Meta Learning and Logical Induction on Graphs

William L. Hamilton

Assistant Professor at McGill University and Mila – Al Institute of Quebec CIFAR Canada Al Chair

Relation prediction on graphs

Example: Knowledge graph completion

Key idea: Automatically expand and complete existing knowledge bases.

Applications in e-commerce, medicine, materials science...

Example: Computational drug design

Example tasks:

- Repurposing
- Side effect prediction
- Polypharmacy

Image credit: Marinka Zitnik

Example: Content recommendation

Content recommendation is link prediction!

Transductive relation prediction

Transductive relation prediction

Limitations of transductive relation prediction

Problematic for production systems

- Need to re-train to deal with new nodes (e.g., entities, products)
- Predictions can become stale.
- Too many parameters
 - Most transductive approaches have O(|V|) space complexity.
- Biases model development
 - Focus on "embedding"-based methodologies.
 - Static and unrepresentative benchmarks

Inductive learning: multiple graphs

Example applications: High-throughput interactomics, recommender systems

Inductive learning: evolving data

Example applications: Knowledge graph completion, recommender systems, ...

Inductive learning via graph neural networks

Examples: GraphSAGE (Hamilton et al., 2017)

William L. Hamilton, McGill University and Mila

Significant challenges remain

- Inductive learning without node features
- Multi-relational data (i.e., knowledge graphs)
- Theoretical understanding of inductive learning
- Few shot learning

Part I INDUCTIVE LEARNING ON KNOWLEDGE GRAPHS

Part I INDUCTIVE LEARNING ON KNOWLEDGE GRAPHS

Komal K. Teru, Etienne Denis, William L. Hamilton. *Inductive Relation Prediction by Subgraph Reasoning*". (Under Review). 2020.

Inductive knowledge graph completion

Inductive knowledge graph completion

Test graph

William L. Hamilton, McGill University and Mila

Embeddings vs. rules

- Embeddings:
 - Neighborhood-centric
 - Exploit homophily
 - Entity-dependent

Embeddings vs. rules

Embeddings:

- $(X, \texttt{lives_in}, Y) \leftarrow$
- Neighborhood-centric $\exists Z.(X, \mathtt{spouse_of}, Z) \land (Z, \mathtt{lives_in}, Y)$
- Exploit homophily
- Entity dependent
- **Rules:**
 - Entity independent
 - Exploit relational semantics

Challenges for inductive learning on KGs

 Neural rule induction methods outperformed by statistical approaches

No features on nodes

$$(X,\texttt{lives_in},Y) \leftarrow \\ \exists Z.(X,\texttt{spouse_of},Z) \land (Z,\texttt{lives_in},Y)$$

GralL: A new approach using GNNs

 Idea 1: Apply graph neural networks (GNNs) on the subgraphs surrounding candidate relations.

Idea 2: Avoid explicit rule induction.

 Idea 3: Ensure model is expressive enough to capture logical rules.

GralL: Relation prediction via subgraph reasoning

1. Extract subgraph around candidate relation

2. Assign structural labels to nodes

3. Run GNN on the extracted subgraph

GNN architecture

Neural message-passing approach

$$\mathbf{a}_{t}^{k} = \operatorname{AGGREGATE}^{k} \left(\left\{ \mathbf{h}_{s}^{k-1} : s \in \mathcal{N}(t) \right\}, \mathbf{h}_{t}^{k-1} \right), \\ \mathbf{h}_{t}^{k} = \operatorname{COMBINE}^{k} \left(\mathbf{h}_{t}^{k-1}, \mathbf{a}_{t}^{k} \right)$$

GNN architecture

Neural message-passing approach

$$\begin{aligned} \mathbf{a}_{t}^{k} &= \operatorname{AGGREGATE}^{k} \left(\left\{ \mathbf{h}_{s}^{k-1} : s \in \mathcal{N}(t) \right\}, \mathbf{h}_{t}^{k-1} \right), \\ \mathbf{h}_{t}^{k} &= \operatorname{COMBINE}^{k} \left(\mathbf{h}_{t}^{k-1}, \mathbf{a}_{t}^{k} \right) \end{aligned}$$

 $\mathbf{a}_t^k = \sum_{r=1}^R \sum_{s \in \mathcal{N}_r(t)}$

Separately aggregate across different types of relations

Learn a relation-specific transformation matrix

$$\left| \alpha_{rr_t st}^k \mathbf{W}_r^k \mathbf{h}_s^{k-1} \right|$$

Use attention to weigh information coming from different neighbors

William L. Hamilton, McGill University and Mila

GNN architecture

Neural message-passing approach

$$\mathbf{a}_{t}^{k} = \operatorname{AGGREGATE}^{k} \left(\left\{ \mathbf{h}_{s}^{k-1} : s \in \mathcal{N}(t) \right\}, \mathbf{h}_{t}^{k-1} \right), \\ \mathbf{h}_{t}^{k} = \operatorname{COMBINE}^{k} \left(\mathbf{h}_{t}^{k-1}, \mathbf{a}_{t}^{k} \right)$$

Information aggregated from the neighborhood

$$\mathbf{h}_{t}^{k} = \operatorname{ReLU}\left(\mathbf{W}_{self}^{k}\mathbf{h}_{t}^{k-1} + \mathbf{a}_{t}^{k}\right)$$

Information from the nodes embedding at the previous layer

GralL can learn logical rules

Theorem (Informally): GralL can learn any logical rule of the form:

$$r_t(X,Y) \leftarrow \exists Z_1, ..., Z_k.r_1(X,Z_1) \land r_2(Z_1,Z_2) \land ... \land r_k(Z_{k-1},Y)$$

Example of such a rule: $(X, \texttt{lives_in}, Y) \leftarrow \exists Z.(X, \texttt{spouse_of}, Z) \land (Z, \texttt{lives_in}, Y)$

These "path-based" rules are the foundation of most state-ofthe-art rule induction systems.

State-of-the-art inductive performance

- Constructed inductive versions of three standard benchmarks.
- Sampled mutually exclusive subgraphs of varying sizes
- Tested four inductive datasets per each benchmark.

		10.0											
		WN	18RR			FB15	k-237		NELL-995				
	v1	v2	v3	v4	v1	v2	v3	v4	v1	v2	v3	v4	
Neural-LP	86.02	83.78	62.90	82.06	69.64	76.55	73.95	75.74	64.66	83.61	87.58	85.69	
DRUM	86.02	84.05	63.20	82.06	69.71	76.44	74.03	76.20	59.86	83.99	<u>87.71</u>	<u>85.94</u>	
RuleN	90.26	89.01	<u>76.46</u>	<u>85.75</u>	75.24	88.70	91.24	<u>91.79</u>	<u>84.99</u>	88.40	87.20	80.52	
GraIL	94.32	94.18	85.80	92.72	84.69	90.57	91.68	94.46	86.05	92.62	93.34	87.50	

Table: AUC-PR results on inductive relation prediction

State-of-the-art inductive performance

- Compared against state-of-the-art neural rule induction methods
- Also compared against the best statistical induction approach.

		Iau										
		WN	18RR			FB15	k-237		NELL-995			
	v1	v2	v3	v4	v 1	v2	v3	v4	v 1	v2	v3	v4
Neural-LP	86.02	83.78	62.90	82.06	69.64	76.55	73.95	75.74	64.66	83.61	87.58	85.69
DRUM	86.02	84.05	63.20	82.06	69.71	76.44	74.03	76.20	59.86	83.99	<u>87.71</u>	<u>85.94</u>
RuleN	<u>90.26</u>	89.01	76.46	<u>85.75</u>	75.24	88.70	91.24	<u>91.79</u>	<u>84.99</u>	88.40	87.20	80.52
GraIL	94.32	94.18	85.80	92.72	84.69	90.57	91.68	94.46	86.05	92.62	93.34	87.50

Table: AUC-PR results on inductive relation prediction

State-of-the-art inductive performance

Key finding: GralL outperforms all previous approaches on all datasets (analgous results for hits@k)

		Tab										
		WN	18RR			FB15	k-237		NELL-995			
	v 1	v2	v3	v4	v 1	v2	v3	v4	v 1	v2	v 3	v4
Neural-LP	86.02	83.78	62.90	82.06	69.64	76.55	73.95	75.74	64.66	83.61	87.58	85.69
DRUM	86.02	84.05	63.20	82.06	69.71	76.44	74.03	76.20	59.86	83.99	<u>87.71</u>	<u>85.94</u>
RuleN	<u>90.26</u>	<u>89.01</u>	<u>76.46</u>	<u>85.75</u>	<u>75.24</u>	<u>88.70</u>	<u>91.24</u>	<u>91.79</u>	<u>84.99</u>	88.40	87.20	80.52
GraIL	94.32	94.18	85.80	92.72	84.69	90.57	91.68	94.46	86.05	92.62	93.34	87.50

Table: ALIC-PR results on inductive relation prediction

Ensembling in the transductive setting

Each entry is a pair-wise ensemble of two methods

Table: Ensemble AUC-PR results on WN18RR

	TransE	DistMult	ComplEx	RotatE	GraIL
Т	93.73	93.12	92.45	93.70	94.30
D		93.08	93.12	93.16	95.04
С			92.45	92.46	94.78
R				93.55	94.28
G					90.91

Ensembling in the transductive setting

Each entry is a pair-wise ensemble of two methods

GralL has the lowest performance on its own

Table: Ensemble AUC-PR results on WN18RR

	TransE	DistMult	ComplEx	RotatE	GraIL
Т	93.73	93.12	92.45	93.70	94.30
D		93.08	93.12	93.16	95.04
С			92.45	92.46	94.78
R				93.55	94.28
G					90.91

Ensembling in the transductive setting

Each entry is a pair-wise ensemble of two methods

GralL has the lowest performance on its own...

But ensembling with GralL leads to the best performance

Table: Ensemble AUC-PR results on WN18RR

	TransE	DistMult	ComplEx	RotatE	GraIL
Т	93.73	93.12	92.45	93.70	94.30
D		93.08	93.12	93.16	95.04
С			92.45	92.46	94.78
R				93.55	94.28
G					90.91

Architecture details are important!

Naïve subgraph extraction causes severe overfitting

Our node labelling and attention schemes are crucial for the theory and for strong performance. Table: Ablation study AUC-PR results

	FB (v3)	NELL (v3)
GraIL	91.68	93.34
GraIL w/o enclosing subgraph	84.25	85.89
GraIL w/o node labeling scheme	82.07	84.46
GraIL w/o attention in GNN	90.27	87.30

Part II FEW SHOT LEARNING ON GRAPHS

William L. Hamilton, McGill University and Mila

Part II FEW SHOT LEARNING ON GRAPHS

Avishek Joey Bose, Ankit Jain, Piero Molino, William L Hamilton. *Meta-Graph: Few Shot Link Prediction via Meta Learning.* (Under Review). 2020.

Uber Ai Labs

Few shot relation prediction

- In many applications we have:
 - Multiple graphs sampled from related domains
 - Very few training edges
 - Desire for fast adaption

- Examples:
 - Different locales for recommender systems
 - High-throughput biological applications

Few shot relation prediction

Meta learning on graphs

- Rather than learning on a single graph...
- We want to learn about the "meta" properties of graphs from a domain, so that we can
 - 1. Leverage information from multiple graphs
 - 2. Overcome small amounts of training data
 - 3. Achieve fast adaption

Meta-Graph Overview

William L. Hamilton, McGill University and Mila

Local generative model

 Model each individual graph using a variational graph autoencoder (Kipf & Welling 2016):

Learning a graph signature

Graph signature GNN maps the training graph to a parameter initialization for the local link prediction model

Leveraging second-order gradients

Graph signature GNN is updated via secondorder gradient descent to optimize for few-shot performance

Meta-Graph and MAML

- Meta-Graph without the graph signature is equivalent to MAML on graphs.
- The graph signature allows us to condition our GNN initialization on the input.

MAML

Meta-Graph

Table: AUC results on 5-shot learning on test graphs

24 protein-protein interaction networks from different tissues

41 point-cloud graphs from different robotics experiments

> 72 ego citation networks

	PPI			Fi	rstMM E)B	Ego-AMINER			
Edges	10%	20%	30%	10%	20%	30%	10%	20%	30%	
Meta-Graph	0.795	0.824	0.847	0.773	0.767	0.737	0.620	0.585	0.732	
MAML	0.728	0.809	0.804	0.763	0.750	0.750	0.500	0.504	0.500	
No Finetune	0.600	0.697	0.717	0.708	0.680	0.709	0.500	0.500	0.500	
Finetune	0.582	0.727	0.774	0.705	0.695	0.704	0.608	0.675	0.713	

|--|

Varied the % of edges used for training the models

Table: AUC results on 5-shot learning on test graphs

Meta-Graph with and w/o signature function.

Inductive baseline with no finetuning

Naïve fine-tuning baseline.

	Table: AUC	resul [:]	ts on \sharp	5-shot	learni	ng on	test g	<u>raphs</u>		
			PPI		Fi	rstMM [)B	Ege	o-AMIN	ER
Meta-Graph consistently	Edges	10%	20%	30%	10%	20%	30%	10%	20%	30%
outperforms baselines	Meta-Graph	0.795	0.824	0.847	0.773	0.767	0.737	0.620	0.585	0.732
outpenonnis paseimes.	MAML	0.728	0.809	0.804	0.763	0.750	0.750	0.500	0.504	0.500
	No Finetune	0.600	0.697	0.717	0.708	0.680	0.709	0.500	0.500	0.500
	Finetune	0.582	0.727	0.774	0.705	0.695	0.704	0.608	0.675	0.713

Achieves very fast convergence through the signature function.

Improved accuracy at convergence!

Table: AUC results after training to convergence on test graphs

	PPI			Fi	rstMM E)B	Ego-AMINER		
Edges	10%	20%	30%	10%	20%	30%	10%	20%	30%
Meta-Graph	0.795	0.833	0.845	0.782	0.786	0.783	0.626	0.738	0.786
MAML	0.770	0.815	0.828	0.776	0.782	0.793	0.561	0.662	0.667
Random	0.578	0.651	0.697	0.742	0.732	0.720	0.500	0.500	0.500
No Finetune	0.738	0.786	0.801	0.740	0.710	0.734	0.548	0.621	0.673
Finetune	0.752	0.801	0.821	0.752	0.735	0.723	0.623	0.691	0.723
Adamic	0.540	0.623	0.697	0.504	0.519	0.544	0.515	0.549	0.597
Deepwalk	0.664	0.673	0.694	0.487	0.473	0.510	0.602	0.638	0.672

Improved accuracy at convergence!

Table: AUC results after training to convergence on test graphs

		PPI			rstMM E)B	Ego-AMINER		
Edges	10%	20%	30%	10%	20%	30%	10%	20%	30%
Meta-Graph	0.795	0.833	0.845	0.782	0.786	0.783	0.626	0.738	0.786
MAML	0.770	0.815	0.828	0.776	0.782	0.793	0.561	0.662	0.667
Random	0.578	0.651	0.697	0.742	0.732	0.720	0.500	0.500	0.500
No Finetune	0.738	0.786	0.801	0.740	0.710	0.734	0.548	0.621	0.673
Finetune	0.752	0.801	0.821	0.752	0.735	0.723	0.623	0.691	0.723
Adamic	0.540	0.623	0.697	0.504	0.519	0.544	0.515	0.549	0.597
Deepwalk	0.664	0.673	0.694	0.487	0.473	0.510	0.602	0.638	0.672

Additional non-GNN baselines from the literate.

Improved accuracy at convergence!

Table: AUC results after training to convergence on test graphs

	PPI			FirstMM DB			Ego-AMINER		
Edges	10%	20%	30%	10%	20%	30%	10%	20%	30%
Meta-Graph	0.795	0.833	0.845	0.782	0.786	0.783	0.626	0.738	0.786
MAML	0.770	0.815	0.828	0.776	0.782	0.793	0.561	0.662	0.667
Random	0.578	0.651	0.697	0.742	0.732	0.720	0.500	0.500	0.500
No Finetune	0.738	0.786	0.801	0.740	0.710	0.734	0.548	0.621	0.673
Finetune	0.752	0.801	0.821	0.752	0.735	0.723	0.623	0.691	0.723
Adamic	0.540	0.623	0.697	0.504	0.519	0.544	0.515	0.549	0.597
Deepwalk	0.664	0.673	0.694	0.487	0.473	0.510	0.602	0.638	0.672

Meta-graph again consistently improves compared to all the baselines

Part III EVALUATING LOGICAL GENERALIZATION IN GNNS

Koustuv Sinha, Shagun Sodhani, Joelle Pinear, William L Hamilton. *Evaluating Logical Generalization in Graph Neural Networks*. (Under Review). 2020.

facebook research

When do we expect GNNs to generalize?

 Inductive and few-shot settings presuppose similarity between train/test graphs.

How true is this in practice?

How does the distribution of train/test graphs impact performance?

GraphLog: A synthetic benchmark

- Idea: Synthetically create KGs with different properties/overlap.
 - Evaluate GNNs in multitask, few-shot, and continual learning setups.

Some findings so far

1. Enforcing modularity in GNN architectures improves generalization.

2. Diversity during training improves generalization.

3. All models exhibit catastrophic forgetting.

GraphLog: A synthetic benchmark

Provides a flexible and extendable testbed to probe the limits of GNNs for logical reasoning.

Acknowledgements

Students

- Joey Bose (PhD)
- Koustuv Sinha (PhD)
- Zichao Yan (PhD)
- Priyesh Vijayan (PhD)
- Devendra Singh (PhD)
- Dora Jambor (MSc)
- Paul Wu (MSc)
- Komal Kumar (MSc)
- Jin Dong (MSc)
- Ashutosh Adhikari (Intern)

Collaborators:

- Joelle Pineau
- Shagun Sodhani
- Ankit Jain
- Piero Molino

