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Abstract
Adverse drug reaction (ADR) is the unexpected harmful
reaction of patients after medication, which can increase
the burden of the hospital, restrict the benefit and cause
death. To better predict ADRs, we propose a machine
learning method based on multi-network fusion called
DF-ADRs. First, we used a correlation degree to deter-
mine the multitype drug features of each drug and the
co-occurrence of each ADR and represent each ADR
with these important features. On this basis, multiple
similarity networks are constructed by introducing mul-
titype features of drugs as new representations of these
chemical substructures. Then, the network fusion algo-
rithm is used to construct an attribute graph for each
ADR. Finally, we used the deep network to obtain a
set of interpretable subgraphs and used the classifier to
predict the ADR of drugs. Extensive experiments using
real-world data show that DF-ADRs can be potentially
used to enable the clinical team to optimize the stimula-
tion parameters.

Introduction
Adverse drug reactions (ADRs) is one of the main issues that
doctors consider when using drugs, and it can cause patients’
discomfort and even death (Edwards and Aronson 2000;
Murphy 2011). ADR, unlike dose-induced toxicity, is usu-
ally caused by the properties of the structure of the drug
and the misses of the compound. Hospitals often bear the
financial cost of adverse events, and pharmaceutical com-
panies must invest resources in screening a large number
of candidate compounds to avoid potential side effects of
new drugs. Statistical results show that over 40% of ADRs
can be avoided in advance. This has inspired researchers
to introduce machine learning techniques to improve drug
safety, especially the detection of adverse drug reactions,
which has become a common practice. Computational meth-
ods have been used to capture the relationship between ad-
verse reactions and drug molecules hidden under a large
number of clues, but they have not been able to pinpoint
the exact small molecules that cause the adverse reactions
(Page et al. 2012; Liu et al. 2012). For the industry, prac-
tical algorithms should be able to detect important molecu-
lar patterns and explain which are the small molecules that
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cause ADRs. In response to this demand, a series of in-
terpretable machine learning algorithms have emerged, all
of which are innovative in identifying potential links be-
tween drug substructures and ADRs(Campillos et al. 2008;
Xiao et al. 2017; Pauwels, Stoven, and Yamanishi 2011;
Hu et al. 2017; Atias and Sharan 2011; Zhang et al. 2013;
Wang et al. 2014b).Interpretation and accuracy are not al-
ways compatible, so these methods cannot achieve high pre-
cision. The problem is that they ignore one of the properties
of drugs, which is that the basic unit of action is the com-
pound, not the individual molecule. Therefore, the extraction
of a set of interpretable models from primitive molecules to
explain the predicted results is urgently needed by pharma-
ceutical enterprises(Bichindaritz 2008). In this paper, a new
method, the deep network fusion for interpretable adverse
drug reaction prediction (DF-ADRs), is proposed, which
means that each ADR is required to learn the important sub-
graphs of its associated molecular graph, so as to enable
these subgraphs to be used for ADR prediction. To achieve
this, DF-ADRs first obtains richer and more meaningful
drug substructure expression forms by calculating the drug
features of various types and the correlation between each
ADR. Then, a molecular graph was established for each new
drug substructure expression, and an attempt was made to
fuse the above multiple networks by introducing a network
fusion model. The fused graph is sent to the deep learning
model to cluster the sub-graphs. We believe that these sub-
graphs contain many molecular substructures. Once these
potential subgraphs are identified, we use the classifier to
predict ADRs in candidate drug molecules. The subplots are
small molecular structures associated with ADRs that are
strongly interpretable. In figure 1 below, we summarize the
framework of DF-ADRs. To the best of our knowledge, there
have been no studies that have constructed subgraphs of drug
molecules from multiple types of data sources and used them
to predict ADRs.

Methods
Extraction of Multi-type ADR Related Features
Each drug has more than 1,000 potential ADRs, so we
trained the prediction model separately for each ADR. For
each drug, there are multiple types of feature expression, and
we tried to define the correlation with ADR for each type of



Figure 1: The flowchart of the DF-ADRs pipeline.

feature. Here, let’s use the chemical substructures as an ex-
ample. Suppose we have N drug samples, R substructures
for each drug, S ADRs and M measurements (for example,
substructures, pathways, treatments). In introducing our ap-
proach, we will use the drug substructure as an example to
facilitate generalization to multiple expression types.In the
case of drugs, to understand the relationship between drug
substructure and side effects, the goal was to determine the
connection strength between (dfi) and S ADRs (arj). To do
this, we first obtain the observed frequency (o (dfi, arj)) for
each ADR caused by all drugs and the expected frequency
(e(dfi, arj)), and then calculate the difference. In this case,
the measure of whether dfi causes arj is difference scale.
From this, we can infer that drugs containing dfi may be re-
lated to ADR arj . Here we introduce a statistical method
that has been effectively applied to calculate the correla-
tion between ADR and drug substructure (Ching, Wong, and
Chan 1995; Hu et al. 2017), which is defined as follows:

e(df i, arj) =
df i+ ∗ ar+j

T
(1)

where

dfi+ =

S∑
j=1

dfij (2)

ar+j =

R∑
i=1

arij (3)

T =
∑
i, j

o(df i, arj) (4)

Using the above results, we calculated the relationship be-
tween drug substructure and ADR using the following mea-
surement standard R:

R(df i, arj) =
Zij√(

1− dfi+
T

) (
1− ar+j

T

) (5)

where
(
1− dfi+

T

) (
1− ar+j

T

)
is used to adjust likelihood of

Z(dfi,arj).

Z(df i, arj) =
o(df i, arj) − e(df i, arj)√

e(df i, arj)
(6)

As a hyperparameter, R can be predefined as a value, and
when greater than this value, the correlation between dfi and
arj can be determined. The measure of R approximately fol-
lows the standard normal distribution. This step can be used
to identify a drug substructure that have a significant rela-
tionship with ADR. For the other feature types, we will do
the same to get the desired feature. In other words, through
the above steps, we can respectively obtain the features re-
lated to ADR in enzyme, pathway, ADR in target and treat-
ments respectively.

Molecular Graph Representation

The basic structure of drugs is the chemical substructure,
and the interaction between drugs and targets or pathways
is caused by small chemical molecules. Therefore, explain-
able ADRs predictions need to find out what kind of molec-
ular structure composition will lead to ADR. Here, the more
abundant the expression of the substructure of the drug, the
better the interpretability and performance of the predic-
tion. Thanks to the availability of multiple drug features,
we can form multiple drug substructure expression such as
substructures-treatments. For this purpose, each kind of fea-
tures can calculate a network expression for the drug sub-
structure. These ADR related features can be used to enrich
the expression of drug molecular structure in the next step.

Deep Fusion Model

For molecular graph, diverse profiles may have different
contributions in network learning. We cross-referenced sev-
eral different databases and obtained several drug expres-
sion information. We use this information to generate the
substructure similarity network of drug substructures. The
similarity measurement method also has an important influ-
ence on network learning, so we introduce Jaccard similarity
to calculate the similarity network based on the above dif-
ferent expression profile. Biochemical mechanisms, includ-
ing Chemical Substructures, Target Proteins, Transporters,
Enzymes and Pathways expression exists between different
types of features, such as inner intersections. Our goal is to
make full use of the above features to calculate the most
complete edges, so as to improve the accuracy of the pre-
diction model. We believe that multiple sources of informa-
tion can promote the integrity of the expression of drug sub-
structures, so we propose the concept of network integra-
tion. Unlike common feature fusion, network fusion seeks
to produce the most similar representation of all networks in
the existing domain. After multiple expressions form multi-
drug molecular structure similar networks, we introduce the
iterative network fusion method which is suitable for syn-
thesizing multi-biochemical networks (Wang et al. 2014a).
In this method, the first step of network fusion is to express
the full kernel on the vertex set V as a normalized weight
matrix P = D−1W . W is a symmetric matrix to describe
the similarity between two drugs. D is a diagonal matrix that
entries D(i, i) =

∑
j W (i, j), and

∑
j P (i, j) = 1. Next,

we assume that the diagonal entries of W are free, that is, a
better normalization has been achieved by discarding self-



similarity, and keep
∑

j P (i, j) = 1:

K (i, j) =
W (i, j)

2
∑

k 6=i W (i, k)
(7)

subject to the constraints: i6= j, otherwise K(i, j) = 1
2 . Let

Ni represent a set of vi’s neighbors including vi in G. We as-
sume that local affinity Q can be obtained by using K nearest
neighbors (KNN) through the following methods:

Q (i, j) =
W (i, j)∑

k∈Ni
W (i, k)

(8)

subject to the constraints: j∈Ni ,otherwise Q (i, j) = 0 For
multiple similarity networks, fusion is the iterative updating
of these matrices:

K(v) = Q(v)×

(∑
k 6=v K

(k)

m− 1

)
×(Q(v))

T
, v = 1, 2, 3, . . . , m

(9)
where K(v)

t=0 said initial v state matrix, and Q
(v)
t=0 is the kernel

matrix. The main program of network fusion is to update
the state matrix and generate v parallel exchange diffusion
processes. The final status needs to be updated t times to
obtain:

K(v) =

∑m
v=1 K

v

m
(10)

Following the above method execution, the generated fu-
sion graph can be defined as Gf = (Vf , Ef ). Vertex set
Vf = vf1, . . . , vfn included all chemical substructures.
For each pair of vertices, there is a fused similarity sij
between two chemical substructures in the similarity ma-
trix S. It is our important goal to decompose ADR related
subgraphs from the new fused graphs. Stacked auto en-
coder(Bengio, Courville, and Vincent 2013; Tian et al. 2014)
and spectral clustering are similar, it can eliminate edges be-
tween two nodes while learning nonlinear embedding. Each
node in the fused graph will be normalized and fed to the
Stacked Auto-Encoder. Then the training model is optimized
to minimize the error between output and input. And then
we apply C-Means(Gu et al. 2017) to extract C molecular
subgraphs. By the above steps we can recreate the feature
expression of each drug, which is expressed in the form of
one-hot more than C molecular subgraphs, 0 for does not ex-
ist a subgraph in drug molecular structure, and 1 means there
is. Next, we can introduce any interpretable classifier to
complete the final ADR prediction. Specifically, suppose we
have N drug samples and C molecular subgraphs (integra-
tion from substructures, enzyme, pathways, target and treat-
ments), we will try to model new integration (ifi) features
and label ADR (arj). Inspired by the previous work(Hu et
al. 2017), we used Naive Bayes as the classifier to ensure the
interpretability of the results and to contrast the effect of the
new molecular subgraphs.

Results
Evaluation Data Set and Metrics
In this study, the Liu’s dataset and Mizutani’s dataset which
we used to predict ADRs are obtained from(Liu et al. 2012;

Mizutani et al. 2012). They have been widely used to test
the effectiveness of ADRs prediction. Liu’s dataset builds a
dataset containing 832 drugs and 1385 kinds of ADR and in-
clude six kinds of drug feature: Chemical Substructures, Tar-
get Proteins, Transporters, Enzymes, Pathways, Treatment
indications. Mizutani’s dataset builds a dataset containing
658 drugs and 1339 kinds of ADR and include two kinds of
drug features: Chemical Substructures and Target Proteins.
Liu’s dataset has 881-dimensional binary chemical substruc-
tures to represent drugs which collected from PubChem
Compound Database (Chen, Wild, and Guha 2009), Drug-
Bank (Law et al. 2013). The data of drug ADRs come from
SIDER(Kuhn et al. 2010) which collects ADRs data from
FDA Adverse Event Reporting System (FAERS). In addi-
tion, this dataset also includes 786 target proteins, 72 trans-
porters, 111 enzymes, 173 pathways and 869 treatment indi-
cations which collected from KEGG DRUG(Kanehisa et al.
2009), DrugBank, KEGG, SIDER respectively. Mizutani’s
dataset also has 881-dimensional binary chemical substruc-
tures which collected from PubChem Compound Database
and DrugBank. This dataset also includes 1368 target pro-
teins collected from KEGG. Even the most common ADRs
are extremely rare because every drug on the market has
gone through rigorous clinical trials. Regarding imbalance
prediction performance evaluation, we introduce AUC (area
under the ROC curve) to evaluate our model performance
as the prediction performance can be safely unbiased. We
infer interactions and compare against the held-out interac-
tions, measuring performance using the AUC for our evalu-
ations. To further evaluate the performance of the proposed
method, we also use the several more measure like follow-
ing criteria: the overall prediction accuracy, recall, precision,
and F-measure were calculated.

Result Comparison
To evaluate the performance of DF-ADRs, we also made
use of current interpretable approaches which include the
GraphSE(Hu et al. 2017), Naive Bayes, OCCA(Pauwels,
Stoven, and Yamanishi 2011), SCCA(Pauwels, Stoven, and
Yamanishi 2011) and LDA(Xiao et al. 2017) to predict
ADRs. To further evaluate the performance of DF-ADRs,
we adopted 5-fold cross validation. Table 1 reports the AUC
scores, F-measures, ACC, Precision and Recall of different
algorithms on the same datasets. This result show that DF-
ADRs extracted more meaningful subgraphs to drug sub-
structures from fused network and this approach is shown
here to have the potential to improve prediction perfor-
mance.

Interpretable Results
To find out the relationship between the drug ADR and the
multi-type features include enzyme, pathways, target, and
treatments, we take a significance analysis first. In this step,
we will obtain various types of features that have a statis-
tical correlation with ADR. These features can be consid-
ered as single factors affecting the generation of ADR. We
will use the features received from this step as new features
of each information type. Then, we can use them to calcu-
late multiple graph representations in terms of drug chemical



Methods AUC ACC F-measures Precision Recall
Liu Mizutani Liu Mizutani Liu Mizutani Liu Mizutani Liu Mizutani

DF-ADRs 0.906 0.902 0.917 0.921 0.467 0.469 0.413 0.398 0.622 0.626
GraphSE 0.883 0.881 0.892 0.898 0.445 0.439 0.389 0.382 0.597 0.595

NB 0.879 0.85 0.881 0.886 0.409 0.405 0.352 0.367 0.581 0.580
OCCA 0.841 0.852 0.856 0.851 0.386 0.383 0.339 0.335 0.557 0.561
SCCA 0.860 0.870 0.877 0.873 0.396 0.393 0.361 0.359 0.578 0.572
LDA 0.844 0.850 0.854 0.855 0.389 0.397 0.357 0.363 0.562 0.553

Table 1: Metric scores of different methods evaluated by 5-fold cross-validation

Figure 2: The information used for this visualization is based
on SIDER database and represents some of the ADRs that
commonly caused by same drug targets. Different color rep-
resents share different targets and the different drug be as-
signed to same color according to same targets.

structure. An example of the relative relationship between
the drug targets and ADRs is given in Fig.2. This visual fig-
ure shows the human target that drug use is the same and
so there are laws connect with same ADRs but the corre-
lations is sparse and small range gathered. Meanwhile, the
output of deep fusion model can also be interpreted, and
the correlation between single factor and ADR can be ex-
tended to the correlation between groups composed of mul-
tiple chemical molecules and ADRs. Obviously, the above
example shows the explainable ability for the ADRs predic-
tion of DF-ADRs.

Conclusion
In this paper, an approach, DF-ADRs that can be used for
network fusion for interpretable prediction of ADRs is pro-
posed. DF-ADRs addresses several key challenges in inter-
pretable ADRs associated patterns and multiple molecular

network fusion. First, DF-ADRs takes the smallest com-
putable substructure of the drug as the node to construct
the graph. Secondly, it makes full use of heterogeneous in-
formation embedded in the expression of drug substructure.
Additionally, the interpretable classifier is friendly enough
to use the newly generated subgraphs as input features to
construct a classification model. Experimental results on
the real-world dataset demonstrate that DF-ADRs is able to
achieves a good performance. DF-ADRs is an interpretable
model with potential applications. Its interpretability can im-
prove the confidence of doctors in the use of drugs and pro-
vide researchers with a reliable basis in drug development.
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