aws

Deep Graph Library DE_?EL

Overview, Updates, and
Future Directions Eﬁ

www.dgl.ai

George Karypis
University of Minnesota (karypis@umn.edu)

AWS Deep Learning Science (gkarypis@amazon.com) (on leave)

http://umn.edu
http://amazon.com
http://www.dgl.ai/

Introducing Amazon SageMaker Support for Deep Graph

D G I_: Th e h I Sto ry Library (DGL): Build and Train Graph Neural Networks

VO 3 1 Posted On: Dec 3, 2019
[] []

Amazon SageMaker support for the Deep Graph Library (DGL) is now available. With DGL, you can improve the prediction accuracy of
N N d | recommendation, fraud detection, and drug discovery systems using Graph Neural Networks (GNNs).
D V I n t Though GNNs have shown promising results in research, their use in real-world applications has been limited because of the complex
e e O p l I l e VO 2 DG L C h e m infrastructure required to train large graphs and the lack of reliable domain specific models. Developing GNNs involves finding and
b training on very large graphs with millions of nodes, and it is time-consuming to build and maintain the computational infrastructure

required to perform this training. DGL gives you the tools and infrastructure to simplify the implementation and deployment of GNNs.

DGL support in Amazon SageMaker removes the burden of packaging software dependencies, building infrastructure, and finding
validated models. As a result, you can test and implement GNNs in hours instead of weeks or months. A Deep Learning container
bundles all the software dependencies and the Amazon SageMaker API automatically sets up and scales the infrastructure required to
train graphs. With the bundled library of validated models, you can immediately test state-of-the-art GNN models and integrate them
into applications.

To get started, please check out the DGL Get Started page, SageMaker DGL documentation and our blog.

2019 2020

2018

V0.3

: Fused message passing
First Vo.1 Multi-GPU/-core

prototype (NeurlPS’18) V0.4
Heterogeneous graph
DGL-KE

aWws 2

DGL: Design & AP|

DGL meta-objective & architecture

* Forward and backward compatible
* Forward: easy to develop new models

* Backward: seamless integration with
existing frameworks
(MXNet/Pytorch/Tensorflow)

e Fast and Scalable

aws

Deep Graph Library

Backend

Graph

Message
Passing API

Graph Ops

Dataflow Graph Scheduler

DL System Abstraction

Tensor Ops Cusmn? Op
Plugin
Custom
Pytorch || MXNet
Kernels
CPU GPU Cluster

Flexible message handling

Message function
Edge-wise: m|"” = ¢°(e (_),v,,(..k_l) vii=b),

Node-wise: v,gt) — c,f')'”(v(t_l), 69 mg_f)),

e 2 \
S.L. Tp=1

Update function

Reduce function

[Gilmer 2017, Wang 2017, Battaglia 2018]

aws

Flexible message propagation

* Full propagation (“everyone shouts to everyone near you”)

Layer 2

* Propagation by graph traversal

* Topological order on sentence parsing tree Layer 1
* Belief propagation order
S

* Sampling o .

NP VP nput

W TR

* Propagation by random walk i
flt Dt/\N | Dt/\N

| I l \

an elephant my pajamas

aws

DGL programming interface

* Graph as the core abstraction
* DGLGraph
 g.ndata[‘h’]

* Simple but versatile message passing APls

send(&, ¢°), recv(V, 69, ¢")

specifies which nodes/edges to trigger the computation on.

»° ¢" €P can be user-defined functions (UDFs) or built-in symbolic functions.

aws

Writing GNNSs Is intuitive in DGL

update all is ashortcut for
send(G.edges()) +recv(G.nodes())

code: PyTorch + DGL
G: DGL Graph

code: PyTorch + DGL
G: DGL Graph
B
B

H: node repr matrix (n_nodes, in_dim)) # H: node repr matrix (n_nodes, in_dim)
W: weights (in_dim * 2, out_dim) # W: weights (in_dim * 2, out_dim)
import dgl.function as fn import dgl.function as fn
G.ndatal[’h’] = H G.ndata[’h’] = H
G.update_all(G.update_all(
fn.copy_u(’h’, ’m’), fn.copy_u(’h’, ’m’),
fn.maz(’m’, ’h_n’)) fn.mean(’m’, ’h_n’))
HN = G.ndata[’h_n’] HN = G.ndata[’h n’]
H = torch.relu(torch.cat([H.N, H], 1) @ W) H = torch.relu(torch.cat ([H_N, Hl, 1) @ W)
(t+1) (t) t+1) _ 1 (t)
h, — max h,, h, N Z h,,
ueN (v) N i

am5 8

a..

adWS

N’

Writing GNNs is intuitive in DGL (GAT)

code: PyTorch + DGL def
G: DGL Graph

H: node repr matrix (n_nodes, in_dim)

W: weights (in_dim * 2, out_dim)

import dgl.function as fn

G.ndata[’h’] = H

G.update_all (msg_func, reduce_func) def
HN = G.ndata[’h _n’]

H = torch.relu(torch.cat([H_N, H], 1) @ W)

exp (LeakyReLU (&7 [Wi;||WH;]))

] —

S ren; exp (LeakyReLU (&7 [Wh,|Why]))

msg_func (edges):
h_src = edges.src[’h’]
h_dst = edges.dst[’h’]
alpha_hat = MLP(
torch.cat([h_dst, h_src]l, 1))
return {’m’: h_src, ’alpha_hat’: alpha}l

reduce_func (nodes):
Incoming messages are batched along
2nd axis.
m = nodes.mailbox[’m’]
alpha_hat = nodes.mailbox[’alpha_hat’]
alpha = torch.softmax(alpha_hat, 1)
return {’h_n’:

(m * alphal[:, Nonel]).sum (1)}

aws

v"

Different scenarios require different supports

RE o
Single giant graph

SREACTS

Original graph An edge added A node remove:

Dynamic graph

+"%:@ Batching

{ do@ | graphs
4 Q ¢
71

Many moderate-sized graphs

i

——— page-page relation] P2
n

it R N Heterogeneous}

= = - query-page relation

- APl '
-1 - ' web

¥)
P - - 1 N
= =R page
- L8 &
- N ‘m 0 n“ﬁ
@ o
L)
v A

)

Qo

. o3

or LUﬂm
. o @
o

10

Performance

aws

aws

Scalability: single machine, single GPU

T 20.0 ——
301 17.5 1
.25 —15.0
L 201 0125
£ £
;15 o 10.0 7.5x
C C =
£ £ 751 '
T 10- Z
= F 5.0 po
51 % DGL 2.5 *_ % DGL
[PYyG F A PyG
ot — i i , 0.0+t — ; : .
A o) © 1 INPRN Q N Q
¥ © \fl, ff) c)'\ \'5 . ,Lb. 6;1/ .\QD" qpq_
Number of nodes (K) PyG: pytorch-geometric Number of edges (M)
Scalability with graph size Scalability with graph density

13

aws

Scalability: single machine, NUMA

Train GraphSage on an X1.32xlarge instance

w"""".'”!'tkk RO® N X X HXX0Xe © O

v 2

094 Y ®
v 0]
0.8 - X
>
&)
@
=5
Q 0.7 1
0.6
@]
® NUMA unaware
0.5 A v X 1 NUMA node
X ¥ 4 NUMA nodes
0 10 20 30 40 50 60 70 80

Runtime (seconds)

X1, 2TB, 128 vCPU
Data set: Reddit (232K nodes, 114M edges)
Controlled-variate sampling

Scalability: single machine, multi-GPU

Scalability of training GNNs on multi-GPUs

B 1GPU B 2GPUs 4GPUs | 8GPUs
80

69.116

59532

60

p3.16xlarge, 8 V100 GPUs, 64 vCPU
Data set: Reddit (232K nodes, 114M edges)
Trained with neighbor sampling

Training throughput (K samples/sec)

23.353
10.784 10.397
5114
GraphSAGE GAT

Model / #GPU

aws

N’

What’'s new and what’s in the
pipeline?

Heterogenous graph

Example: recommendation system, GCMC

4))
ltems
5/1,0]|0
o 0/3/0/|0
$ 1 0/0/ 5|0 GAE
-]
0|0 /0|4
0,020
Rating matrix M - J Graph - /
Bipartite graph Auto-Encoder Link prediction

Graph Convolutional Matrix Completion
adWws

N’

Supporting Heterogeneous Graph

l l) (1
import torch hf) —0 Z Z Ia/v'rS)hg)

1

2 import torch.nn as nn . ;
3 import torch.nn.functional as F TERJEN’T(z)
4 import dgl.function as fn

5

6 class HeteroRGCNLayer(nn.Module):

7 def __init__ (self, in_size, out_size, etypes):

8 super (HeteroRGCNLayer, self). init__ ()

9 # define parameter W_r for each relation

10 self.weight = nn.ModuleDict({

11 name : nn.Linear(in_size, out_size) for name in etypes

12 1

13

14 def forward(self, G, feat_dict):

15 # G is a heterogeneous graph

16 # feat_dict is a dictionary of features of each node type

17 funcs = {}

18 for srctype, etype, dsttype in G.canonical_etypes:

19 # Compute W_r * h

20 Wh = self.weight[etype](feat_dict[srctype])

21 # Save it to graph

22 G.nodes[srctype].data['"Wh_%s' % etype] = Wh

23 # Per-type message passing: (message func, reduce_func)

24 # All reducers write to the same field 'h', which is a hint for type-wise reducer.
25 funcs[etype] = (fn.copy_u('Wh_%s' % etype, 'm'), fn.mean('m', 'h"))

26 # Trigger message passing on heterograph using multi_update_all

27 # Argument#1l: per-type message passing functions.

28 # Argument#2: type-wise reducer, could be: "sum", "max", "min", "mean", "stack"
29 G.multi_update_all(funcs, 'sum')

30 # Return the updated features of each node type.

31 return {ntype : G.nodes[ntype].data['h'] for ntype in G.ntypes}

aws - 18

N

Example: graph convolutional matrix completion

RMSE (DGL) | RMSE (Official) Speed (DGL) Speed (Official) | Speedup

MovielLens-100K 0.9077 0.910 0.025 s/epoch 0.101 s/epoch 5)(
MovieLens-1M 0.8377 0.832 0.070 s/epoch 1.538 s/epoch 272X
Movielens-10M 0.7875 0.777* 0.648 s/epoch Long*

*Official training on MovieLens-10M has to be in mini-batch, which lasts for over 24+ hours

aws

N’

Distributed training: GCN (preliminary)

seconds/epoch

Neighbor sampling
Data set: Reddit (232K nodes, 114M edges)
Testbed: c5n.18x, 100Gb/s network, 72vCPU

1 machine 2 machines 4 machines

Distributed training of GCN on Reddit dataset.

aws

TF backend (preliminary)

Epoch training time on Pubmed
B OGL+TF | VanilaTF |} DGL +PT

0.25
0.2
0.15

Vanilla TF (TF 1.0)
. DGL + TF (TF 2.0)
0.05

GCN GAT

aws

N

Given Molecule

Pre-trained
DGL Package: DGL-LifeSci) molecule
: SO, senetn

Utilities for data processing

Neighbor Molecules

Models for molecular property prediction and _ e
. O{/{\’/ N/ A N\
molecule generation ; a

* Graph Conv, GAT, MPNN, AttentiveFP, SchNet, Q‘ . \ﬁ
MGCN, ACNN, DGMG, JTNN ~ O)

Efficient implementations

* Training scripts
S P Efficient implementations

e Pre-trained models __ |DGL__|Official | Speedup
Graph Conv 1.9s 8.4s (DeepChem) 4.4x
AttentiveFP 1.2s 6.0s 5.0x

aWs JTNN 743s 1826s 2.5x

DGL Package: DGL-KE

* An open-source package to efficiently compute
knowledge graph embedding in various hardware:
e Many-core CPU machine
e Multi-GPU machine

Cyc

o . . et ® Freebase GeoNames
A cluster of machines - O O
* DGL-KE support popular KGE models: ® KNOWI EDGE
DBpedia PROSPERA
* TransE, TransR Yao M? b ®
e DistMult, ComplEx, RESCAL “o Know.w‘geVaun
* RotatE

* Applications: search, recommendation, question &
answering

aws

DGL-KE — Focus on high performance

* Maximize locality:

* Metis graph partitioning to reduce network communication in distributed training.
e Relation partitioning to avoid communication for relations in multi-GPU training.

* Increase computation-to-memory intensity:

 Joint negative sampling to reduce the number of entities in a mini-batch

* Reduce the demands on memory bandwidth:
* Sparse relation embeddings to reduce computation and data access in a batch.

* Hide data access latency:
e Overlap gradient update with batch computation.

aws

Many-core performance on Freebase

Bl PBG []DGL-KE
DGL-KE: Performance 3 | oo
* =l BN 20000 = 26000
3
FpE . | e
Multi-GPU performance on FB15k = 13200 13500
10000 21 - . 1 N
I Graphvite o =
[DGL-KE a
7500 | ----comcemmeeee- o W]
— TransE DistMult ComplEx
o x1.32xlarge instance, 128 vCPU, 2TB RAM
£
S 5000 -~ ----oomee oo oo
S
- Distributed performance on Freebase
20, ® ®» 3 B
5
S
g
6‘?\) RO GQ\) RO \,é?\)‘?" QD e‘?\) Q° °Q\Y’ <,Q°Q‘> N 6‘20 RO 69%30 QY o
5C0 £
=
p3.8xlarge instance, up to 8 V100 GPUs a0
£
=
Datasets: FB15K (15K nodes, 592K edges); Freebase (86M nodes, 338M edges) Single 4 machines
machine
aws x1.32xlarge instance, 128 vCPU, 2TB RAM

N’

DGL: next step(s)

vV0.3.1 V0.5
NN modules DGL-RecSys
Development V0.2 DGL-LifeSci TF support

started Sampling APIs Distributed training

More model zoos
More NN modules
Faster training

W e e e e e b e . e

| V0.3
. : Fused message passing
First V0.1 Multi-GPU/-core '
prototype (NeurlPS’18) V0.4
Heterogeneous graph
DGL-KE
aws 27

N

Community

Open source, the source of innovation

® Unwatchv = 141 % Unstar 4k ¥ Fork = 660 Active Users

e 30 days

5.8K

"\ 7 days
» | 1.8K

‘ 1 day

404
1 I 1.360
3975 github stars 32 model examples, 28 NN modules (including
312k downloads for all versions on Pip 14 GNN convolution modules)
8.8K downloads for all version on Conda 6 pretrained models for chemistry
1.8K anaconda downloads of 0.4.1 GCN, generative, KG, RecSys...

aws 47 contributors, 10 core developers

DGL &

X

As the graph is connected, so shall we !l Deep learning on graphs is an emerging direction. Models, applications and systems are all at their early stages. DGL

is the system effort to improve the productivity of such research. Feel free to ask, discuss, and chat anything about DGL or graph learning here. Enjoy your stay |
Edit this banner >>

vallcategones » Unread (3) Top Categories 4+ New Topic

. . . What's the calling order of reduce_func and apply_node_func in a TreeLSTM? @ 1

W Questions

e Discuss forum https://discuss.dgl.ai

Somthing wrong with downloading data 0 5

. B Questions

* Any questions about DGL

How to Get Different Splits for Cross-Validation ' 3

W Questions

° Ave ra ge re S p O n Se ti m e : < 1 d ay Graph Store Support for single giant Heterogeneous graph

M Questions

* Github Issues Depniecy st D1 et o

DeepGraphLibrary

https://github.com/dmlc/dgl/issues 0 :
* Bug report and feature request. DGL

)

" e |
Edit profile) CE DGLARF-FREZE

* Twitter @GraphDeep Decpraphtibrary

Official twitter for Deep Graph Library

* Latest news and releases & s © somse 1

24 following 1,555 Fo

[Joined December 2018

Tweets & replies Media Likes

* Wechat group il

¥ Pinned Tweet

DeepGraphLibrary @Graph Oct 9, 2019 v
L4 24/7 O n —Ca | I @ DGL Heterogeneous graph support is finally here! Many new models: GCMC,

RGCN(for hetero), HAN, Metapath2vec. New DGL-KE package supports
efficient training of Transg, ComplEx, DistMult. Look forward to new research
ideas using the right tool! V0.4 release: github.com/dmlc/dgl/relea

neous Graph API:

KNet] n

1 takes 51,885 to train one epoc

RMSE RMSE

aws (DGL) (Official)

https://discuss.dgl.ai/
https://github.com/dmlc/dgl/issues

Do you want to contribute?

e Data scientist? Researcher? or just ML lover?

* Develop new models & applications.

* Tech writer? Native speaker? i:“ -
* Revise documents. S |

e System hacker? s
* More algorithms and operators on graphs. R

e Share your work and experience from using DGL:
https://github.com/dglai/awesome-dgl

aws

Projects 6

Security

Settings

https://github.com/dglai/awesome-dgl

DeepGraphlibrary About Get Started Tutorials Blog Doc Forum GitHub

About DGL Install Tutorials Blog Posts Documents Discuss Forum Source Codes

https://Www.ng.ai | PASIN

DEEP GRAPH LIBRARY

Easy Deep Learning on Graphs

Latest Updates } Get Started

Q&A | . Wé are hiring!

