
Deep Graph Library
Overview, Updates, and 
Future Directions

George Karypis
University of Minnesota (karypis@umn.edu)
AWS Deep Learning Science (gkarypis@amazon.com) (on leave)

www.dgl.ai

http://umn.edu
http://amazon.com
http://www.dgl.ai/


DGL: The history

2

2018 2019 2020

First 
prototype

Development 
started

V0.1
(NeurIPS’18)

V0.2
Sampling APIs

V0.3
Fused message passing

Multi-GPU/-core

V0.3.1
NN modules
DGL-Chem

V0.4
Heterogeneous graph

DGL-KE



DGL: Design & API



DGL meta-objective & architecture

4

• Forward and backward compatible
• Forward: easy to develop new models
• Backward: seamless integration with 

existing frameworks 
(MXNet/Pytorch/Tensorflow)

• Fast and Scalable



Flexible message handling
Message function

Update function

Reduce function
[Gilmer 2017, Wang 2017, Battaglia 2018]

5



Flexible message propagation

• Full propagation (“everyone shouts to everyone near you”)

• Propagation by graph traversal
• Topological order on sentence parsing tree
• Belief propagation order
• Sampling

• Propagation by random walk

6



DGL programming interface

• Graph as the core abstraction
• DGLGraph
• g.ndata[‘h’]

• Simple but versatile message passing APIs

Active set specifies which nodes/edges to trigger the computation on.

7

can be user-defined functions (UDFs) or built-in symbolic functions.



Writing GNNs is intuitive in DGL

8

update_all is a shortcut for 
send(G.edges()) + recv(G.nodes())



Writing GNNs is intuitive in DGL (GAT)

9



Different scenarios require different supports

Single giant graph Many moderate-sized graphs

Dynamic graph Heterogeneous graph

10

Sampling Batching 
graphs

Mutation Heterogeneous



Performance



Scalability: single machine, single GPU

13

Scalability with graph size Scalability with graph density

3.4x 7.5x

PyG: pytorch-geometric



Scalability: single machine, NUMA

X1, 2TB, 128 vCPU
Data set: Reddit (232K nodes, 114M edges)
Controlled-variate sampling



Scalability: single machine, multi-GPU

p3.16xlarge, 8 V100 GPUs, 64 vCPU
Data set: Reddit (232K nodes, 114M edges)
Trained with neighbor sampling



What’s new and what’s in the 
pipeline?



Heterogenous graph

Example: recommendation system, GCMC

Graph Convolutional Matrix Completion



Supporting Heterogeneous Graph

18



*Official training on MovieLens-10M has to be in mini-batch, which lasts for over 24+ hours

Dataset RMSE (DGL) RMSE (Official) Speed (DGL) Speed (Official) Speedup

MovieLens-100K 0.9077 0.910 0.025 s/epoch 0.101 s/epoch 5x
MovieLens-1M 0.8377 0.832 0.070 s/epoch 1.538 s/epoch 22x

MovieLens-10M 0.7875 0.777* 0.648 s/epoch Long*

Example: graph convolutional matrix completion



Distributed training: GCN (preliminary)

Neighbor sampling
Data set: Reddit (232K nodes, 114M edges)
Testbed: c5n.18x, 100Gb/s network, 72vCPU 



TF backend (preliminary)

Vanilla TF (TF 1.0)
DGL + TF (TF 2.0)



Pre-trained
molecule

generation 
models

DGL Package: DGL-LifeSci

• Utilities for data processing

• Models for molecular property prediction and 
molecule generation

• Graph Conv, GAT, MPNN, AttentiveFP, SchNet, 
MGCN, ACNN, DGMG, JTNN

• Efficient implementations

• Training scripts

• Pre-trained models
Efficient implementations



DGL Package: DGL-KE
• An open-source package to efficiently compute 

knowledge graph embedding in various hardware:
• Many-core CPU machine
• Multi-GPU machine
• A cluster of machines

• DGL-KE support popular KGE models:
• TransE, TransR
• DistMult, ComplEx, RESCAL
• RotatE

• Applications: search, recommendation, question & 
answering



DGL-KE – Focus on high performance

• Maximize locality:
• Metis graph partitioning to reduce network communication in distributed training.
• Relation partitioning to avoid communication for relations in multi-GPU training.

• Increase computation-to-memory intensity:
• Joint negative sampling to reduce the number of entities in a mini-batch

• Reduce the demands on memory bandwidth:
• Sparse relation embeddings to reduce computation and data access in a batch.

• Hide data access latency:
• Overlap gradient update with batch computation.



DGL-KE: Performance

Datasets: FB15K (15K nodes, 592K edges); Freebase (86M nodes, 338M edges)

p3.8xlarge instance, up to 8 V100 GPUs

Multi-GPU performance on FB15k

x1.32xlarge instance, 128 vCPU, 2TB RAM

Many-core performance on Freebase

Distributed performance on Freebase

x1.32xlarge instance, 128 vCPU, 2TB RAM



DGL: next step(s)

27

2018 2019 2020

First 
prototype

Development 
started

V0.2
Sampling APIs

V0.3
Fused message passing

Multi-GPU/-core

V0.3.1
NN modules
DGL-LifeSci

V0.4
Heterogeneous graph

DGL-KE

V0.5
DGL-RecSys
TF support

Distributed training

More model zoos
More NN modules
Faster training
…

V0.1
(NeurIPS’18)



Community



Open source, the source of innovation

3975 github stars
312k downloads for all versions on Pip
8.8K downloads for all version on Conda
1.8K anaconda downloads of 0.4.1

32 model examples, 28 NN modules (including 
14 GNN convolution modules)
6 pretrained models for chemistry
GCN, generative, KG, RecSys…
47 contributors, 10 core developers



Channels

• Discuss forum https://discuss.dgl.ai
• Any questions about DGL
• Average response time: <1 day

• Github Issues 
https://github.com/dmlc/dgl/issues

• Bug report and feature request.

• Twitter @GraphDeep
• Latest news and releases

• Wechat group
• 24/7 on-call J

https://discuss.dgl.ai/
https://github.com/dmlc/dgl/issues


Do you want to contribute?

• Data scientist? Researcher? or just ML lover?
• Develop new models & applications.

• Tech writer? Native speaker?
• Revise documents.

• System hacker?
• More algorithms and operators on graphs.

• Share your work and experience from using DGL: 
https://github.com/dglai/awesome-dgl

https://github.com/dglai/awesome-dgl


Q&A We are hiring!

https://www.dgl.ai




