Reasoning in Knowledge Graphs using Deep Learning

Joint work with H. Ren, W. Hamilton, R. Ying, J. You, M. Zitnik, D. Jurafsky

Jure Leskovec

CHAN ZUCKERBERG BIOHUB

Knowledge Graphs

Many Domains

Jure Leskovec, Stanford University

Heterogeneous Networks

Knowledge Graphs

- Knowledge Graphs are heterogenous graphs
 - Multiple types of entities and relations exist
- Facts are represented as triples (h,r,t)
 - ('Alice', 'friend_with', 'Bob')
 - ('Paris', 'is_a', 'City')

Traditional Tasks

Knowledge Graph Competion/Link Prediction

- Predict the missing head or tail for a given triple (h,r,t)
- Example:

Barack Obama BornIn United States

Barack Obama Nationality American

Our work: Beyond Link Prediction

Our goal: Reason over the knowledge graph using complex multi-hop queries

 Conjunctive queries: Subset of first-order logic with existential quantifier (3) and conjunction (Λ)

"Where did all Canadian citizens with Turing Award graduate?"

Answering Queries in KGs

Why is it Hard?

- Heterogeneity: Lack of schema, or quite large schema (65K for DBpedia)
- Noise and incompleteness
- Uncertainty
- Massive size
- Fast query time

PubID	Publisher	PubAddress
03-4472822	Random House	123 4th Street, New York
04-7733903	Wiley and Sons	45 Lincoln Blvd, Chicago
03-4859223	O'Reilly Press	77 Boston Ave, Cambridge
03-3920886	City Lights Books	99 Market, San Francisco

 AuthorID	AuthorName	AuthorBDay
345-28-2938	Haile Selassie	14-Aug-92
392-48-9965	Joe Blow	14-Mar-15
454-22-4012	Sally Hemmings	12-Sept-70
663-59-1254	Hannah Arendt	12-Mar-06

ISBN	AuthorID	PubID	Date	Title
1-34532-482-1	345-28-2938	03-4472822	1990	Cold Fusion for Dummies
1-38482-995-1	392-48-9965	04-7733903	1985	Macrame and Straw Tying
2-35921-499-4	454-22-4012	03-4859223	1952	Fluid Dynamics of Aquaducts
1-38278-293-4	663-59-1254	03-3920886	1967	Beads, Baskets & Revolution

Relational Data (Structured) vs.

Heterogeneous Graph Data (Semi-structured)

Why is it Hard?

Key challenge: Big graphs and queries can involve noisy and unobserved data!

Some links might be noisy or missing Canada

Problem: Naïve link prediction and graph template matching are too expensive

Our Idea: Query2Box

Use representation learning to map a graph into a Euclidean space and learn to reason in that space

Jure Leskovec, Stanford University

Semantic Embeddings

TransE [Bordes et al., 2013]

- Translation intuition: For a triple (h, r, t): $h + r \approx t$
- **Q:** What is nationality of Obama?

Our Idea: Query2Box

Idea:

- 1) Embed nodes of the graph
- 2) For every logical operator learn a spatial operator

So that:

- 1) Take an arbitrary logical query. Decompose it into a set of logical operators (∃,Λ,V)
- 2) Apply a sequence of spatial operators to embed the query
- 3) Answers to the query are entities close to the embedding of the query

Our Idea: Query2Box

Idea:

1) Embed nodes of the graph

S Represent query as a box.
Operations (union, intersection) are well defined over boxes.

3) Answers to the query are entities close to the embedding of the query

Se

Embedding Queries

Query2Box embedding:

Embed queries with hyper-rectangles (boxes): $\mathbf{q} = (Cen(q), Off(q))$.

Embedding Space

[Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures. Vilnis, et al., ACL 2018]

Jure Leskovec, Stanford University

Embedding Queries

- Geometric Projection Operator
- Geometric Intersection Operator

Projection Operator

Geometric Projection Operator \mathcal{P} • \mathcal{P} : Box × Relation \rightarrow Box

Projection Operator: Example

Intersection Operator

Geometric Intersection Operator $\boldsymbol{\mathcal{I}}$

- $\mathcal{I}: Box \times \cdots \times Box \rightarrow Box$
 - The new center is a weighted average
 - The new offset shrinks

Intersection Operator: Example

How to Handle Disjunction

- So far we can handle Conjunctive queries
- Can we learn a geometric disjunction operator?
- Theorem (paraphrased): For a KG with M nodes, we need embedding dimension of M to handle disjunction

Disjunctive Normal Form

 Any query with AND and OR can be transformed into equivalent
 Disjunctive Normal Form (disjunction of conjunctive queries).

Disjunctions: Solution

- Given an arbitrary AND-OR query
- 1) Transform it into an DNF
- 2) Answer each conjunctive query
- 3) Overall answer is the union of conjunctive query answers

Benefits of Query2Box

Scalability and efficiency:

 Any query can be reduced to a couple of matrix operations and a single k-nearest neighbor search

Generality:

We can answer any query (even those we have never seen before)

Robustness to noise:

Graph can contain missing and noisy relationships

"Where did Canadian citizens with Turing Award graduate?" **Dependency Graph**

Jure Leskovec, Stanford University

Query2Box : Model Training

Training examples: Queries on the graph

- Positives: Path with a known answer
- Negatives: Random nodes of the correct answer type

 Goal: Find embeddings and operators so that that queries give correct answers

Experimental Setup

We essentially learn to "memorize" the answers to queries

 We embed entities so that our geometric operators give correct answers

Questions:

- Does our method generalize to new unseen queries?
- Does our method generalize to new query structures?
- Can method handle missing relations?

Experimental Setup

Training:

- Remove 10% of KG edges
- Sample training queries and (non)answers
- Train the model

Test set:

- Test queries/answers from the full graph
- Ensure that the test queries are **not** directly answerable in the training graph
 - Every test query has at least one deleted edge
 - Note: Query template matching would have accuracy of random guessing

KG and Query Statistics

• Freebase: FB15K, FB15K-237

Dataset	Entities	Relations	Training Edges	Validation Edges	Test Edges	Total Edges
FB15k	14,951	1,345	483,142	50,000	59,071	592,213
FB15k-237	14,505	237	272,115	17,526	20,438	310,079

Queries:

Experimental Results

Method	Avg	1p	2p	3 p	2i	3i	ip	pi	2u	up
Q2B	0.268	0.467	0.24	0.186	0.324	0.453	0.108	0.205	0.239	0.193
Point-based	0.228	0.402	0.213	0.155	0.292	0.406	0.083	0.170	0.169	0.163
embedding	0.230	0.405	0.213	0.153	0.298	0.411	0.085	0.182	0.167	0.160

Table 3: H@3 on test set for QUERY2BOX vs. GQE on FB15k-237.

Method	Avg	1p	2p	3р	2i	3i	ip	pi	2u	up
Q2B	0.484	0.786	0.413	0.303	0.593	0.712	0.211	0.397	0.608	0.330
Point-based	0.386	0.636	0.345	0.248	0.515	0.624	0.151	0.31	0.376	0.273
embedding	0.384	0.63	0.346	0.250	0.515	0.611	0.153	0.32	0.362	0.271

Table 4: H@3 on test set for QUERY2BOX vs. GQE on FB15k.

Observations:

- "Training" queries (1p-3p): +20%
- New conjunctive queries (2i,3i): +15%
- Disjunctive queries: +36%

"List male instrumentalists who play string instruments"

Query2Box: Summary

Query2Box:

- Embed the query as a box
- Logical operations become spatial operations
- Composability of queries:
 - Generalize well to unseen, extrapolated queries
 - Explicitly training for composability is important
- Instance vs. multi-hop generalization

Conclusion

- Box embeddings for answering logical queries on Knowledge graphs
- Handle union and intersection
- Generalize well to unseen, extrapolated queries
- Future work: Handle negation, other geometric model

- <u>Embedding Logical Queries on Knowledge</u> <u>Graphs</u>. W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, J. Leskovec. *NIPS*, 2018.
- Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings.
 H. Ren, W. Hu, J Leskovec, ICLR 2020.