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‣ E.g., antibiotic (cephalosporin) 

‣ Together, the features give rise to various molecular 
properties (e.g., solubility, toxicity, etc)

Molecules = richly annotated graphs

3D information

node labels substructures 
(motifs)

edge labels

https://en.wikipedia.org/wiki/Cephalosporin


Why interesting for ML?
‣ Rich, complex objects: molecules are complicated 

structures, properties may depend on intricate features 
‣ Data: big and small, heterogenous 
‣ Estimation/inferential challenges: many high-impact 

but non-trivial tasks such as prediction of chemical 
properties, molecular optimization, etc.

(Daptomycin antibiotic)



Our motivation: this talk
‣ MIT Consortium (https://mlpds.mit.edu/) 

- 13 major pharmaceutical companies 
- chemistry/chemical engineering (Jensen, Green, Jamison) 
- computer science (Barzilay, Jaakkola) 

‣ Deeper into known chemistry 
- extract chemical knowledge from journals, notebooks 

‣ Deeper into molecules 
- molecular property prediction (e.g., toxicity, bioactivity) 
- (multi-criteria) optimization (e.g., potency, toxicity) 

‣ Deeper into reactions 
- forward synthesis prediction (major products of reactions) 
- forward synthesis optimization (conditions, reagents, 

etc.) 
‣ Deeper into making things 

- retrosynthetic planning (efficient/inexpensive routes)



Our motivation: broader context
‣ MIT Consortium (https://mlpds.mit.edu/) 

- 14 major pharmaceutical companies 
- chemistry/chemical engineering (Jensen, Green, Jamison) 
- computer science (Barzilay, Jaakkola) 

‣ Deeper into known chemistry 
- extract chemical knowledge from journals, notebooks 

‣ Deeper into molecules 
- molecular property prediction (e.g., toxicity, bioactivity) 
- (multi-criteria) optimization (e.g., potency, toxicity) 

‣ Deeper into reactions 
- forward synthesis prediction (major products of reactions) 
- forward synthesis optimization (conditions, reagents, 

etc.) 
‣ Deeper into making things 

- retrosynthetic planning (efficient/inexpensive routes)



Automating Drug design
‣ Our problem: how to programmatically modify pre-cursor 

molecules to have better properties 

‣ Key challenges: 

1. representation and prediction: learn to predict molecular 
properties 

2. generation and optimization: realize target molecules 
with better properties programmatically 

3. understanding: uncover principles (or diagnose errors) 
underlying complex predictions

design  
specs



Graph neural networks (GNNs)
‣ GNNs are parameterized message passing algorithms 

operating on molecular graphs, and result in atom, bond, 
and graph embeddings, tailored for the end task 

‣ Many recent results about representational power (Xu et 
al. 2019, Sato et al. 2019, Maron et al., 2019, …)

solubility, 
toxicity, 

bioactivity, 
etc.

iterative 
embedding readout prediction
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Representational power of “GNNs” 

the set of all  
n-node graphs

Generalization and Representational Limits of Graph Neural Networks

Proposition 2. LU-GNNs with sum/average/max readout

cannot decide the following graph properties: (a) girth

(length of shortest cycle), (b) circumference (length of

longest cycle), (c) diameter (maximum distance, in terms

of shortest path, between any pair of nodes in the graph),

(d) radius (minimum node eccentricity, where eccentricity

of a node u is defined as the maximum distance from u to

other vertices), (e) conjoint cycle (two cycles that share an

edge), (f) total number of cycles, and (g) k-clique (a sub-

graph of at least k � 3 vertices such that each vertex in the

subgraph is connected by an edge to any other vertex in the

subgraph). These results also hold for CPNGNN models.
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Proof. To argue about girth and circumference, we con-
struct a pair of graphs that have cycles of different length
but produce the same output embedding via the readout
function. Specifically, we show that LU-GNNs cannot de-
cide a graph having cycles of length n from a cycle of
length 2n. We first construct a counterexample for aver-
age and max readout functions for n = 4. Let {A, B, C, D}
be the set of node labels. Consider a cycle S4 = ABCDA

(of length 4), and a cycle S8 = A1B1C1D1A2B2C2D2A1

(of length 8), where X1 and X2 are copies of X 2
{A,B,C,D} (i.e. have the same node feature vectors as
X). We also enforce that edge e(X`, Y`0) is a copy of
e(X,Y ), for `, `0 2 {1, 2}, whenever X` is a copy of X
and Y`0 is a copy of Y .

Additionally, for CPNGNN (Sato et al., 2019), we first find
a consistent port numbering for S4 using Algorithm 3 in
(Sato et al., 2019). Thus, we find a function p which satis-
fies the following. For each edge (X,Y ) in S4, we obtain a
pair of port numbers (i, j) with i 2 {1, 2, . . . , degree(X)}
and j 2 {1, 2, . . . , degree(Y )} such that p(X, i) = (Y, j)
and p(p(X, i)) = (X, i). For each edge (X`, Y`0) in S8, we
associate the same pair of ports (i, j) as for (X,Y ) in S4.
This ensures that both S4 and S8 have locally isomorphic
consistent port-ordered neighborhoods.

We first prove by induction that LU-GNNs and CPNGNNs
produce identical node embeddings for locally isomorphic
graphs. Consider any such GNN with L + 1 layers pa-
rameterized by the sequence ✓1:L+1 , (✓1, . . . , ✓L, ✓L+1).

Fix any X 2 {A,B,C,D}. Since the neighbors and cor-
responding port pairs of X in S4 are identical copies of
those of X1 and X2 in S8, the updated embeddings X(✓1),
X1(✓1), and X2(✓1) output by the first layer are all identi-
cal. Assume that the node embeddings X(✓1:L), X1(✓1:L),
and X2(✓1:L) are identical. Since the neighbors of X in S4

are locally isomorphic to neighbors of X1 (and X2) in S8,
this immediately implies that (for any ✓L+1) we must have
X(✓1:L+1) = X1(✓1:L+1) = X2(✓1:L+1).

Thus, the average embedding vector for S4 is same as
for S8 (and likewise for their respective maximum embed-
dings) even though girth as well as circumference is equal
to 4 for S4, and equal to 8 for S8. Moreover, note that diam-
eter and radius of S4 are both equal to 2. In contrast, diame-
ter (and radius) of S8 is 4. For the sum function, we simply
compare S8 with a graph that has two disjoint copies of
S4 as its components. To edges in both these components,
we assign the corresponding port numbers from S4. Doing
so does not change the girth and circumference. However,
since the graph with two components is disconnected, its
diameter (and radius) is 1.

Our choice of ✓1:L+1 was arbitrary, so properties (a)-(d)
follow immediately for any LU-GNN and CPNGNN with
sum, average, or maximum readout.
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For properties (e)-(g), we craft another pair of graphs
that differ in the specified properties but cannot be
discriminated. The main idea is to replicate the effect
of the common edge in the conjoint cycle (graph G1)
via two identical subgraphs (of graph G2 that does not
have any conjoint cycle) that are cleverly aligned to
reproduce the local port-ordered neighborhoods and thus
present the same view to each node (see the adjoining
figure). Note that the number of cycles in G1 is 3
(ABCDA, ABDA, BCDB), while the corresponding
number in G2 is 6 (A1B1C1D1A1, A2B2C2D2A2,
A1B1D2A2B2D1A1, A1B1D2C2B2D1A1,
A2B2D1C1B1D2A2, D1C1B1D2C2B2), and thus



Representational power of “GNNs” 

the set of all  
n-node graphs

1-WL 
equivalence 

class Generalization and Representational Limits of Graph Neural Networks

Proposition 2. LU-GNNs with sum/average/max readout

cannot decide the following graph properties: (a) girth

(length of shortest cycle), (b) circumference (length of

longest cycle), (c) diameter (maximum distance, in terms

of shortest path, between any pair of nodes in the graph),

(d) radius (minimum node eccentricity, where eccentricity

of a node u is defined as the maximum distance from u to

other vertices), (e) conjoint cycle (two cycles that share an

edge), (f) total number of cycles, and (g) k-clique (a sub-

graph of at least k � 3 vertices such that each vertex in the

subgraph is connected by an edge to any other vertex in the

subgraph). These results also hold for CPNGNN models.

A B

CD

A B

CD

A1 B1 C1 D1

D2 C2 B2 A2

S4

S4

S8

Proof. To argue about girth and circumference, we con-
struct a pair of graphs that have cycles of different length
but produce the same output embedding via the readout
function. Specifically, we show that LU-GNNs cannot de-
cide a graph having cycles of length n from a cycle of
length 2n. We first construct a counterexample for aver-
age and max readout functions for n = 4. Let {A, B, C, D}
be the set of node labels. Consider a cycle S4 = ABCDA

(of length 4), and a cycle S8 = A1B1C1D1A2B2C2D2A1

(of length 8), where X1 and X2 are copies of X 2
{A,B,C,D} (i.e. have the same node feature vectors as
X). We also enforce that edge e(X`, Y`0) is a copy of
e(X,Y ), for `, `0 2 {1, 2}, whenever X` is a copy of X
and Y`0 is a copy of Y .

Additionally, for CPNGNN (Sato et al., 2019), we first find
a consistent port numbering for S4 using Algorithm 3 in
(Sato et al., 2019). Thus, we find a function p which satis-
fies the following. For each edge (X,Y ) in S4, we obtain a
pair of port numbers (i, j) with i 2 {1, 2, . . . , degree(X)}
and j 2 {1, 2, . . . , degree(Y )} such that p(X, i) = (Y, j)
and p(p(X, i)) = (X, i). For each edge (X`, Y`0) in S8, we
associate the same pair of ports (i, j) as for (X,Y ) in S4.
This ensures that both S4 and S8 have locally isomorphic
consistent port-ordered neighborhoods.

We first prove by induction that LU-GNNs and CPNGNNs
produce identical node embeddings for locally isomorphic
graphs. Consider any such GNN with L + 1 layers pa-
rameterized by the sequence ✓1:L+1 , (✓1, . . . , ✓L, ✓L+1).

Fix any X 2 {A,B,C,D}. Since the neighbors and cor-
responding port pairs of X in S4 are identical copies of
those of X1 and X2 in S8, the updated embeddings X(✓1),
X1(✓1), and X2(✓1) output by the first layer are all identi-
cal. Assume that the node embeddings X(✓1:L), X1(✓1:L),
and X2(✓1:L) are identical. Since the neighbors of X in S4

are locally isomorphic to neighbors of X1 (and X2) in S8,
this immediately implies that (for any ✓L+1) we must have
X(✓1:L+1) = X1(✓1:L+1) = X2(✓1:L+1).

Thus, the average embedding vector for S4 is same as
for S8 (and likewise for their respective maximum embed-
dings) even though girth as well as circumference is equal
to 4 for S4, and equal to 8 for S8. Moreover, note that diam-
eter and radius of S4 are both equal to 2. In contrast, diame-
ter (and radius) of S8 is 4. For the sum function, we simply
compare S8 with a graph that has two disjoint copies of
S4 as its components. To edges in both these components,
we assign the corresponding port numbers from S4. Doing
so does not change the girth and circumference. However,
since the graph with two components is disconnected, its
diameter (and radius) is 1.

Our choice of ✓1:L+1 was arbitrary, so properties (a)-(d)
follow immediately for any LU-GNN and CPNGNN with
sum, average, or maximum readout.
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For properties (e)-(g), we craft another pair of graphs
that differ in the specified properties but cannot be
discriminated. The main idea is to replicate the effect
of the common edge in the conjoint cycle (graph G1)
via two identical subgraphs (of graph G2 that does not
have any conjoint cycle) that are cleverly aligned to
reproduce the local port-ordered neighborhoods and thus
present the same view to each node (see the adjoining
figure). Note that the number of cycles in G1 is 3
(ABCDA, ABDA, BCDB), while the corresponding
number in G2 is 6 (A1B1C1D1A1, A2B2C2D2A2,
A1B1D2A2B2D1A1, A1B1D2C2B2D1A1,
A2B2D1C1B1D2A2, D1C1B1D2C2B2), and thus
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Proof. To argue about girth and circumference, we con-
struct a pair of graphs that have cycles of different length
but produce the same output embedding via the readout
function. Specifically, we show that LU-GNNs cannot de-
cide a graph having cycles of length n from a cycle of
length 2n. We first construct a counterexample for aver-
age and max readout functions for n = 4. Let {A, B, C, D}
be the set of node labels. Consider a cycle S4 = ABCDA

(of length 4), and a cycle S8 = A1B1C1D1A2B2C2D2A1

(of length 8), where X1 and X2 are copies of X 2
{A,B,C,D} (i.e. have the same node feature vectors as
X). We also enforce that edge e(X`, Y`0) is a copy of
e(X,Y ), for `, `0 2 {1, 2}, whenever X` is a copy of X
and Y`0 is a copy of Y .

Additionally, for CPNGNN (Sato et al., 2019), we first find
a consistent port numbering for S4 using Algorithm 3 in
(Sato et al., 2019). Thus, we find a function p which satis-
fies the following. For each edge (X,Y ) in S4, we obtain a
pair of port numbers (i, j) with i 2 {1, 2, . . . , degree(X)}
and j 2 {1, 2, . . . , degree(Y )} such that p(X, i) = (Y, j)
and p(p(X, i)) = (X, i). For each edge (X`, Y`0) in S8, we
associate the same pair of ports (i, j) as for (X,Y ) in S4.
This ensures that both S4 and S8 have locally isomorphic
consistent port-ordered neighborhoods.

We first prove by induction that LU-GNNs and CPNGNNs
produce identical node embeddings for locally isomorphic
graphs. Consider any such GNN with L + 1 layers pa-
rameterized by the sequence ✓1:L+1 , (✓1, . . . , ✓L, ✓L+1).

Fix any X 2 {A,B,C,D}. Since the neighbors and cor-
responding port pairs of X in S4 are identical copies of
those of X1 and X2 in S8, the updated embeddings X(✓1),
X1(✓1), and X2(✓1) output by the first layer are all identi-
cal. Assume that the node embeddings X(✓1:L), X1(✓1:L),
and X2(✓1:L) are identical. Since the neighbors of X in S4

are locally isomorphic to neighbors of X1 (and X2) in S8,
this immediately implies that (for any ✓L+1) we must have
X(✓1:L+1) = X1(✓1:L+1) = X2(✓1:L+1).

Thus, the average embedding vector for S4 is same as
for S8 (and likewise for their respective maximum embed-
dings) even though girth as well as circumference is equal
to 4 for S4, and equal to 8 for S8. Moreover, note that diam-
eter and radius of S4 are both equal to 2. In contrast, diame-
ter (and radius) of S8 is 4. For the sum function, we simply
compare S8 with a graph that has two disjoint copies of
S4 as its components. To edges in both these components,
we assign the corresponding port numbers from S4. Doing
so does not change the girth and circumference. However,
since the graph with two components is disconnected, its
diameter (and radius) is 1.

Our choice of ✓1:L+1 was arbitrary, so properties (a)-(d)
follow immediately for any LU-GNN and CPNGNN with
sum, average, or maximum readout.
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For properties (e)-(g), we craft another pair of graphs
that differ in the specified properties but cannot be
discriminated. The main idea is to replicate the effect
of the common edge in the conjoint cycle (graph G1)
via two identical subgraphs (of graph G2 that does not
have any conjoint cycle) that are cleverly aligned to
reproduce the local port-ordered neighborhoods and thus
present the same view to each node (see the adjoining
figure). Note that the number of cycles in G1 is 3
(ABCDA, ABDA, BCDB), while the corresponding
number in G2 is 6 (A1B1C1D1A1, A2B2C2D2A2,
A1B1D2A2B2D1A1, A1B1D2C2B2D1A1,
A2B2D1C1B1D2A2, D1C1B1D2C2B2), and thus
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Proof. To argue about girth and circumference, we con-
struct a pair of graphs that have cycles of different length
but produce the same output embedding via the readout
function. Specifically, we show that LU-GNNs cannot de-
cide a graph having cycles of length n from a cycle of
length 2n. We first construct a counterexample for aver-
age and max readout functions for n = 4. Let {A, B, C, D}
be the set of node labels. Consider a cycle S4 = ABCDA

(of length 4), and a cycle S8 = A1B1C1D1A2B2C2D2A1

(of length 8), where X1 and X2 are copies of X 2
{A,B,C,D} (i.e. have the same node feature vectors as
X). We also enforce that edge e(X`, Y`0) is a copy of
e(X,Y ), for `, `0 2 {1, 2}, whenever X` is a copy of X
and Y`0 is a copy of Y .

Additionally, for CPNGNN (Sato et al., 2019), we first find
a consistent port numbering for S4 using Algorithm 3 in
(Sato et al., 2019). Thus, we find a function p which satis-
fies the following. For each edge (X,Y ) in S4, we obtain a
pair of port numbers (i, j) with i 2 {1, 2, . . . , degree(X)}
and j 2 {1, 2, . . . , degree(Y )} such that p(X, i) = (Y, j)
and p(p(X, i)) = (X, i). For each edge (X`, Y`0) in S8, we
associate the same pair of ports (i, j) as for (X,Y ) in S4.
This ensures that both S4 and S8 have locally isomorphic
consistent port-ordered neighborhoods.

We first prove by induction that LU-GNNs and CPNGNNs
produce identical node embeddings for locally isomorphic
graphs. Consider any such GNN with L + 1 layers pa-
rameterized by the sequence ✓1:L+1 , (✓1, . . . , ✓L, ✓L+1).

Fix any X 2 {A,B,C,D}. Since the neighbors and cor-
responding port pairs of X in S4 are identical copies of
those of X1 and X2 in S8, the updated embeddings X(✓1),
X1(✓1), and X2(✓1) output by the first layer are all identi-
cal. Assume that the node embeddings X(✓1:L), X1(✓1:L),
and X2(✓1:L) are identical. Since the neighbors of X in S4

are locally isomorphic to neighbors of X1 (and X2) in S8,
this immediately implies that (for any ✓L+1) we must have
X(✓1:L+1) = X1(✓1:L+1) = X2(✓1:L+1).

Thus, the average embedding vector for S4 is same as
for S8 (and likewise for their respective maximum embed-
dings) even though girth as well as circumference is equal
to 4 for S4, and equal to 8 for S8. Moreover, note that diam-
eter and radius of S4 are both equal to 2. In contrast, diame-
ter (and radius) of S8 is 4. For the sum function, we simply
compare S8 with a graph that has two disjoint copies of
S4 as its components. To edges in both these components,
we assign the corresponding port numbers from S4. Doing
so does not change the girth and circumference. However,
since the graph with two components is disconnected, its
diameter (and radius) is 1.

Our choice of ✓1:L+1 was arbitrary, so properties (a)-(d)
follow immediately for any LU-GNN and CPNGNN with
sum, average, or maximum readout.
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For properties (e)-(g), we craft another pair of graphs
that differ in the specified properties but cannot be
discriminated. The main idea is to replicate the effect
of the common edge in the conjoint cycle (graph G1)
via two identical subgraphs (of graph G2 that does not
have any conjoint cycle) that are cleverly aligned to
reproduce the local port-ordered neighborhoods and thus
present the same view to each node (see the adjoining
figure). Note that the number of cycles in G1 is 3
(ABCDA, ABDA, BCDB), while the corresponding
number in G2 is 6 (A1B1C1D1A1, A2B2C2D2A2,
A1B1D2A2B2D1A1, A1B1D2C2B2D1A1,
A2B2D1C1B1D2A2, D1C1B1D2C2B2), and thus
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Proof. To argue about girth and circumference, we con-
struct a pair of graphs that have cycles of different length
but produce the same output embedding via the readout
function. Specifically, we show that LU-GNNs cannot de-
cide a graph having cycles of length n from a cycle of
length 2n. We first construct a counterexample for aver-
age and max readout functions for n = 4. Let {A, B, C, D}
be the set of node labels. Consider a cycle S4 = ABCDA

(of length 4), and a cycle S8 = A1B1C1D1A2B2C2D2A1

(of length 8), where X1 and X2 are copies of X 2
{A,B,C,D} (i.e. have the same node feature vectors as
X). We also enforce that edge e(X`, Y`0) is a copy of
e(X,Y ), for `, `0 2 {1, 2}, whenever X` is a copy of X
and Y`0 is a copy of Y .

Additionally, for CPNGNN (Sato et al., 2019), we first find
a consistent port numbering for S4 using Algorithm 3 in
(Sato et al., 2019). Thus, we find a function p which satis-
fies the following. For each edge (X,Y ) in S4, we obtain a
pair of port numbers (i, j) with i 2 {1, 2, . . . , degree(X)}
and j 2 {1, 2, . . . , degree(Y )} such that p(X, i) = (Y, j)
and p(p(X, i)) = (X, i). For each edge (X`, Y`0) in S8, we
associate the same pair of ports (i, j) as for (X,Y ) in S4.
This ensures that both S4 and S8 have locally isomorphic
consistent port-ordered neighborhoods.

We first prove by induction that LU-GNNs and CPNGNNs
produce identical node embeddings for locally isomorphic
graphs. Consider any such GNN with L + 1 layers pa-
rameterized by the sequence ✓1:L+1 , (✓1, . . . , ✓L, ✓L+1).

Fix any X 2 {A,B,C,D}. Since the neighbors and cor-
responding port pairs of X in S4 are identical copies of
those of X1 and X2 in S8, the updated embeddings X(✓1),
X1(✓1), and X2(✓1) output by the first layer are all identi-
cal. Assume that the node embeddings X(✓1:L), X1(✓1:L),
and X2(✓1:L) are identical. Since the neighbors of X in S4

are locally isomorphic to neighbors of X1 (and X2) in S8,
this immediately implies that (for any ✓L+1) we must have
X(✓1:L+1) = X1(✓1:L+1) = X2(✓1:L+1).

Thus, the average embedding vector for S4 is same as
for S8 (and likewise for their respective maximum embed-
dings) even though girth as well as circumference is equal
to 4 for S4, and equal to 8 for S8. Moreover, note that diam-
eter and radius of S4 are both equal to 2. In contrast, diame-
ter (and radius) of S8 is 4. For the sum function, we simply
compare S8 with a graph that has two disjoint copies of
S4 as its components. To edges in both these components,
we assign the corresponding port numbers from S4. Doing
so does not change the girth and circumference. However,
since the graph with two components is disconnected, its
diameter (and radius) is 1.

Our choice of ✓1:L+1 was arbitrary, so properties (a)-(d)
follow immediately for any LU-GNN and CPNGNN with
sum, average, or maximum readout.
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For properties (e)-(g), we craft another pair of graphs
that differ in the specified properties but cannot be
discriminated. The main idea is to replicate the effect
of the common edge in the conjoint cycle (graph G1)
via two identical subgraphs (of graph G2 that does not
have any conjoint cycle) that are cleverly aligned to
reproduce the local port-ordered neighborhoods and thus
present the same view to each node (see the adjoining
figure). Note that the number of cycles in G1 is 3
(ABCDA, ABDA, BCDB), while the corresponding
number in G2 is 6 (A1B1C1D1A1, A2B2C2D2A2,
A1B1D2A2B2D1A1, A1B1D2C2B2D1A1,
A2B2D1C1B1D2A2, D1C1B1D2C2B2), and thus

{h1, . . . , hn}
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Representational power of “GNNs” 

‣ Indistinguishable graph features 
- shortest/largest cycle, radius, 
- presence of conjoint cycle, 
- number of cycles, c-clique, 
- etc.

the set of all  
n-node graphs

1-WL 
equivalence 

class Generalization and Representational Limits of Graph Neural Networks

Proposition 2. LU-GNNs with sum/average/max readout

cannot decide the following graph properties: (a) girth

(length of shortest cycle), (b) circumference (length of

longest cycle), (c) diameter (maximum distance, in terms

of shortest path, between any pair of nodes in the graph),

(d) radius (minimum node eccentricity, where eccentricity

of a node u is defined as the maximum distance from u to

other vertices), (e) conjoint cycle (two cycles that share an

edge), (f) total number of cycles, and (g) k-clique (a sub-

graph of at least k � 3 vertices such that each vertex in the

subgraph is connected by an edge to any other vertex in the

subgraph). These results also hold for CPNGNN models.
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Proof. To argue about girth and circumference, we con-
struct a pair of graphs that have cycles of different length
but produce the same output embedding via the readout
function. Specifically, we show that LU-GNNs cannot de-
cide a graph having cycles of length n from a cycle of
length 2n. We first construct a counterexample for aver-
age and max readout functions for n = 4. Let {A, B, C, D}
be the set of node labels. Consider a cycle S4 = ABCDA

(of length 4), and a cycle S8 = A1B1C1D1A2B2C2D2A1

(of length 8), where X1 and X2 are copies of X 2
{A,B,C,D} (i.e. have the same node feature vectors as
X). We also enforce that edge e(X`, Y`0) is a copy of
e(X,Y ), for `, `0 2 {1, 2}, whenever X` is a copy of X
and Y`0 is a copy of Y .

Additionally, for CPNGNN (Sato et al., 2019), we first find
a consistent port numbering for S4 using Algorithm 3 in
(Sato et al., 2019). Thus, we find a function p which satis-
fies the following. For each edge (X,Y ) in S4, we obtain a
pair of port numbers (i, j) with i 2 {1, 2, . . . , degree(X)}
and j 2 {1, 2, . . . , degree(Y )} such that p(X, i) = (Y, j)
and p(p(X, i)) = (X, i). For each edge (X`, Y`0) in S8, we
associate the same pair of ports (i, j) as for (X,Y ) in S4.
This ensures that both S4 and S8 have locally isomorphic
consistent port-ordered neighborhoods.

We first prove by induction that LU-GNNs and CPNGNNs
produce identical node embeddings for locally isomorphic
graphs. Consider any such GNN with L + 1 layers pa-
rameterized by the sequence ✓1:L+1 , (✓1, . . . , ✓L, ✓L+1).

Fix any X 2 {A,B,C,D}. Since the neighbors and cor-
responding port pairs of X in S4 are identical copies of
those of X1 and X2 in S8, the updated embeddings X(✓1),
X1(✓1), and X2(✓1) output by the first layer are all identi-
cal. Assume that the node embeddings X(✓1:L), X1(✓1:L),
and X2(✓1:L) are identical. Since the neighbors of X in S4

are locally isomorphic to neighbors of X1 (and X2) in S8,
this immediately implies that (for any ✓L+1) we must have
X(✓1:L+1) = X1(✓1:L+1) = X2(✓1:L+1).

Thus, the average embedding vector for S4 is same as
for S8 (and likewise for their respective maximum embed-
dings) even though girth as well as circumference is equal
to 4 for S4, and equal to 8 for S8. Moreover, note that diam-
eter and radius of S4 are both equal to 2. In contrast, diame-
ter (and radius) of S8 is 4. For the sum function, we simply
compare S8 with a graph that has two disjoint copies of
S4 as its components. To edges in both these components,
we assign the corresponding port numbers from S4. Doing
so does not change the girth and circumference. However,
since the graph with two components is disconnected, its
diameter (and radius) is 1.

Our choice of ✓1:L+1 was arbitrary, so properties (a)-(d)
follow immediately for any LU-GNN and CPNGNN with
sum, average, or maximum readout.
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For properties (e)-(g), we craft another pair of graphs
that differ in the specified properties but cannot be
discriminated. The main idea is to replicate the effect
of the common edge in the conjoint cycle (graph G1)
via two identical subgraphs (of graph G2 that does not
have any conjoint cycle) that are cleverly aligned to
reproduce the local port-ordered neighborhoods and thus
present the same view to each node (see the adjoining
figure). Note that the number of cycles in G1 is 3
(ABCDA, ABDA, BCDB), while the corresponding
number in G2 is 6 (A1B1C1D1A1, A2B2C2D2A2,
A1B1D2A2B2D1A1, A1B1D2C2B2D1A1,
A2B2D1C1B1D2A2, D1C1B1D2C2B2), and thus

{h1, . . . , hn}
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‣ This is a simple, two-level hierarchy; motif graph does not 
encode how the substructures are attached to each other 
 

Structural motifs: polymer



‣ This is a simple, two-level hierarchy; motif graph does not 
encode how the substructures are attached to each other 

‣ We extend this to a three-level hierarchical representation 
for each molecule

Structural motifs: polymer



Fine-to-coarse graph encoding
En

co
di

ng

[Jin et al. 2020]



‣ A simple example on solubility; ESOL dataset (averaged 
over 5 folds)

ESOL RMSE

0.5

0.675

0.85

1.025

1.2

MPNN Hier-MPNN

0.650.69

1.11

Is hierarchy helpful?

GNN with basic atom features

GNN with rich substructure features

HierGNN with basic features



New Antibiotic Discovery
‣ If we can accurately predict molecular properties, we can 

screen (select and repurpose) molecules from a large 
candidate set 
 
 

‣ Antibiotic Discovery [Stokes et al., 2020] 
- Trained a model to predict the inhibition against E. Coli 
- Data: ~2000 measured compounds from Broad Institute 
- Screened ~100 million possible compounds 
- Tested 15 highest scoring molecules in the lab  
- 7 of them validated to be inhibitive in-vitro

…



Automating Drug design
‣ Our problem: how to programmatically modify pre-cursor 

molecules to have better properties 

‣ Key challenges: 

1. representation and prediction: learn to predict molecular 
properties 

2. generation and optimization: realize target molecules 
with better properties programmatically 

3. understanding: uncover principles (or diagnose errors) 
underlying complex predictions

design  
specs



‣ Goal: learn to turn precursor molecules into molecules that 
satisfy given design specification(s) 

‣ The training set consists of (source, target) molecular pairs 

‣ Key challenge: molecule generation

Optimization as graph translation

… …
Source Target

…
…

…
Encode Decode

X YSource Target



Coarse-to-fine graph generation
‣ We realize graphs auto-regressively, in a course to fine 

manner, one substructure at a time
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‣ We realize graphs auto-regressively, in a course to fine 

manner, one substructure at a time

D
ec

od
in

g

En
co

di
ng

[Jin et al. 2020]



Does the hierarchy help? 
‣ Example with polymers: 86K (76K+5K+5K)

[Jin et al. 2020]



graph generation: diversity
‣ Goal: learn to turn precursor molecules into molecules 

that satisfy given design specification(s) 

‣ We’d like to generate a diverse set of candidate 
molecules that satisfy the criteria

X Y

diversity z ~ P(z)

Encode Decode…
…

…

[Jin et al. 2019,2020]

…



Example results
‣ Single property optimization: DRD2 success % (from 

inactive to active)
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90
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[Jin et al. 2020]



Example results
‣ Single property optimization: QED success % (QED > 

0.9)
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Inverse design challenge
‣ Many examples of molecules with a particular property  

‣ Few instances of molecules that satisfy multiple (esp. 
new) property combinations 

‣ Challenge: How do we realize a diverse distribution of 
molecules that satisfy all the criteria without any 
examples of such molecules? 

?

GSK3

JNK3

�
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Our strategy
‣ Step 1: rationale extraction 

- carve out candidate substructures — rationales — 
likely responsible for each molecular property 

‣ Step 2: multi-rationale assembly 
- learn to assemble pieces together into a complete 

molecule that satisfies all the properties
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Composing Molecules with Multiple Property Constraints
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Abstract

Drug discovery aims to find novel compounds
with specified chemical property profiles. In terms
of generative modeling, the goal is to learn to
sample molecules in the intersection of multiple
property constraints. This task becomes increas-
ingly challenging when there are many property
constraints. We propose to offset this complex-
ity by composing molecules from a vocabulary
of substructures that we call molecular rationales.
These rationales are identified from molecules as
substructures that are likely responsible for each
property of interest. We then learn to expand ratio-
nales into a full molecule using graph generative
models. Our final generative model composes
molecules as mixtures of multiple rationale com-
pletions, and this mixture is fine-tuned to preserve
the properties of interest. We evaluate our model
on various drug design tasks and demonstrate sig-
nificant improvements over state-of-the-art base-
lines in terms of accuracy, diversity, and novelty
of generated compounds.

1. Introduction

The key challenge in drug discovery is to find molecules
that satisfy multiple constraints, from potency, safety, to
desired metabolic profiles. Optimizing these constraints
simultaneously is challenging for existing computational
models. The primary difficulty lies in the lack of training
instances of molecules that conform to all the constraints.
For example, for this reason, Jin et al. (2019a) reports over
60% performance loss when moving beyond the single-
constraint setting.

In this paper, we propose a novel approach to multi-
property molecular optimization. Our strategy is inspired by
fragment-based drug discovery (Murray & Rees, 2009) of-
ten followed by medicinal chemists. The idea is to start with

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. Illustration of our rationale based generative model. To
generate a dual inhibitor against biological targets GSK3� and
JNK3, our model first identifies rationale substructures S for each
property, and then learns to compose them into a full molecule G.
Note that rationales are not provided as domain knowledge.

substructures (e.g., functional groups or later pieces) that
drive specific properties of interest, and then combine these
building blocks into a target molecule. To automate this
process, our model has to learn two complementary tasks
illustrated in Figure 1: (1) identification of the building
blocks that we call rationales, and (2) assembling multi-
ple rationales together into a fully formed target molecule.
In contrast to competing methods, our generative model
does not build molecules from scratch, but instead assem-
bles them from automatically extracted rationales already
implicated for specific properties (see Figure 1).

We implement this idea using a generative model of
molecules where the rationale choices play the role of latent
variables. Specifically, a molecular graph G is generated
from underlying rationale sets S according to:

P (G) =
X

S
P (G|S)P (S) (1)

As ground truth rationales (e.g., functional groups or sub-
graphs) are not provided, the model has to extract candidate
rationales from molecules with the help of a property pre-
dictor. We formulate this task as a discrete optimization
problem efficiently solved by Monte Carlo tree search. Our
rationale conditioned graph generator, P (G|S), is initially
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Drug discovery aims to find novel compounds
with specified chemical property profiles. In terms
of generative modeling, the goal is to learn to
sample molecules in the intersection of multiple
property constraints. This task becomes increas-
ingly challenging when there are many property
constraints. We propose to offset this complex-
ity by composing molecules from a vocabulary
of substructures that we call molecular rationales.
These rationales are identified from molecules as
substructures that are likely responsible for each
property of interest. We then learn to expand ratio-
nales into a full molecule using graph generative
models. Our final generative model composes
molecules as mixtures of multiple rationale com-
pletions, and this mixture is fine-tuned to preserve
the properties of interest. We evaluate our model
on various drug design tasks and demonstrate sig-
nificant improvements over state-of-the-art base-
lines in terms of accuracy, diversity, and novelty
of generated compounds.

1. Introduction

The key challenge in drug discovery is to find molecules
that satisfy multiple constraints, from potency, safety, to
desired metabolic profiles. Optimizing these constraints
simultaneously is challenging for existing computational
models. The primary difficulty lies in the lack of training
instances of molecules that conform to all the constraints.
For example, for this reason, Jin et al. (2019a) reports over
60% performance loss when moving beyond the single-
constraint setting.

In this paper, we propose a novel approach to multi-
property molecular optimization. Our strategy is inspired by
fragment-based drug discovery (Murray & Rees, 2009) of-
ten followed by medicinal chemists. The idea is to start with
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Figure 1. Illustration of our rationale based generative model. To
generate a dual inhibitor against biological targets GSK3� and
JNK3, our model first identifies rationale substructures S for each
property, and then learns to compose them into a full molecule G.
Note that rationales are not provided as domain knowledge.

substructures (e.g., functional groups or later pieces) that
drive specific properties of interest, and then combine these
building blocks into a target molecule. To automate this
process, our model has to learn two complementary tasks
illustrated in Figure 1: (1) identification of the building
blocks that we call rationales, and (2) assembling multi-
ple rationales together into a fully formed target molecule.
In contrast to competing methods, our generative model
does not build molecules from scratch, but instead assem-
bles them from automatically extracted rationales already
implicated for specific properties (see Figure 1).

We implement this idea using a generative model of
molecules where the rationale choices play the role of latent
variables. Specifically, a molecular graph G is generated
from underlying rationale sets S according to:

P (G) =
X

S
P (G|S)P (S) (1)

As ground truth rationales (e.g., functional groups or sub-
graphs) are not provided, the model has to extract candidate
rationales from molecules with the help of a property pre-
dictor. We formulate this task as a discrete optimization
problem efficiently solved by Monte Carlo tree search. Our
rationale conditioned graph generator, P (G|S), is initially
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Our strategy
‣ Step 1: rationale extraction 

- carve out candidate substructures — rationales — 
likely responsible for each molecular property 

‣ Step 2: multi-rationale assembly 
- learn to assemble pieces together into a complete 

molecule that satisfies all the properties
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Abstract

Drug discovery aims to find novel compounds
with specified chemical property profiles. In terms
of generative modeling, the goal is to learn to
sample molecules in the intersection of multiple
property constraints. This task becomes increas-
ingly challenging when there are many property
constraints. We propose to offset this complex-
ity by composing molecules from a vocabulary
of substructures that we call molecular rationales.
These rationales are identified from molecules as
substructures that are likely responsible for each
property of interest. We then learn to expand ratio-
nales into a full molecule using graph generative
models. Our final generative model composes
molecules as mixtures of multiple rationale com-
pletions, and this mixture is fine-tuned to preserve
the properties of interest. We evaluate our model
on various drug design tasks and demonstrate sig-
nificant improvements over state-of-the-art base-
lines in terms of accuracy, diversity, and novelty
of generated compounds.

1. Introduction

The key challenge in drug discovery is to find molecules
that satisfy multiple constraints, from potency, safety, to
desired metabolic profiles. Optimizing these constraints
simultaneously is challenging for existing computational
models. The primary difficulty lies in the lack of training
instances of molecules that conform to all the constraints.
For example, for this reason, Jin et al. (2019a) reports over
60% performance loss when moving beyond the single-
constraint setting.

In this paper, we propose a novel approach to multi-
property molecular optimization. Our strategy is inspired by
fragment-based drug discovery (Murray & Rees, 2009) of-
ten followed by medicinal chemists. The idea is to start with
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Figure 1. Illustration of our rationale based generative model. To
generate a dual inhibitor against biological targets GSK3� and
JNK3, our model first identifies rationale substructures S for each
property, and then learns to compose them into a full molecule G.
Note that rationales are not provided as domain knowledge.

substructures (e.g., functional groups or later pieces) that
drive specific properties of interest, and then combine these
building blocks into a target molecule. To automate this
process, our model has to learn two complementary tasks
illustrated in Figure 1: (1) identification of the building
blocks that we call rationales, and (2) assembling multi-
ple rationales together into a fully formed target molecule.
In contrast to competing methods, our generative model
does not build molecules from scratch, but instead assem-
bles them from automatically extracted rationales already
implicated for specific properties (see Figure 1).

We implement this idea using a generative model of
molecules where the rationale choices play the role of latent
variables. Specifically, a molecular graph G is generated
from underlying rationale sets S according to:

P (G) =
X
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P (G|S)P (S) (1)
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graphs) are not provided, the model has to extract candidate
rationales from molecules with the help of a property pre-
dictor. We formulate this task as a discrete optimization
problem efficiently solved by Monte Carlo tree search. Our
rationale conditioned graph generator, P (G|S), is initially
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Step 1: rationale extraction
‣ We can use Monte Carlo Tree Search to remove all parts 

of the molecule not relevant for the property (according 
to a given property predictor) 
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et al. (2017), each edge (s, a) stores the following statistics:

• N(s, a) is the visit count of deletion a, which is used for
exploration-exploitation tradeoff in the search process.

• W (s, a) is total action value which indicates how likely
the deletion a will lead to a good rationale.

• R(s, a) = ri(s0) is the predicted property score of the
new subgraph s0 derived from deleting a from s.

Guided by these statistics, MCTS searches for rationales in
multiple iterations. Each iteration consists of two phases:

1. Forward pass: Select a path s0, · · · , sL from the root s0
to a leaf state sL with less than N atoms and evaluate its
property score ri(sL). At each state sk, an deletion ak
is selected according to the statistics in the search tree:

ak = argmax
a

W (sk, a)

N(sk, a)
+ U(sk, a) (5)

U(sk, a) = cpuctR(sk, a)

pP
b N(sk, b)

1 +N(sk, a)
(6)

where cpuct determines the level of exploration. This
search strategy is a variant of the PUCT algorithm (Rosin,
2011). It initially prefers to explore deletions with high
R(s, a) and low visit count, but asympotically prefers
deletions that are likely to lead to good rationales.

2. Backward pass: The edge statistics are updated for each
state sk. Specifically, N(sk, ak) N(sk, ak) + 1 and
W (sk, ak) W (sk, ak) + ri(sL).

In the end, we collect all the leaf states s with ri(s) � �i
and add them to the rationale vocabulary V i

S .

Multi-property Rationale For a set of M properties, we
can similarly define its rationale S [M ] by imposing M prop-
erty constraints at the same time, namely

8i : ri(S [M ]) � �i, i = 1, · · · ,M

In principle, we can apply MCTS to extract rationales from
molecules that satisfy all the property constraints. However,
in many cases there are no such molecules available. As
a result, we propose to construct rationales from single-
property rationales for each property i. Specifically, each
multi-property rationale S [M ] is a disconnected graph with
M connected components S1, · · · ,SM :

V [M ]
S = {S [M ] = S1 � · · ·� SM | Si 2 V i

S} (7)

where � means to concatenate two graphs Si and Sj . For
notational convenience, we denote both single and multi-
property rationales as S. In the rest of the paper, S is a
rationale graph with one or multiple connected components.

3.2. Graph Completion

This module is a variational autoencoder which completes a
full molecule G given a rationale S . Since each rationale S

Figure 4. Illustration of Monte Carlo tree search for molecules.
Peripheral bonds and rings are highlighted in red. In the forward
pass, the model deletes a peripheral bond or ring from each state
which has maximum Q + U value. In the backward pass, the
model updates the statistics of each state.

can be realized into many different molecules, we introduce
a latent variable z to generate diverse outputs:

P (G|S) =
Z

z
P (G|S, z)P (z)dz (8)

where P (z) is the prior distribution. Different from standard
graph generation, our graph decoder must generate graphs
that contain subgraph S. Our VAE architecture is adapted
from existing atom-by-atom generative models (You et al.,
2018b; Liu et al., 2018) to incorporate the subgraph con-
straint. For completeness, we present our architecture here:

Encoder Our encoder is a message passing network (MPN)
which learns the approximate posterior Q(z|G,S) for vari-
ational inference. Let e(au) be the embedding of atom u
with atom type au, and e(buv) be the embedding of bond
(u, v) with bond type buv . The MPN computes atom repre-
sentations {hv|v 2 G}.

{hv} = MPNe (G, {e(au)}, {e(buv)}) (9)

For simplicity, we denote the MPN encoding process as
MPN(·), which is detailed in the appendix. The atom
vectors are aggregated to represent G as a single vector
hG =

P
v hv. Finally, we sample latent vector zG from

Q(z|G,S) with mean µ(hG) and log variance ⌃(hG):

zG = µ(hG) + exp(⌃(hG)) · ✏; ✏ ⇠ N (0, I) (10)

Decoder The decoder generates molecule G according to
its breadth-first order. In each step, the model generates a
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Step 2: multi-rationale assembly
‣ Pre-train assembler: learn a graph completion model 

P(G|S) that can expand any substructure S to a 
complete molecule G 

‣ Fine tune multi-rationale completions: we use RL to 
optimize sample completions towards satisfying all the 
properties

[Jin et al. 2020]

S1:k ⇠ P (S1:k)

G ⇠ P (G|S1:k)

reward =

⇢
1, if G has all the properties
0. otherwise
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Example results
‣ Example comparison of RL based multi-criteria 

optimization methods
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Table 1. Results on molecule design with single property constraint.

Method DRD2 GSK3� JNK3
Success Novelty Diversity Success Novelty Diversity Success Novelty Diversity

GVAE + RL 55.4% 56.2% 0.858 33.2% 76.4% 0.874 57.7% 62.6% 0.832
GCPN 40.1% 12.8% 0.880 42.4% 11.6% 0.904 32.3% 4.4% 0.884

REINVENT 98.1% 28.8% 0.798 99.3% 61.0% 0.733 98.5% 31.6% 0.729
Ours 100% 84.9% 0.866 100% 76.8% 0.850 100% 81.4% 0.847

Table 2. Results on molecule design with two property constraints.

Method DRD2 + GSK3� DRD2 + JNK3 GSK3� + JNK3
Success Novelty Diversity Success Novelty Diversity Success Novelty Diversity

GVAE + RL 96.1% 0% 0.447 98.5% 0% 0.0 40.7% 80.3% 0.783
GCPN 0.1% 40% 0.793 0.1% 25% 0.785 3.5% 8.0% 0.874

REINVENT 98.7% 100% 0.584 91.6% 100% 0.533 97.4% 39.7% 0.595
Ours 100% 100% 0.866 100% 100% 0.837 100% 94.4% 0.844

Table 3. Molecule design with three property constraints.

Method DRD2 + GSK3� + JNK3
Success Novelty Diversity

GVAE + RL 0% 0% 0.0
GCPN 0% 0% 0.0
REINVENT 48.3% 100% 0.166
Ours 86.2% 100% 0.726

• Three properties: The rationale for three properties is
constructed as V DRD2

S �V GSK3�
S �V JNK3

S . In total, we
extracted 8163 different rationales for this task.

Model Setup Our model (and all baselines) are pretrained
on the same ChEMBL dataset from Olivecrona et al. (2017).
We fine-tune our model for L = 5 iterations, where each
rationale is expanded for K = 20 times.

4.1. Results

The results on all design tasks are reported in Table 1-3. On
the single-property design tasks, our model and REINVENT
demonstrate nearly perfect success rate since there is only
one constraint. We also outperform all the baselines in terms
of novelty metric. Though our diversity score is slightly
lower than GCPN, our success rate and novelty score is
much higher.

Table 2 summarizes the results on dual-property design
tasks. On the GSK3�+JNK3 task, we achieved 100% suc-
cess rate while maintaining 94.4% novelty and 0.844 di-
versity score. Meanwhile, GCPN fails to discover positive
compounds on all the tasks due to reward sparsity. GVAE +
RL fails to discover novel positives on the DRD2+GSK3�

and DRD2+JNK3 tasks because there are less than three
positive compounds available for training. Therefore it can
only learn to replicate existing positives. Our method is able
to succeed in all cases regardless of training data scarcity.

Table 3 shows the results on the three-property design task,
which is the most challenging. The difference between our
model the baselines become significantly larger. In fact,
GVAE + RL and GCPN completely fail in this task due to
reward sparsity. Our model outperforms REINVENT with
a wide margin (success rate: 86.8% versus 48.3%; diversity:
0.726 versus 0.166).

When there are multiple properties, our method significantly
outperforms GVAE + RL, which has the same generative
architecture but does not utilize rationales and generates
molecules from scratch. Thus we conclude the importance
of rationales for multi-property molecular design.

Visualization We further provide visualizations to help un-
derstand our model. In Figure 5, we plotted a t-SNE (Maaten
& Hinton, 2008) plot of the extracted rationales for GSK3�
and JNK3. For both properties, rationales mostly cover the
chemical space populated by existing positive molecules.
The generated GSK3�+JNK3 dual inhibitors mostly appear
in the place where GSK3� and JNK3 rationales overlap. In
Figure 6, we show examples of molecules generated from
dual-property rationales. Each rationale has two connected
components: one from GSK3� and the other from JNK3.

4.2. Rationale Sanity Check

While our rationales are mainly extracted for generation, it
is also important for them to be chemically relevant. In other
words, the extracted rationales should accurately explain
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Summary
‣ Molecules embody many of the key challenges in 

prediction/generation/manipulation of complex objects 

‣ While molecular design methods are rapidly becoming 
viable tools for drug discovery, many challenges remain: 
- generalizing predictions to unexplored chemical spaces 
- incorporating 3D features, physical constraints 
- explainability 
- etc.


