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Molecules = richly annotated graphs
» E.g., antibiotic (cephalosporin)

node labels edge labels substructures
(motifs)

3D information O

» Together, the features give rise to various molecular
properties (e.g., solubility, toxicity, etc)


https://en.wikipedia.org/wiki/Cephalosporin

Why interesting for ML?

» Rich, complex objects: molecules are complicated
structures, properties may depend on intricate features

» Data: big and small, heterogenous

» Estimation/inferential challenges: many high-impact
but non-trivial tasks such as prediction of chemical
properties, molecular optimization etc.
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(Daptomycin antibiotic)



Our motivation: this talk

» Deeper into molecules
- molecular property prediction (e.g., toxicity, bioactivity)
- (multi-criteria) optimization (e.g., potency, toxicity)



Our motivation: broader context

MIT Consortium (https://mipds.mit.edu/)

- 14 major pharmaceutical companies

- chemistry/chemical engineering (Jensen, Green, Jamison)
- computer science (Barzilay, Jaakkola)

Deeper into known chemistry
- extract chemical knowledge from journals, notebooks

Deeper into molecules

- molecular property prediction (e.g., toxicity, bioactivity)

- (multi-criteria) optimization (e.g., potency, toxicity)

Deeper into reactions

- forward synthesis prediction (major products of reactions)

- forward synthesis optimization (conditions, reagents,
etc.)

Deeper into making things
- retrosynthetic planning (efficient/inexpensive routes)



Automating Drug design

» Our problem: how to programmatically modify pre-cursor
molecules to have better properties
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» Key challenges:

1. representation and prediction: learn to predict molecular
properties



Graph neural networks (GNNs)

» GNNs are parameterized message passing algorithms
operating on molecular graphs, and result in atom, bond,
and graph embeddings, tailored for the end task
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» Many recent results about representational power (Xu et
al. 2019, Sato et al. 2019, Maron et al., 2019, ...)



Representational power of "GNNs”
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Representational power of "GNNs”
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» Indistinguishable graph features
- shortest/largest cycle, radius,
- presence of conjoint cycle,
- number of cycles, c-clique,
- etc.

|Garg et al. 2020]



Structural motifs: polymer
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Structural motifs: polymer
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Structural motifs: polymer
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Structural motifs: polymer

X \

O Q /H 111 O O

o @ O a0
CP\I O | N C1>\I 0

> \

Motif graph ‘  —@—




Structural motifs: polymer
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Structural motifs: polymer
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» This is a simple, two-level hierarchy; motif graph does not
encode how the substructures are attached to each other



Structural motifs: polymer
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» This is a simple, two-level hierarchy; motif graph does not
encode how the substructures are attached to each other

» We extend this to a three-level hierarchical representation
for each molecule



Fine-to-coarse graph encoding
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Is hierarchy helpful?

» A simple example on solubility; ESOL dataset (averaged
over 5 folds)

ESOL RMSE
I R GNN with basic atom features
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New Antibiotic Discovery

» If we can accurately predict molecular properties, we can
screen (select and repurpose) molecules from a large
candidate set
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» Antibiotic Discovery [Stokes et al., 2020]
- Trained a model to predict the inhibition against E. Coli
- Data: ~2000 measured compounds from Broad Institute
- Screened ~100 million possible compounds
- Tested 15 highest scoring molecules in the lab
- /7 of them validated to be inhibitive in-vitro



Automating Drug design

» Our problem: how to programmatically modify pre-cursor
molecules to have better properties
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» Key challenges:

2. generation and optimization: realize target molecules
with better properties programmatically



Optimization as graph translation

» Goal: learn to turn precursor molecules into molecules that
satisfy given design specification(s)
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» The training set consists of (source, target) molecular pairs
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» Key challenge: molecule generation



Coarse-to-fine graph generation

» We realize graphs auto-regressively, in a course to fine
manner, one substructure at a time
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[Jin et al. 2020]



Coarse-to-fine graph generation

» We realize graphs auto-regressively, in a course to fine
manner, one substructure at a time
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Coarse-to-fine graph generation

» We realize graphs auto-regressively, in a course to fine
manner, one substructure at a time
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Coarse-to-fine graph generation

» We realize graphs auto-regressively, in a course to fine
manner, one substructure at a time
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Does the hierarchy help?

» Example with polymers: 86K (76K+5K+5K)

Reconstruction Accuracy w.r.t.
Molecule Size
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[Jin et al. 2020]



graph generation: diversity

» Goal: learn to turn precursor molecules into molecules
that satisfy given design specification(s)
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» We'd like to generate a diverse set of candidate
molecules that satisfy the criteria

[Jin et al. 2019,2020]



Example results

» Single property optimization: DRD2 success % (from
inactive to active)

JT-VAE GCPN MMPA Seqg2Seq JT-G2G AtomG2G HierG2G

[Jin et al. 2020]



Example results

» Single property optimization: QED success % (QED >
0.9)

JT-VAE GCPN MMPA Seqg2Seq JT-G2G AtomG2G HierG2G

[Jin et al. 2020]



Inverse design challenge

» Many examples of molecules with a particular property

» Few instances of molecules that satisfy multiple (esp.
new) property combinations

» Challenge: How do we realize a diverse distribution of
molecules that satisfy all the criteria without any
examples of such molecules?
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Our strategy

» Step 1: rationale extraction
- carve out candidate substructures — rationales —
likely responsible for each molecular property
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Our strategy

» Step 1: rationale extraction
- carve out candidate substructures — rationales —
likely responsible for each molecular property
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» Step 2: multi-rationale assembly

- learn to assemble pieces together into a complete
molecule that satisfies all the properties
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Step 1: rationale extraction

» We can use Monte Carlo Tree Search to remove all parts
of the molecule not relevant for the property (according
to a given property predictor)
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Step 2: multi-rationale assembly

» Pre-train assembler: learn a graph completion model
P(G|S) that can expand any substructure S to a
complete molecule G

~ -
~ -
-------



Step 2: multi-rationale assembly

» Pre-train assembler: learn a graph completion model
P(G|S) that can expand any substructure S to a
complete molecule G
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» Fine tune multi-rationale completions: we use RL to
optimize sample completions towards satisfying all the
properties

S1.x ~ P(S1.x) sample a candidate rationale set
G ~ P(G|Sy.;) sample graph completion

1, it G has all the properties evaluate

reward = { :
0. otherwise [Jin et al. 2020]



Example results

» Example comparison of RL based multi-criteria
optimization methods

Method DRD2 + GSK33 + JNK3
Success Novelty  Diversity
GVAE + RL 0% 0% 0.0
GCPN 0% 0% 0.0
REINVENT 48.3% 100 % 0.166
Ours 36.2 % 100 % 0.726

[Jin et al. 2020]



» Molecules embody many of the key challenges in
prediction/generation/manipulation of complex objects

» While molecular design methods are rapidly becoming

viable tools for drug discovery, many challenges remain:
- generalizing predictions to unexplored chemical spaces
- incorporating 3D features, physical constraints

- explainability

- etc.



