Rn×d is a depth–varying vector field defined on G.

GDEs blend discrete topological structures and differential equations.
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Static settings: computational advantages by incorporation of numerical
methods in the forward pass.

Dynamic settings: exploitation of the geometry of the underlying
dynamics and flexibility with respect to irregular observations.

Hybrid system perspective

Autoregressive GDEs handle sequences of graphs (dynamic topology – jumps).
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