Deep Graph Library
Overview, Updates, and Future Directions

George Karypis
University of Minnesota (karypis@umn.edu)
AWS Deep Learning Science (gkarypis@amazon.com) (on leave)
DGL: The history

Development started

2018

First prototype

2019

V0.1 (NeurIPS’18)

Fused message passing
Multi-GPU/-core

V0.2

Sampling APIs

V0.3

NN modules DGL-Chem

V0.3.1

V0.4

Heterogeneous graph
DGL-KE

Introducing Amazon SageMaker Support for Deep Graph Library (DGL): Build and Train Graph Neural Networks

Posted On: Dec 3, 2019

Amazon SageMaker support for the Deep Graph Library (DGL) is now available. With DGL, you can improve the prediction accuracy of recommendation, fraud detection, and drug discovery systems using Graph Neural Networks (GNNs).

Though GNNs have shown promising results in research, their use in real-world applications has been limited because of the complex infrastructure required to train large graphs and the lack of reliable domain-specific models. Developing GNNs involves finding and training on very large graphs with millions of nodes, and it is time-consuming to build and maintain the computational infrastructure required to perform this training. DGL gives you the tools and infrastructure to simplify the implementation and deployment of GNNs.

DGL support in Amazon SageMaker removes the burden of packaging software dependencies, building infrastructure, and finding validated models. As a result, you can test and implement GNNs in hours instead of weeks or months. A Deep Learning container bundles all the software dependencies and the Amazon SageMaker API automatically sets up and scales the infrastructure required to train graphs. With the bundled library of validated models, you can immediately test state-of-the-art GNN models and integrate them into applications.

To get started, please check out the DGL Get Started page, SageMaker DGL documentation and our blog.
DGL: Design & API
DGL meta-objective & architecture

• Forward and backward compatible
 • **Forward**: easy to develop new models
 • **Backward**: seamless integration with existing frameworks (MXNet/Pytorch/Tensorflow)

• **Fast** and **Scalable**
Flexible message handling

Edge-wise: $m_k^{(t)} = \phi^e(e_k^{(t-1)}, v_{t_k}^{(t-1)}, v_{s_k}^{(t-1)})$

Node-wise: $v_i^{(t)} = \phi^v(v_i^{(t-1)}, \bigoplus_{k \text{ s.t. } r_k = i} m_k^{(t)})$

Flexible message propagation

• Full propagation ("everyone shouts to everyone near you")

• Propagation by graph traversal
 • Topological order on sentence parsing tree
 • Belief propagation order
 • Sampling

• Propagation by random walk
DGL programming interface

• Graph as the core abstraction
 • DGLGraph
 • g.ndata[‘h’]

• Simple but versatile message passing APIs

\[\text{send}(E, \phi^e), \quad \text{recv}(V, \bigoplus, \phi^v) \]

Active set specifies which nodes/edges to trigger the computation on.
\(\phi^e, \phi^v \bigoplus \) can be user-defined functions (UDFs) or built-in symbolic functions.
Writing GNNs is intuitive in DGL

update_all is a shortcut for:

```
send(G.edges()) + recv(G.nodes())
```

```python
# code: PyTorch + DGL
# G: DGL Graph
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
import dgl.function as fn
G.ndata['h'] = H
G.update_all(
    fn.copy_u('h', 'm'),
    fn.max('m', 'h_n'))
H_N = G.ndata['h_n']
H = torch.relu(torch.cat([H_N, H], 1) @ W)
```

```
H_{v}^{(t+1)} = \max_{u \in \mathcal{N}(v)} H_{u}^{(t)}
```

```
H_{v}^{(t+1)} = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} H_{u}^{(t)}
```
Writing GNNs is intuitive in DGL (GAT)

```python
# code: PyTorch + DGL
# G: DGL Graph
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)

import dgl.function as fn
G.ndata['h'] = H
G.update_all(msg_func, reduce_func)
H_N = G.ndata['h_n']
H = torch.relu(torch.cat([H_N, H], 1) @ W)

\[
\alpha_{ij} = \frac{\exp \left( \text{LeakyReLU} \left( a^T [W \tilde{h}_i || W \tilde{h}_j] \right) \right)}{\sum_{k \in N_i} \exp \left( \text{LeakyReLU} \left( a^T [W \tilde{h}_i || W \tilde{h}_k] \right) \right)}
\]

def msg_func(edges):
    h_src = edges.src['h']
    h_dst = edges.dst['h']
    alpha_hat = MLP(
        torch.cat([h_dst, h_src], 1))
    return {'m': h_src, 'alpha_hat': alpha}

def reduce_func(nodes):
    # Incoming messages are batched along # 2nd axis.
    m = nodes.mailbox['m']
    alpha_hat = nodes.mailbox['alpha_hat']
    alpha = torch.softmax(alpha_hat, 1)
    return {'h_n':
        (m * alpha[:, None]).sum(1)}
```
Different scenarios require different supports

- Single giant graph
- Many moderate-sized graphs
- Dynamic graph
- Heterogeneous graphs

Sampling

Batching graphs

Mutation
Performance
Scalability: single machine, single GPU

Scalability with graph size

PyG: pytorch-geometric

Scalability with graph density
Scalability: single machine, NUMA

Train GraphSage on an X1.32xlarge instance

X1, 2TB, 128 vCPU
Data set: Reddit (232K nodes, 114M edges)
Controlled-variate sampling
Scalability: single machine, multi-GPU

Scalability of training GNNs on multi-GPUs

p3.16xlarge, 8 V100 GPUs, 64 vCPU
Data set: Reddit (232K nodes, 114M edges)
Trained with neighbor sampling
What’s new and what’s in the pipeline?
Heterogenous graph

Example: recommendation system, GCMC
Supporting Heterogeneous Graph

```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn

class HeteroRGCNLayer(nn.Module):
    def __init__(self, in_size, out_size, etypes):
        super(HeteroRGCNLayer, self).__init__()
        # define parameter W_r for each relation
        self.weight = nn.ModuleDict({
            name: nn.Linear(in_size, out_size) for name in etypes
        })

    def forward(self, G, feat_dict):
        # G is a heterogeneous graph
        # feat_dict is a dictionary of features of each node type
        func = {}

        for srctype, etype, dsttype in G.canonical_etypes:
            # Compute W_r * h
            Wh = self.weight[etype](feat_dict[srctype])
            # Save it to graph
            G.nodes[srctype].data['Wh_%s' % etype] = Wh
            # Per-type message passing: (message_func, reduce_func)
            # All reducers write to the same field 'h', which is a hint for type-wise reducer.
            func[etype] = (fn.copy_u('Wh_%s' % etype, 'm'), fn.mean('m', 'h'))

            # Trigger message passing on heterograph using multi_update_all
            # Argument#1: per-type message passing functions.
            # Argument#2: type-wise reducer, could be: "sum", "max", "min", "mean", "stack"
            G.multi_update_all(funcs, 'sum')

        # Return the updated features of each node type.
        return {ntype: G.nodes[ntype].data['h'] for ntype in G.ntypes}
```
Example: graph convolutional matrix completion

<table>
<thead>
<tr>
<th>Dataset</th>
<th>RMSE (DGL)</th>
<th>RMSE (Official)</th>
<th>Speed (DGL)</th>
<th>Speed (Official)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>MovieLens-100K</td>
<td>0.9077</td>
<td>0.910</td>
<td>0.025 s/epoch</td>
<td>0.101 s/epoch</td>
<td>5x</td>
</tr>
<tr>
<td>MovieLens-1M</td>
<td>0.8377</td>
<td>0.832</td>
<td>0.070 s/epoch</td>
<td>1.538 s/epoch</td>
<td>22x</td>
</tr>
<tr>
<td>MovieLens-10M</td>
<td>0.7875</td>
<td>0.777*</td>
<td>0.648 s/epoch</td>
<td>Long*</td>
<td></td>
</tr>
</tbody>
</table>

*Official training on MovieLens-10M has to be in mini-batch, which lasts for over 24+ hours
Distributed training: GCN (preliminary)

Neighbor sampling
Data set: Reddit (232K nodes, 114M edges)
Testbed: c5n.18x, 100Gb/s network, 72vCPU

Distributed training of GCN on Reddit dataset.
TF backend (preliminary)

Epoch training time on Pubmed

Vanilla TF (TF 1.0)
DGL + TF (TF 2.0)
DGL Package: DGL-LifeSci

- Utilities for data processing
- Models for molecular property prediction and molecule generation
 - Graph Conv, GAT, MPNN, AttentiveFP, SchNet, MGCN, ACNN, DGMG, JTNN
- Efficient implementations
- Training scripts
- Pre-trained models

<table>
<thead>
<tr>
<th>Model</th>
<th>DGL</th>
<th>Official</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph Conv</td>
<td>1.9s</td>
<td>8.4s (DeepChem)</td>
<td>4.4x</td>
</tr>
<tr>
<td>AttentiveFP</td>
<td>1.2s</td>
<td>6.0s</td>
<td>5.0x</td>
</tr>
<tr>
<td>JTNN</td>
<td>743s</td>
<td>1826s</td>
<td>2.5x</td>
</tr>
</tbody>
</table>
DGL Package: DGL-KE

• An open-source package to efficiently compute knowledge graph embedding in various hardware:
 • Many-core CPU machine
 • Multi-GPU machine
 • A cluster of machines

• DGL-KE support popular KGE models:
 • TransE, TransR
 • DistMult, ComplEx, RESCAL
 • RotatE

• Applications: search, recommendation, question & answering
DGL-KE – Focus on high performance

• Maximize locality:
 • Metis graph partitioning to reduce network communication in distributed training.
 • Relation partitioning to avoid communication for relations in multi-GPU training.

• Increase computation-to-memory intensity:
 • Joint negative sampling to reduce the number of entities in a mini-batch

• Reduce the demands on memory bandwidth:
 • Sparse relation embeddings to reduce computation and data access in a batch.

• Hide data access latency:
 • Overlap gradient update with batch computation.
DGL-KE: Performance

Datasets: FB15K (15K nodes, 592K edges); Freebase (86M nodes, 338M edges)
DGL: next step(s)

- Development started
- **V0.1** (NeurIPS’18)
 - First prototype

- **V0.2**
 - Sampling APIs
 - Multi-GPU/core

- **V0.3**
 - Fused message passing
 - NN modules

- **V0.3.1**
 - DGL-LifeSci

- **V0.4**
 - Heterogeneous graph
 - DGL-KE

- **V0.5**
 - DGL-RecSys
 - TF support
 - Distributed training

More model zoos
More NN modules
Faster training
...
Community
Open source, the source of innovation

3975 github stars
312k downloads for all versions on Pip
8.8K downloads for all version on Conda
1.8K anaconda downloads of 0.4.1

32 model examples, 28 NN modules (including
14 GNN convolution modules)
6 pretrained models for chemistry
GCN, generative, KG, RecSys...
47 contributors, 10 core developers
Channels

- Discuss forum https://discuss.dgl.ai
 - Any questions about DGL
 - Average response time: <1 day
- Github Issues https://github.com/dmlc/dgl/issues
 - Bug report and feature request.
- Twitter @GraphDeep
 - Latest news and releases
- Wechat group
 - 24/7 on-call 😊
Do you want to contribute?

• Data scientist? Researcher? or just ML lover?
 • Develop new models & applications.
• Tech writer? Native speaker?
 • Revise documents.
• System hacker?
 • More algorithms and operators on graphs.
• Share your work and experience from using DGL: https://github.com/dglai/awesome-dgl
https://www.dgl.ai

DEEP GRAPH LIBRARY

Easy Deep Learning on Graphs

Latest Updates Get Started

Q&A

We are hiring!