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Knowledge Graphs
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Heterogeneous Networks
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Knowledge Graphs

= Knowledge Graphs are heterogenous graphs
= Multiple types of entities and relations exist

= Facts are represented as triples (h, 7, t)
= (‘Alice’, “friend_with’, ‘Bob’)
= (‘Paris’, ‘is_a’, ‘City’)
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Traditional Tasks

Knowledge Graph Competion/Link
Prediction

= Predict the missing head or tail for a
given triple (h,r,t)

= Example:

Barack Obama Bornln United States

~ =

Barack Obama Nationality American



Our work: Beyond Link Prediction

Our goal: Reason over the knowledge
graph using complex multi-hop queries

= Conjunctive queries: Subset of first-order
logic with existential quantitier (3) and
conjunction (A)

“Where did all Canadian citizens with Turing Award graduate?”

q="V,.3V : Win(TuringAward,V) A Citizen(Canada,V)
A Graduate(V,V,)
Turing

Award Win

Graduate >CV)?

Canada Citizen
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Answering Queries in KGs

“Where did Canadian citizens with Turing Award graduate?”
Query Graph
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Why is it Hard?

= Heterogeneity: Lack of
schema, or quite large
schema (65K for DBpedia)

= Noise and
iIncompleteness

= Uncertainty
= Massive size
= Fast query time

Jure Leskovec, Stanford University
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Why is it Hard?

Key challenge: Big graphs and queries
can involve noisy and unobserved data!
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Problem: Naive link prediction and graph
template matching are too expensive
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Our |dea: Query2Box

Use representation learning to map a
graph into a Euclidean space and
learn to reason in that space

Logical
query
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\ o .zv
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™ / \ ....... ' Reason in the
\ / T @ embedding space
ENC(v)
Knowledge graph Embedding space
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Semantic Embeddings

TransE [Bordes et al., 2013]
= [ranslation intuition:

For a trip
= Q: What

e

h

e(hnrt)h+r=t
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Our |dea: Query2Box

ldea:
= 1) Embed nodes of the graph

= 2) For every logical operator learn a spatial
operator

So that:

= 1) Take an arbitrary logical query. Decompose
it iInto a set of logical operators (3,A,V)

= 2) Apply a sequence of spatial operators to
embed the query

= 3) Answers to the query are entities close to
the embedding of the query



Our ldea: Query2Box

ldea:
= 1) Embed nodes of the graph

Key insight:
Represent query as a box.

Operations (union, intersection)
are well defined over boxes.

= 3) Answers to the query are entities close to
the embedding of the query



Embedding Queries

Query2Box embedding:

Emlbed queries with hyper-rectangles
(boxes): q = (Cen(q), 0ff(q)).

°Cambridge
° Edinburgh
Cen(q)e
o McGill
o Stanford

Embedding Space

[Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures. Vilnis, et al., ACL 2018]

Jure Leskovec, Stanford University 15



Embedding Queries

Computation Graph
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Projection Operator

Geometric Projection Operator P
= P : Box X Relation —» Box
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Projection Operator: Example
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Intersection Operator

Geometric Intersection Operator 7
= 7:Box X ---X Box —» Box

= The new center is a weighted average

= The new offset shrinks




Intersection Operator: Example
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How to Handle Disjunction

So far we can handle Conjunctive queries

Can we learn a geometric disjunction
operator?

= [heorem (paraphrased): For a KG with
M nodes, we need embedding
dimension of M to handle disjunction



Disjunctive Normal Form

= Any query with AND and OR can be
transformed into equivalent
Disjunctive Normal Form (disjunction
of conjunctive queries).
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Disjunctions: Solution

Given an arbitrary AND-OR query

= 1) Transform it into an DNF

= 2) Answer each conjunct

ve query

= 3) Overall answer is the union of

conjunctive query answe

(S



Benefits of Query2Box

Scalability and efficiency:

= Any query can be reduced to a couple of
matrix operations and a single k-nearest
neighlbor search

Generality:

= \We can answer any query (even those we
have never seen before)

Robustness to noise:

= Graph can contain missing and Noisy
relationships



Example

“Where did Canadian citizens with Turing Award graduate”?”
Dependency Graph
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Example

“Where did Canadian citizens with Turing Award graduate”?”
Dependency Graph
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Example

“Where did Canadian citizens with Turing Award graduate”?”
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Example
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Example

“Where did Canadian citizens with Turing Award graduate”?”
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Query2Box : Model Training

Training examples: Queries on the graph

= Positives: Path with a known answer

= Negatives: Random nodes of the correct
answer type

= Goal: Find embeddings and operators so
that that queries give correct answers



Experimental Setup

We essentially learn to “memorize” the
answers to queries

= WWe embed entities so that our geometric
operators give correct answers

Questions:

Does our method generalize to new
unseen queries’?

Does our method generalize to new query
structures?

Can method handle mlssmg relations?

Jure Leskovec, Stanford Uni 31



Experimental Setup

*= Training:
= Remove 10% of KG edges
= Sample training queries and (nonjanswers
= Train the model

= Test set:

= Test queries/answers from the full graph

= Ensure that the test queries are not directly
answerable in the training graph
= Every test query has at least one deleted edge

= Note: Query template matching would have
accuracy of random guessing

32



KG and Query Statistics

= Freebase: FB15K, FB15K-237

Dataset Entities | Relations | Training Edges | Validation Edges | Test Edges | Total Edges
FB15k 14,951 1,345 483,142 50,000 59.071 592,213
FB15k-237 14,505 237 272,115 17,526 20,438 310,079
= Queries:

Training Conjunctive Queries
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Experimental Results

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.268 | 0.467 0.24 0.186 | 0.324 0.453 | 0.108 0.205 0.239 0.193
Point-based 0.228 | 0.402 0.213 0.155 | 0.292 0.406 | 0.083 0.170 0.169 0.163
embedding 0.230 | 0.405 0.213 0.153 | 0.298 0.411 | 0.085 0.182 0.167 0.160
Table 3: H@3 on test set for QUERY2BOX vs. GQE on FB15k-237.
Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.484 | 0.786 0.413 0.303 | 0.593 0.712 | 0.211 0.397 0.608 0.330
Point-based 0.386 | 0.636 0.345 0.248 | 0.515 0.624 | 0.151 031 0.376 0.273
embedding 0.384 | 0.63 0.346 0.250 | 0.515 0.611 | 0.153 032 0362 0.271

= New conjunctive queries (21,3i): +15%

Table 4: H@3 on test set for QUERY2BOX vs. GQE on FB15k.

Observations:
= “Training” queries (1p-3p): +20%

= Disjunctive queries: +36%

Jure Leskovec, Stanford University
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FB15k: Embedding Space
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FB15k: Embedding Space
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FB15k: Embedding Space

# of string instruments: 10
50 -
® TP
FN
®FP
0 - » TN
TPR: 100%
—50 - FPR: 0%
. =50 0 50 o )
List male instrumentalists who play string instruments
String

Instrument ™= projection

Jure Leskovec, Stanford University 37



FB15k: Embedding Space
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FB15k: Embedding Space
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FB15k: Embedding Space
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FB15k: Embedding Space
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Query2Box: Summary

= Query2Box:
= Embed the query as a box
= | ogical operations become spatial operations
= Composability of queries:
= (Generalize well to unseen, extrapolated
queries
= Explicitly training for composabillity is
important

= |nstance vs. multi-hop generalization



Conclusion

Box embeddings for answering logical
queries on Knowledge graphs

Handle union and intersection

Generalize well to unseen,
extrapolated queries

Future work: Handle negation, other
geometric model

Jure Leskovec, Stanford University
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