## Computational protein design using Geometric Deep Learning

Michael Bronstein

Imperial College London United Kingdom

Twitter United Kingdom



Joint work with B. Correia, P. Gainza, F. Sverisson (EPFL), F. Monti (USI/Twitter), E. Rodolà (Sapienza)

#### nature.com/nmeth

February 2020 Vol. 17 No. 2

# nature methods



Main cover line here Localization microscopy twice as precise A cryo-EM-based structural proteomics approach Time-resolved crystallography at the European XFEL Magnetic resonance at high speed









#### Protein design = inverse folding



### Lock-key model



#### Applications: cancer immunotherapy



#### Representation



## Geometric deep learning on surfaces

#### Intrinsic vs extrinsic convolution



Extrinsic



Intrinsic

Masci et al. 2015

#### MoNet architecture

- Vertex-wise *d*-dimensional features: *n*×*d* matrix **X**
- Local coordinates  $\mathbf{u}_{ij}$  around i
- Local weights w<sub>1</sub>(u), ..., w<sub>L</sub>(u) w.r.t. u, e.g.
  Gaussians:

$$w_{\ell}(\mathbf{u}) = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_{\ell})^{\mathrm{T}}\boldsymbol{\Sigma}_{\ell}^{-1}(\mathbf{u} - \boldsymbol{\mu}_{\ell})\right)$$

• **Spatial convolution** with filter *g*:

$$\mathbf{x}_{i}^{\prime} = \frac{\sum_{\ell=1}^{L} g_{\ell} \sum_{j=1}^{n} w_{\ell}(\mathbf{u}_{ij}) \mathbf{x}_{j}}{\sum_{\ell=1}^{L} g_{\ell} \sum_{j=1}^{n} w_{\ell}(\mathbf{u}_{ij})}$$

Monti, Boscaini, Masci, Rodolà, Svoboda, B 2017



#### Molecular surface interaction fingerprinting (MaSIF)



#### MaSIF architecture



#### **MaSIF** applications





Pocket classification MaSIF-ligand



Fast PPI search MaSIF-search

#### Example: binder design for cancer immunotherapy target



### MaSIF-site

Interface site prediction

#### MaSIF-site: Prediction of PPI sites

- Point-wise classification problem
- Training set: interface and non-interface points
- Performance criterion: ROC AUC
- Multiple datasets (PRISM, PDBBind, SAbDab antibody:antigen, ZDock)
- Total 3362 crystallized proteins (90% training / 10% testing)

#### MaSIF-site: Prediction of PPI sites (ubiquitine hydrolase)



#### MaSIF-site performance



Gainza, Sverisson, Monti, Rodolà, B, Correia 2019

#### MaSIF-site: ablation study



ROC AUC of networks trained with different subsets of features: only geometric (Geom), location of free electrons/proton donors (hbond), Poisson-Boltzmann electrostatics (elec), hydropathy index (hpathy), and all features (G+C).

#### MaSIF-site: Prediction of PPI sites (FFL001 epitope scaffold)



Gainza, Sverisson, Monti, Rodolà, B, Correia 2019

#### MaSIF-site: Prediction of PPI sites (HB36 influenza inhibitors)



#### MaSIF-site: Prediction of PPI sites (self-assembling cage proteins)



Designed self-assembling nanocage protein (PDB id: 3VCD) vs. the wild type scaffold (PDB id: 3N79)

#### MaSIF-site: going deeper





#### MaSIF-site performance



Performance comparison on different subsets of proteins



Performance comparison on different subsets of proteins



Comparison between MaSIF-site and SPPIDER on 59 transient interactions on a point-by-point basis (distribution of predicted interface points for true and false interface points)





### MaSIF-ligand

**Pocket classification** 

#### Pocket classification



Structures of the seven cofactors that bind proteins considered for the prediction task

#### MaSIF-ligand: pocket classification

- 7-class point-wise labelling problem
- Training set: proteins interacting with different small molecules
- Total 1459 structures (72% training / 8% validation / 20% testing)
- Careful design of the training and testing sets based on sequence homology

#### Classification of ligand binding sites



### Confusion matrix of ligand specificity on a MaSIF-ligand trained with all features

Gainza, Sverisson, Monti, Rodolà, B, Correia 2019



Balanced accuracy of the prediction of the specificity of binding sites using Geometric, Chemical, and Geometric+Chemical features

#### Classification of ligand binding



Example of a protein fold that recognizes two similar ligands and yet is correctly predicted. A bacterial dehydrogenase in the test set binds to NAD (PDB id: 2O4C), while its closest structural homologue in the training is a mammalian oxidoreductase (PDB id: 2YJZ), which binds to NADP.

Gainza, Sverisson, Monti, Rodolà, B, Correia 2019; Yin et al. 2009 (GIF)

#### Classification of ligand binding



Example of a protein fold that recognizes two similar ligands and yet is correctly predicted. A bacterial dehydrogenase in the test set binds to NAD (PDB id: 2O4C), while its closest structural homologue in the training set is a mammalian oxidoreductase (PDB id: 2YJZ), which binds to NADP.

Gainza, Sverisson, Monti, Rodolà, B, Correia 2019; Yin et al. 2009 (GIF)

### MaSIF-search

Ultra-fast PPI search

#### MaSIF-search: PPI prediction

- Local descriptor indicative of interaction (binding)
- Siamese architecture
- Training set: triplets (x,x<sup>+</sup>,x<sup>-</sup>) where x,x<sup>+</sup> are interacting (positives) and x,x<sup>-</sup> are non-interacting (negatives)
- Triplet loss, d-prime loss
- Total 6001 PPIs (80% training / 20% testing)

#### Local descriptors for PPI prediction



#### PPI prediction using local surface descriptors



Distribution of descriptor distances between interacting (yellow) and non-interacting (blue) patches in the test set (training/testing with Geometric+Chemical features)

Gainza, Sverisson, Monti, Rodolà, B, Correia 2019; Yin et al. 2009 (GIF)



Performance (ROC AUC) using Geometric, Chemical, and Geometric+Chemical features

#### Example: binder design for cancer immunotherapy target





Experimental results: work in progress



Experimental results: work in progress



#### Large-scale docking

Table 1 | Results for large-scale docking benchmark benchmarkfor PatchDock, MaSIF-search (with multiple numbersof decoys), ZDock and ZDock+ZRank2 on bound (holo)complexes

| Method                         | Number of solved<br>complexes in the top |    |    | Time (min) |
|--------------------------------|------------------------------------------|----|----|------------|
|                                | 100                                      | 10 | 1  |            |
| MaSIF-search decoys=100        | 37                                       | 36 | 30 | 4          |
| MaSIF-search decoys = 2,000    | 67                                       | 56 | 43 | 39         |
| PatchDock                      | 43                                       | 32 | 21 | 2,743      |
| ZDock                          | 58                                       | 36 | 18 | 134,934    |
| ZDock+ZRank2<br>decoys=200,000 | 77                                       | 63 | 45 | 159,902    |

No. of solved complexes in the top, number of target-binder complexes within 5 Å iRMSD found in the top 100, top ten or top one (for holo cases) or top 1,000, top 100 and top ten (for apo cases). Time (min), CPU time in minutes for each program, which excludes precomputation time for MaSIF-search.

# Table 2 | Results for large-scale docking benchmark benchmarkfor PatchDock, MaSIF-search (with multiple numbers of<br/>decoys), ZDock and ZDock+ZRank2 on unbound (apo)<br/>complexes

| Method                        | Number of solved<br>complexes in the top |     |    | Time (min) |
|-------------------------------|------------------------------------------|-----|----|------------|
|                               | 1,000                                    | 100 | 10 |            |
| MaSIF-search decoys = $2,000$ | 17                                       | 7   | 2  | 16         |
| PatchDock                     | 11                                       | 4   | 1  | 560        |
| ZDOCK                         | 17                                       | 13  | 5  | 13,174     |
| ZDock+ZRank2<br>decoys=80,000 | 23                                       | 12  | 5  | 16,866     |

Gainza, Sverisson, Monti, Rodolà, B, Correia 2019; Duhovny et al. 2002 (PatchDock); Pierce et al. 2011 (ZDOCK); Pierce, Weng 2008 (ZRank2)

#### Conclusions

- Novel Geometric DL toolset for protein science
- Task-specific data-driven descriptors for protein structure and functionality
- Significantly more accurate and faster than previous methods
- Independent of sequence ("evolutionary history")
- Challenge: Bound vs. unbound proteins
- Experimental validation (crystal structure, in vitro, in vivo)

## Thank you!