
Probabilistic Inference

Weighted Model 
Counting (WMC)

reduces to

“Efficient” Approximation
(in special cases)

Deep Learning

Intractable
(#P-hard)

Reasoning Tasks: 
Poor Generalization

Breakthrough 
performance 

Neural WMC



Learning To Reason: Leveraging Neural Networks for 
Approximate DNF Counting
DLGMA Paper 20

Learning to Reason: Leveraging Neural Networks for

Approximate DNF Counting

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz
Department of Computer Science, University of Oxford
{ralph.abboud,ismail.ceylan,thomas.lukasiewicz}@cs.ox.ac.uk

Can Neural Networks Perform Reasoning?

Deep Learning
I Achieved breakthroughs in many challenging

tasks e.g., machine translation.
I Applied to reasoning, e.g. satisfiability [1], but

does not generalize to large instances.

Probabilistic Reasoning
I Central to probabilistic graphical models,

probabilistic databases, and probabilistic logic
programming.

I Computationally very demanding: #P-hard.
I Reduces to weighted model counting (WMC)

Can we perform neural weighted model
counting?

We show that neural networks can learn to do
weighted model counting reliably and efficiently
(near linear time) on a specific class of formulas.

Weighted Model Counting

A propositional formula � is in
I Conjunctive Normal Form (CNF), when it is

a conjunction of disjunctive clauses, e.g.,

(x2 _ ¬x3 _ x1) ^ (¬x1 _ x4 _ x6)

I Disjunctive Normal Form (DNF), when it is
a disjunction of conjunctive clauses, e.g.,

(x1 ^ ¬x2 ^ x4) _ (x1 ^ x2 ^ ¬x3)

A propositional formula has width k if all its
clauses contain at most k literals.

Given a propositional formula �, and a weight func-
tion w:

WMC(�) :
X

⌫|=�

w(⌫),

where ⌫ is a propositional assignment.

For WMC over DNF, the algorithm of Karp, Luby,
and Madras [2], denoted KLM, provides an approx-
imation µ̂ such that :

Pr
�
µ(1� ✏)  µ̂  µ(1 + ✏)

�
� 1� �,

relative to error ✏ and confidence �.

KLM runs in quadratic time in 1
✏ and the size of �.

Graph Neural Networks (GNNs)

I Designed to process graph data [3].
I Every graph node given a vector

representation, which is updated iteratively.
I Nodes send messages to neighbors, and

aggregate received messages.
I GNNs are permutation and naming-invariant.

A

BC

(1) Node receives
messages

A’

BC

(2) Node updates
representation

Model

Encoding DNF formulas as graphs.

(x1 ^ ¬x2 ^ x4) _ (x1 ^ x2 ^ ¬x3)
+

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

^1 ^2

_

Message Passing (MP) Iterations.

1. Literals! Conjunctions
2. Conjunctions! Disjunction
3. Conjunctions Disjunction
4. Literals Conjunctions, Literals$ Literals

Aggregation and Update.

1. Message Aggregation: Summation
2. Node Updates: Layer-norm LSTM [4]

Training the Model.

I Following T MP iterations, the disjunction
node representation is passed through a
Multi-Layer Perceptron (MLP) fout.

I This MLP returns the mean and standard
deviation of a predicted Gaussian distribution.

I We use Kullback-Leibler divergence to
compare output with KLM estimates.

Experimental Setup

We compare GNN outputs with KLM estimates
relative to additive thresholds: e.g., for target 0.8
and additive threshold 0.02, the acceptable range
is [0.78, 0.82].

Training Set. Over 100K randomly generated for-
mulas, each having between 50 and 5K variables,
and 4 distinct weight distributions.

Hyperparameters. 128-dimensional vector em-
beddings, T = 8 message passing iterations,
✏ = 0.1 and � = 0.05 for KLM WMC computations.

Analysis: How does the GNN behave?

I 21 formulas with WMC spread across [0, 1]

1 2 3 4 5 6 7 8
1
3
5
7
9

11
13
15
17
19
21

Message Passing Iteration

Fo
rm

ul
as

⌅ ⌅ ⌅
small probability intermediate probability high probability

Results on Structure Generalization

Structure Generalization Test Set. Generated
analogously to training set, contains 13K formulas.

Model accuracy (%) w.r.t additive thresholds:

Thresholds

0.02 0.05 0.10 0.15
Training Set 87.14 98.80 99.97 99.99
Test Set 87.37 98.76 99.95 99.98

Model accuracy (%) by width:

Widths
Thresholds

0.02 0.05 0.10 0.15
3 80.42 98.66 99.87 99.93
5 68.04 96.56 99.90 99.98
8 79.10 97.77 99.96 99.98
13 99.70 99.98 100.0 100.0

Across all width values, the model maintains high
accuracy (e.g., � 96.56% for threshold 0.05).

Heatmap of GNN predictions vs. KLM estimates:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

KLM Approximations

G
N

N
A

pp
ro

xi
m

at
io

ns

Results on Size Generalization

Size Generalization Test Set. 348 formulas with
10K variables, 116 formulas with 15K variables.

Model accuracy (%) by number of variables:

Variables
Thresholds

0.02 0.05 0.10 0.15
10K 79.89 89.94 97.13 99.71
15K 72.41 81.90 94.83 97.41

The model reliably scales to instances with up to
three times as many variables as the training set.

Model accuracy (%) by width:

Widths
Thresholds

0.02 0.05 0.10 0.15
3 78.13 90.63 98.44 100.0
5 73.75 90.0 100.0 100.0
8 76.25 91.25 98.75 100.0
13 40.0 56.25 82.5 95.0

References

[1] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang,
Leonardo de Moura, and David L Dill. Learning a SAT solver from
single-bit supervision. In Proc. of ICLR, 2019.

[2] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation
algorithms for enumeration problems. J. Algorithms, 10(3), 1989.

[3] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel.
Gated graph sequence neural networks. In Proc. of ICLR, 2016.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.


