
Automatic Quantum Optics experimental design
with sequential graph generative models

Written by Anon 1∗

Anon
1Association for the Advancement of Artificial Intelligence

2275 East Bayshore Road, Suite 160
Palo Alto, California 94303

publications20@aaai.org

Abstract

With the rise of quantum computing and the continuous de-
velopment of quantum information technologies, there is a
large demand for producing evermore exotic entangled quan-
tum mechanical states. However, it is an extremely difficult
task to design quantum optical systems that generate these
states. Therefore, we turn to recent work on sequential gener-
ative models of graphs to help us generate and search through
the space of possible experimental quantum optical setups.
Our model constructs experiments by sequentially adding de-
vices to the setup. We demonstrated that our model can build
valid possible experimental setups that are unique and novel
from the training data.

Introduction
Over the second half of the 20th century, we have witnessed
major breakthroughs in quantum mechanics from experi-
mental verification of quantum entanglement to the devel-
opment of groundbreaking quantum information technolo-
gies such as quantum computing and quantum cryptography.
Among these, quantum entanglement is an important phe-
nomena for development of these technologies. Thus, build-
ing experimental setups to produce target entangled states is
an essential research task.

With recent advances in automated design procedures,
large datasets of experimental setups can be procured, the
MELVIN algorithm is the first of such (Krenn et al. 2016).
MELVIN searches through the large combinatorial space
of possible experiments by a simple Genetic Algorithm –
checking if random configurations of optical elements pro-
duce interesting quantum mechanical states. For states with
just a few photons, it is generally infeasible for humans to at-
tempt to solve the inverse problem of determining the setup
required to produce a specific state.

On the other hand, over the past few years, there has been
considerable interest and advancement in building genera-
tive models of graphs with many important applications such

∗Primarily Mike Hamilton of the Live Oak Press, LLC, with
help from the AAAI Publications Committee
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A setup for a quantum optics experiment repre-
sented as a graph. Specific nodes correspond to specifc op-
tical devices. More details in the Dataset section

as automatic and goal directed molecular design. Multilay-
ered models can be trained sequentially to generate valid
molecular graphs that match interesting data distributions of,
for example, drug like molecules.

In this work, we apply these recent advances to the task of
generating experimental setups for quantum optics research
and define the following contributions:

• We introduce a new bench mark dataset for the generation
of semantically constrained graphs consisting of 1 million
QO experimental setups.

• We build a sequential generative model of graphs specif-
ically for the generation of QO experimental setups by
specifying a simple generation procedure that avoids
computing intractable likelihoods over complicated gen-
eration traces.

• We test our model by assessing validity, uniqueness and
novelty on random samples from the trained model.



Table 1: Possible Optical Devices

Device Description

spontaneous parametric down conversion

Leach interferometer

Beam Splitter

Hologram that decrease mode #

Hologram that increase mode #

Dove prism

Reflection

Detector

Detector at trigger

Path without Detector

empty path

The Dataset
We train on a dataset of around 1 million experimental
setups using the graph representation of each setup. Each
graph is represented by its device and path features.

Node representations A setup S consists of devices which
we treat as nodes in the graph. They come from a set of
possible devices to include in the setup, each with feature
vector d ∈ RD. There are D = 11 possible devices which
are displayed in table 1. We consider setups of at most N =
61 devices including different kinds of optical devices like
holographms and detectors.

Edge representation: The experiments involve using three
photons with orbital angular momentum (OAM) cite. They
traverse a sequence of optical devices including beam split-
ters, and holographic plates and obtain a final output state.
They can travel along both directions of the setup and the
graphs are undirected. There are two types of paths giving
path feature pdd′ ∈ R2 for all possible N × N paths be-
tween devices on the graph, meaning that pdd = [0, 1] if
device d is connected to device d′ with path type 2.

Constraints : Not all possible arrangements of devices are
valid experimental setups that would produce an entangled
state. For example a beam splitter must have 4 paths con-
necting to it while a detector can only detect one photon and
must have one path connected to it. Similar constraints exist
for all other devices.

Related Work Model Design
In recent years there have been few advancements in build-
ing generative models of graphs. Sequential generative mod-
els like graph rnn (You et al. 2018b) autoregressively gen-
erate a graph by decomposing the generation process into a
sequence of node and edge constructions, conditioned on the
generated graph structure. These are powerful models since
they can account for correlations between edges which are
crucial in real life applications.

In particular, the following three Sequential Generative
Models of Graphs, are specified for constrained graph gener-
ation, supporting multiple edge types and condition on past
generation by using learned representations from graph neu-
ral networks. We construct our model using components of
these three with consideration of our domain.

1) DGM Learning deep generative models of graphs
(Li et al. 2018) Is the first and most general approach
for learning generative models over graphs : it uses a
simple message passing neural network to parameterize
a distribution over nodes and edges for any arbitrary
graph. They sequentially generate each graph using a
fixed ordering or uniform random ordering during train-
ing. The generation process consists of three main mod-
ules 1) add node 2) add edge 3) nodes which
1) decide to add another node or terminate 2) decide to add
an edge (or not) to the newly created node and 3) pick an-
other node in the graph to connect to with a specific edge
type. They initialize every added nodes representation using
a separate MLP module with both graph level and node level
embeddings.

2) CGVAE Constrained Graph Variational Auto-
Encoders for Molecule Design (Liu et al. 2018) propose
a graph structured variational autoencoder by building gated
graph neural networks (Li et al. 2015) into the encoder and
decoder. They assume a sequential ordering of graph gen-
eration steps and constrain their model so it can design
molecules that are optimal in desired properties. Their model
first initializes a set of nodes using a sampled latent variable
and cycles between a edge selection plus labeling step and
Node update/ Termination stage until their model flags to
globally stop.

3) GCPN Graph convolution policy network (You et al.
2018a) Most related to our work is GCPN, which uses a
graph convolutional network (Kipf and Welling 2016) for
goal-directed graph generation through reinforcement learn-
ing. The model is trained to optimize domain-specific re-
wards and adversarial loss through proximal policy gradient
optimization (Schulman et al. 2017), and acts in an envi-
ronment that incorporates domain-specific rules. The gen-
eration process starts with a single carbon atom and at ev-
ery step uses four modules to 1) select a node on the cur-
rent graph 2) select a second node from the union of current
graph nodes and set of all possible scaffold graphs 3) sample
a bond type between the two selected nodes and 4) choose
whether to terminate graph construction or continue GCPN
does not initialize node representations.



Graph Generative Model
We use the base graph construction framework similar to
GAR and GCPN – we want to construct setups by sampling
a device and path one at a time. We avoid computing com-
plicated likelihoods based on complex generation histories
by specifying an adversarial loss. Our generative process is
path oriented: first selecting a device on the current gener-
ated setup to build a path from, then choosing a double or
single photon path and deciding whether or not connect the
path back to the setup or add a new device to the setup. We
initialize setups with a single device either 1) a random de-
vice 2) Beam splitter or 3) Detector

Setup Construction Modules
The select device module
This module selects a device from current experimental
setup S including an off setup terminate device ∅ which
tell us to globally stop adding devices. This is done by MLP
module fselect which takes in setup representation hS and
outputs the probability of selecting a specific device.

fselect(S) = σ(mMLP(hS))

The path module
This module simply chooses which path type to build onto
the experimental setup from the selected device. Once again
we use an mlp fpath that takes in the representations of the
device selected and the full setup S to determine the proba-
bility of building a single or double path.

fpath(S, s) = σ(mMLP(hS ,hs))

The close module
This module decides whether to connect the new path to a
device on the current setup or add a new device to the path.
Once again we use an mlp fclose that takes in the represen-
tations of the device selected and the full setup S to deter-
mine the probability of closing a cyle or adding a new device

fclose(S, s, p) = σ(mMLP(hS ,hs,p))

The connect or add device modules
Depending on the choice of the close module the connect
module either 1) samples a new device from the set of all
possible devices to connect to the selected device or 2)
chooses another device on the current setup to connect to
the selected device s ie close the loop This is done by MLP
modules fconnect or fadd which takes in setup representa-
tion hS and selected device representation hs then outputs
the probability of choosing which device to connect.

fconnect(S, s) = σ(mMLP(hS ,hs,p))

Algorithm 1 A single Generation Step of a QO Setup

1: Input current setup S
2: {h>d }d∈S = MessagePassing(h0

d,pdd′) . device
level propagation

3: h>S = Readout({h>d ,xd}) . setup level aggregation
4: s ∼ Cat(fselect(hS)) . select
5: p ∼ Ber(fpath(hS ,hs)) . build path
6: Close ∼ Ber(fpath(hS ,hs))
7: if Close then
8: d ∼ Cat(fconnect(hS ,hs,p)) . close cycle
9: Return S → S ∪ (psd) . return new setup

10: else
11: d ∼ Cat(fadd(hS ,hs,p)) . add new device
12: Return S → S ∪ (d,psd)
13: end if

Propagation and Aggregation model
To learn a representation of the constructed graphs at each
construction step we use a message passing neural network
(Gilmer et al. 2017) that uses graph attention. (Veličković et
al. 2017)

md = Attn
s∈Nd

([ht
d,hs,psd]), Ut = σ([ht

d,m
t
d, ])

as well as the message function from the model in interac-
tion networks (Battaglia et al. 2016), which is a simple con-
catenation of node and edge features. The node update func-
tion concatenates incoming messages with the current node
state and feeds it through a dense layer. And we get graph
level representations

hS = Set2Set
d∈S

({hT
s ,xs})

After propagation through message passing layers, we use
the set2set model (Vinyals, Bengio, and Kudlur 2015) as the
readout function to combine the node hidden features into a
fix-sized hidden vector.

Likelihood free training
In order for our model to match the data distribution
pdata(S) of QO experimental setups we make use of a GAN
framework with adversarial loss `(θ,φ)

`(θ,φ) = ES∼pdata(S)[logDφ(S)]

+ ES∼pG(S)[log(1−Dφ(S))]

where D is the discriminator. We can not differentiate
through the generative process which produces a discrete
graph, instead we employ the reinforce gradient estimator.

Initialization We initialize each devices learned representa-
tion using the concatenation of prior noise and device fea-
tures.



Samples from training set Random Samples from the Model

Figure 2: A comparison of samples from the data distribution and samples from the generative model, more samples in the
appendix

Experiments
We conduct some simple basic preliminary experiments
with our model

• We sample 10K experimental setups from our model and
compute validity, novelty, uniqueness as in (Simonovsky
and Komodakis 2018).

• we plot random samples and compare to samples from the
training set.

Figure two shows samples from the model and data: demon-
strating we reasonably match the data distribution.

For Validity, uniqueness and Novelty we score 100, 96, 100
percentages respectively.

References
Battaglia, P.; Pascanu, R.; Lai, M.; Rezende, D. J.; et al.
2016. Interaction networks for learning about objects, re-
lations and physics. In Advances in neural information pro-
cessing systems, 4502–4510.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and

Dahl, G. E. 2017. Neural message passing for quantum
chemistry.

Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks.

Krenn, M.; Malik, M.; Fickler, R.; Lapkiewicz, R.; and
Zeilinger, A. 2016. Automated search for new quantum
experiments. Physical review letters 116(9):090405.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2015.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493.

Li, Y.; Vinyals, O.; Dyer, C.; Pascanu, R.; and Battaglia, P.
2018. Learning deep generative models of graphs.

Liu, Q.; Allamanis, M.; Brockschmidt, M.; and Gaunt,
A. 2018. Constrained graph variational autoencoders for
molecule design. In Advances in Neural Information Pro-
cessing Systems, 7795–7804.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.

Simonovsky, M., and Komodakis, N. 2018. Graphvae: To-



wards generation of small graphs using variational autoen-
coders.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.

Vinyals, O.; Bengio, S.; and Kudlur, M. 2015. Order
matters: Sequence to sequence for sets. arXiv preprint
arXiv:1511.06391.

You, J.; Liu, B.; Ying, R.; Pande, V.; and Leskovec, J.
2018a. Graph convolutional policy network for goal-
directed molecular graph generation.

You, J.; Ying, R.; Ren, X.; Hamilton, W. L.; and Leskovec,
J. 2018b. Graphrnn: Generating realistic graphs with deep
auto-regressive models. arXiv preprint arXiv:1802.08773.


