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Relation prediction on graphs
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Example: Knowledge graph completion
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Key idea: Automatically expand 
and complete existing 
knowledge bases.

Applications in e-commerce, 
medicine, materials science…



Example: Computational drug design
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Example tasks:
• Repurposing
• Side effect prediction
• Polypharmacy 

Image credit: Marinka Zitnik



Example: Content recommendation
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Content 
recommendation 
is link prediction!
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Transductive relation prediction
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Transductive relation prediction
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Limitations of transductive relation prediction

§ Problematic for production systems
§ Need to re-train to deal with new nodes (e.g., entities, products)
§ Predictions can become stale.

§ Too many parameters
§ Most transductive approaches have O(|V|) space complexity.

§ Biases model development
§ Focus on “embedding”-based methodologies.
§ Static and unrepresentative benchmarks
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Inductive learning: multiple graphs

William L. Hamilton, McGill University and Mila 9

Example applications: High-throughput interactomics, recommender systems

train on set of graphs generalize to an entirely new graph



Inductive learning: evolving data
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train at t=0 new node arrives at t=1
make prediction for new node at 
t=2

?

Example applications: Knowledge graph completion, recommender systems, …



Inductive learning via graph neural networks
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Examples: GraphSAGE (Hamilton et al., 2017) 



Significant challenges remain

§ Inductive learning without node features

§ Multi-relational data (i.e., knowledge graphs)

§ Theoretical understanding of inductive learning

§ Few shot learning
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INDUCTIVE LEARNING ON 
KNOWLEDGE GRAPHS

Part I
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INDUCTIVE LEARNING ON 
KNOWLEDGE GRAPHS

Part I
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Komal K. Teru, Etienne Denis, William L. Hamilton. Inductive Relation
Prediction by Subgraph Reasoning”. (Under Review). 2020. 



Inductive knowledge graph completion
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Training graph Test graph



Inductive knowledge graph completion
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Training graph Test graph



Embeddings vs. rules
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§ Embeddings:

§ Neighborhood-centric

§ Exploit homophily

§ Entity-dependent



Embeddings vs. rules
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§ Embeddings:

§ Neighborhood-centric

§ Exploit homophily

§ Entity dependent

§ Rules:

§ Entity independent

§ Exploit relational semantics



Challenges for inductive learning on KGs
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§ Neural rule induction 
methods outperformed 
by statistical approaches

§ No features on nodes



GraIL: A new approach using GNNs
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§ Idea 1: Apply graph neural networks (GNNs) on 
the subgraphs surrounding candidate relations.

§ Idea 2: Avoid explicit rule induction.

§ Idea 3: Ensure model is expressive enough to 
capture logical rules. 



GraIL: Relation prediction via subgraph reasoning
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1. Extract subgraph around 
candidate relation

2. Assign structural labels 
to nodes

3. Run GNN on the 
extracted subgraph



GNN architecture
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Neural message-passing approach



GNN architecture
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Neural message-passing approach

Separately aggregate across 
different types of relations

Learn a relation-specific 
transformation matrix

Use attention to weigh 
information coming from 

different neighbors



GNN architecture
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Neural message-passing approach

Information aggregated from 
the neighborhood

Information from the nodes embedding 
at the previous layer



GraIL can learn logical rules
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Theorem (Informally): GraIL can learn any logical rule of the form:

These “path-based” rules are the foundation of most state-of-
the-art rule induction systems. 

Example of such a rule:



State-of-the-art inductive performance 
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• Constructed inductive versions of three standard benchmarks.
• Sampled mutually exclusive subgraphs of varying sizes
• Tested four inductive datasets per each benchmark.

Table: AUC-PR results on inductive relation prediction



State-of-the-art inductive performance 
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• Compared against state-of-the-art neural rule induction methods
• Also compared against the best statistical induction approach.

Table: AUC-PR results on inductive relation prediction



State-of-the-art inductive performance 
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• Key finding: GraIL outperforms all previous approaches on all
datasets (analgous results for hits@k)

Table: AUC-PR results on inductive relation prediction



Ensembling in the transductive setting
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Table: Ensemble AUC-PR results on WN18RR
Each entry is a pair-wise 

ensemble of two methods



Ensembling in the transductive setting
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Table: Ensemble AUC-PR results on WN18RR
Each entry is a pair-wise 

ensemble of two methods

GraIL has the lowest 
performance on its own



Ensembling in the transductive setting
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Table: Ensemble AUC-PR results on WN18RR
Each entry is a pair-wise 

ensemble of two methods

GraIL has the lowest 
performance on its own…

But ensembling with GraIL
leads to the best performance



Architecture details are important!
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Table: Ablation study AUC-PR resultsNaïve subgraph extraction 
causes severe overfitting

Our node labelling and 
attention schemes are crucial 
for the theory and for strong 

performance.



FEW SHOT LEARNING ON GRAPHS
Part II
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FEW SHOT LEARNING ON GRAPHS
Part II
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Avishek Joey Bose, Ankit Jain, Piero Molino, William L Hamilton. Meta-
Graph: Few Shot Link Prediction via Meta Learning. (Under Review). 2020. 



Few shot relation prediction

§ In many applications we have:
§ Multiple graphs sampled from related domains
§ Very few training edges
§ Desire for fast adaption

§ Examples:
§ Different locales for recommender systems
§ High-throughput biological applications
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Few shot relation prediction
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Toronto VancouverMontreal



Meta learning on graphs

§ Rather than learning on a single graph…
§ We want to learn about the “meta” properties of 

graphs from a domain, so that we can
1. Leverage information from multiple graphs
2. Overcome small amounts of training data
3. Achieve fast adaption
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Meta-Graph Overview
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Local generative model
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§ Model each individual graph using a variational graph 
autoencoder (Kipf & Welling 2016):



Learning a graph signature
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Graph signature GNN 
maps the training graph 

to a parameter 
initialization for the local 

link prediction model



Leveraging second-order gradients
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Graph signature GNN is 
updated via second-

order gradient descent 
to optimize for few-shot 

performance



Meta-Graph and MAML
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§ Meta-Graph without the 
graph signature is equivalent 
to MAML on graphs.

§ The graph signature allows 
us to condition our GNN 
initialization on the input.



Improved few shot learning
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Table: AUC results on 5-shot learning on test graphs

FirstMM DBPPI

24 protein-protein 
interaction networks 
from different tissues

41 point-cloud graphs 
from different robotics 

experiments

72 ego citation 
networks



Improved few shot learning
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Table: AUC results on 5-shot learning on test graphs

FirstMM DBPPI

Varied the % of edges 
used for training the 

models



Improved few shot learning
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Table: AUC results on 5-shot learning on test graphs

FirstMM DBPPI

Meta-Graph with and 
w/o signature function.

Inductive baseline with 
no finetuning

Naïve fine-tuning 
baseline.



Improved few shot learning

William L. Hamilton, McGill University and Mila 47

Table: AUC results on 5-shot learning on test graphs

FirstMM DBPPI

Meta-Graph consistently 
outperforms baselines.

Achieves very fast
convergence through
the signature function.



Improved accuracy at convergence!
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Table: AUC results after training to convergence on test graphs



Improved accuracy at convergence!
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Table: AUC results after training to convergence on test graphs

Additional non-GNN baselines from the
literate.



Improved accuracy at convergence!

William L. Hamilton, McGill University and Mila 50

Table: AUC results after training to convergence on test graphs

Meta-graph again consistently improves 
compared to all the baselines



EVALUATING LOGICAL 
GENERALIZATION IN GNNS

Part III
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Koustuv Sinha, Shagun Sodhani, Joelle Pinear, William L Hamilton. Evaluating 
Logical Generalization in Graph Neural Networks. (Under Review). 2020. 



When do we expect GNNs to generalize?

§ Inductive and few-shot settings presuppose 
similarity between train/test graphs.

§ How true is this in practice?

§ How does the distribution of train/test graphs 
impact performance?
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GraphLog: A synthetic benchmark

§ Idea: Synthetically create 
KGs with different 
properties/overlap.

§ Evaluate GNNs in multi-
task, few-shot, and 
continual learning setups. 
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Some findings so far

1. Enforcing modularity in GNN architectures improves 
generalization.

2. Diversity during training improves generalization.

3. All models exhibit catastrophic forgetting.
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GraphLog: A synthetic benchmark

Provides a flexible and
extendable testbed to probe 
the limits of GNNs for logical 

reasoning.
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