
Combining learning and optimization on graphs

Anonymous

Abstract
Real-world applications often combine learning and opti-
mization problems on graphs. For instance, our objective may
be to cluster the graph in order to detect meaningful com-
munities (or solve other common graph optimization prob-
lems such as facility location, maxcut, and so on). However,
graphs or related attributes are often only partially observed,
introducing learning problems such as link prediction which
must be solved prior to optimization. Standard approaches
treat learning and optimization entirely separately, while re-
cent machine learning work aims to predict the optimal solu-
tion directly from the inputs. Here, we propose an alternative
decision-focused learning approach that integrates a differ-
entiable proxy for common graph optimization problems as
a layer in learned systems. The main idea is to learn a rep-
resentation that maps the original optimization problem onto
a simpler proxy problem that can be efficiently differentiated
through. Experimental results show that our CLUSTERNET
system outperforms both pure end-to-end approaches (that di-
rectly predict the optimal solution) and standard approaches
that entirely separate learning and optimization.
An extended version of this paper appears at NeurIPS 2019.

Introduction
While deep learning has proven enormously successful at
a range of tasks, an expanding area of interest concerns
systems that can flexibly combine learning with optimiza-
tion. Examples include recent attempts to solve combi-
natorial optimization problems using neural architectures
(Vinyals, Fortunato, and Jaitly 2015; Khalil et al. 2017;
Bello et al. 2016; Kool, van Hoof, and Welling 2019), as well
as work which incorporates explicit optimization algorithms
into larger differentiable systems (Amos and Kolter 2017;
Donti, Amos, and Kolter 2017; Wilder, Dilkina, and Tambe
2019). The ability to combine learning and optimization
promises improved performance for real-world problems
which require decisions to be made on the basis of machine
learning predictions by enabling end-to-end training which
focuses the learned model on the decision problem at hand.

We focus on graph optimization problems, an expan-
sive subclass of combinatorial optimization. While graph

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimization is ubiquitous across domains, complete ap-
plications must also solve machine learning challenges.
For instance, the input graph is usually incomplete; some
edges may be unobserved or nodes may have attributes
that are only partially known. Recent work has introduced
sophisticated methods for tasks such as link prediction
and semi-supervised classification (Perozzi, Al-Rfou, and
Skiena 2014; Kipf and Welling 2017; Schlichtkrull et al.
2018; Hamilton, Ying, and Leskovec 2017; Zhang and Chen
2018), but these methods are developed in isolation of down-
stream optimization tasks. Most current solutions use a two-
stage approach which first trains a model using a standard
loss and then plugs the model’s predictions into an optimiza-
tion algorithm (Yan and Gregory 2012; Burgess, Adar, and
Cafarella 2016; Bahulkar et al. 2018; Berlusconi et al. 2016;
Tan et al. 2016). However, predictions which minimize a
standard loss function (e.g., cross-entropy) may be subop-
timal for specific optimization tasks, especially in difficult
settings where even the best model is imperfect.

A preferable approach is to incorporate the downstream
optimization problem into the training of the machine learn-
ing model. Many recent works take a pure end-to-end ap-
proach where a neural network is trained to predict a so-
lution to the optimization problem using supervised or re-
inforcement learning (Vinyals, Fortunato, and Jaitly 2015;
Khalil et al. 2017; Bello et al. 2016; Kool, van Hoof, and
Welling 2019). However, this often requires a large amount
of data and results in suboptimal performance because the
network needs to discover algorithmic structure entirely
from scratch. Between the extremes of a two stage approach
and pure end-to-end architectures, decision-focused learn-
ing (Donti, Amos, and Kolter 2017; Wilder, Dilkina, and
Tambe 2019) embeds a solver for the optimization problem
as a differentiable layer within a learned system. This al-
lows the model to train using the downstream performance
that it induces as the loss, while leveraging prior algorith-
mic knowledge for optimization. The downside is that this
approach requires manual effort to develop a differentiable
solver for each problem and often results in cumbersome
systems that must, e.g, call a QP solver every forward pass.

We propose a new approach that gets the best of both
worlds: incorporate a solver for a simpler optimization prob-

lem as a differentiable layer, and then learn a representation
that maps the (harder) problem of interest onto an instance
of the simpler problem. Compared to earlier approaches
to decision-focused learning, this places more emphasis on
representation learning and simplifies the optimization com-
ponent. However, compared to pure end-to-end approaches,
we only need to learn the reduction to the simpler problem
instead of the entire algorithm.

Her, we instantiate the simpler problem as a differentiable
version of k-means clustering. Clustering is motivated by the
fact that graph neural networks embed nodes into a continu-
ous space, allowing us to approximate optimization over the
graph with optimization in continuous embedding space. We
then interpret the cluster assignments as a solution to the dis-
crete problem. We instantiate this approach for two classes
of optimization problems: those that require partitioning the
graph (e.g., community detection or maxcut), and those that
require selecting a subset of K nodes (facility location, in-
fluence maximization, immunization, etc). We don’t claim
that clustering is the right structure for all tasks, but it is suf-
ficient for many problems as shown in this paper.

Related work
There recent interest in training neural networks to solve
combinatorial optimization problems (Vinyals, Fortunato,
and Jaitly 2015; Khalil et al. 2017; Bello et al. 2016; Kool,
van Hoof, and Welling 2019). While we focus mostly on
combining graph learning with optimization, our model can
also be trained just to solve an optimization problem given
complete information about the input. The main method-
ological difference is that we include more structure via a
differentiable k-means layer instead of using more generic
tools (e.g., feed-forward or attention layers).

Other work uses deep architectures as a part of a clus-
tering algorithm (Tian et al. 2014; Law, Urtasun, and Zemel
2017; Guo et al. 2017; Shaham et al. 2018; Nazi et al. 2019),
or includes a clustering step as a component of a deep net-
work (Greff et al. 2016; Greff, van Steenkiste, and Schmid-
huber 2017; Ying et al. 2018). While some techniques are
similar, the overall task we address and framework we pro-
pose are entirely distinct. Our aim is not to cluster a Eu-
clidean dataset (as in (Tian et al. 2014; Law, Urtasun, and
Zemel 2017; Guo et al. 2017; Shaham et al. 2018)), or to
solve perceptual grouping problems (as in (Greff et al. 2016;
Greff, van Steenkiste, and Schmidhuber 2017)). Rather, we
propose an approach for graph optimization problems. There
is also some work which uses deep networks for graph clus-
tering (Xie, Girshick, and Farhadi 2016; Yang et al. 2016).
However, none of this work consider an explicit clustering
algorithm in the network, or our goal of integrating graph
learning and optimization.

Setting
We consider settings that combine learning and optimiza-
tion. The input is a graphG = (V,E), which is in some way
partially observed. We will formalize our problem in terms
of link prediction as an example, but our framework ap-
plies to other common graph learning problems (e.g., semi-

supervised classification). In link prediction, the graph is
not entirely known; instead, we observe only training edges
Etrain ⊂ E. LetA denote the adjacency matrix of the graph
and Atrain denote the adjacency matrix with only the train-
ing edges. The learning task is to predict A from Atrain.
In domains we consider, the motivation for performing link
prediction, is to solve a decision problem for which the ob-
jective depends on the full graph. Specifically, we have a de-
cision variable x, objective function f(x,A), and a feasible
set X . We aim to solve the optimization problem

max
x∈X

f(x,A). (1)

However,A is unobserved. The most common approach is to
train a model to reconstruct A from Atrain using a standard
loss function (e.g., cross-entropy), producing an estimate Â.
The two-stage approach plugs Â into an optimization algo-
rithm for Problem 1, maximizing f(x, Â).

We propose end-to-end models which map from Atrain

directly to a decision x. The model will be trained to maxi-
mize f(x,Atrain), i.e., the quality of its decision evaluated
on the training data (instead of a loss `(Â, Atrain) that mea-
sures purely predictive accuracy). One approach is to “learn
away” the problem by training a standard model (e.g., a
GCN) to map directly fromAtrain to x. However, this forces
the model to rediscover algorithmic concepts, while two-
stage methods exploit sophisticated optimization methods.
We propose an alternative that embeds algorithmic structure
into the learned model, getting the best of both worlds.

Approach: CLUSTERNET
Our proposed CLUSTERNET system merges two differen-
tiable components into a system that is trained end-to-end.
First, a graph embedding layer which uses Atrain and any
node features to embed the nodes of the graph into Rp. In our
experiments, we use GCNs (Kipf and Welling 2017). Sec-
ond, a layer that performs differentiable optimization. This
layer takes the continuous-space embeddings as input and
uses them to produce a solution x to the graph optimization
problem. Specifically, we propose to use a layer that imple-
ments a differentiable version of K-means clustering. This
layer produces a soft assignment of the nodes to clusters,
along with the cluster centers in embedding space.

The intuition is that cluster assignments can be interpreted
as the solution to common graph optimization problems. For
instance, in community detection we can interpret the clus-
ter assignments as assigning the nodes to communities. An-
other example is maximum coverage and related problems,
where we attempt to select a set ofK nodes which cover (are
neighbors to) as many other nodes as possible. This problem
can be approximated by clustering the nodes into K com-
ponents and choosing nodes whose embedding is close to
the center of each cluster. We do not claim that any of these
problems is exactly reducible to K-means. Rather, the idea
is that including K-means as a layer in the network pro-
vides a useful inductive bias. The first component, which
produces the embeddings, is trained so that the learned rep-
resentations induce clusterings with high objective value for
the downstream optimization task.

Forward pass
Let xj denote the embedding of node j and µk denote the
center of cluster k. rjk denotes the degree to which node
j is assigned to cluster k. In traditional K-means, this is
a binary quantity, but we will relax it to a fractional value
such that

∑
k rjk = 1 for all j. Specifically, we take rjk =

exp(−β||xj−µk||)∑
` exp(−β||xj−µ`||)

, which is a soft-min assignment of each
point to the cluster centers based on distance. While our
architecture can be used with any norm || · ||, we use the
negative cosine similarity due to its strong empirical perfor-
mance. β is an inverse-temperature hyperparameter. We can
optimize the cluster centers via an iterative process analo-
gous to the typical k-means updates by alternately setting

µk =

∑
j rjkxj∑
j rjk

rjk =
exp(−β||xj − µk||)∑
` exp(−β||xj − µ`||)

(2)

These iterates converge to a fixed point where µ remains the
same between successive updates (MacKay 2003).

Backward pass
We will use the implicit function theorem to analytically
differentiate through the fixed point that the forward pass
k-means iterates converge to, obtaining expressions for ∂µ

∂x

and ∂r
∂x . Previous work (Donti, Amos, and Kolter 2017;

Wilder, Dilkina, and Tambe 2019) has used the implicit
function theorem to differentiate through the KKT condi-
tions of optimization problems; here we take a more direct
approach that characterizes the update process itself. Doing
so allows us to backpropagate gradients from the decision
loss to the component that produced the embeddings x. De-
fine a function f : RKp → R as

fi,`(µ, x) = µ`i −
∑
j rjkx

`
j∑

j rjk
(3)

Now, (µ, x) are a fixed point of the iterates if f(µ, x) = 0.
Applying the implicit function theorem yields that ∂µ

∂x =

−
[
∂f(µ,x)
∂µ

]−1
∂f(µ,x)
∂x , from which ∂r

∂x can be easily ob-
tained via the chain rule.

Exact backward pass: We now examine the process of
calculating ∂µ

∂x . Both ∂f(µ,x)
∂x and ∂f(µ,x)

∂µ can be easily cal-
culated in closed form (see appendix). Computing the for-
mer requires time O(nKp2). Computing the latter requires
O(npK2) time, after which it must be inverted (or else iter-
ative methods must be used to compute the product with its
inverse). This requires time O(K3p3) since it is a matrix of
size (Kp) × (Kp). While the exact backward pass may be
feasible for some problems, it quickly becomes burdensome
for large instances. We now propose a fast approximation.

Approximate backward pass: We start from the ob-
servation that ∂f

∂µ will often be dominated by its diagonal
terms (the identity matrix). The off-diagonal entries capture
the extent to which updates to one entry of µ indirectly im-
pact other entries via changes to the cluster assignments r.
However, when the cluster assignments are relatively firm,
r will not be highly sensitive to small changes to the cluster

centers. We find to be typical empirically, especially since
the optimal choice of the parameter β (which controls the
hardness of the cluster assignments) is typically fairly high.
Under these conditions, we can approximate ∂f

∂µ by its diag-

onal, ∂f∂µ ≈ I . This in turn gives ∂µ
∂x ≈ −

∂f
∂x .

We can formally justify this approximation when the clus-
ters are relatively balanced and well-separated. More pre-
cisely, define c(j) = argmaxi rji to be the closest cluster
to point j. Proposition 1 (proved in the appendix) shows that
the quality of the diagonal approximation improves expo-
nentially quickly in the product of two terms: β, the hard-
ness of the cluster assignments, and δ, which measures how
well separated the clusters are. α (defined below) measures
the balance of the cluster sizes. We assume for convenience
that the input is scaled so ||xj ||1 ≤ 1∀j.
Proposition 1. Suppose that for all points j, ||xj − µi|| −
||xj − µc(j)|| ≥ δ for all i 6= c(j) and that for all clusters

i,
∑n
j=1 rji ≥ αn. Moreover, suppose that βδ > log 2βK2

α .

Then,
∣∣∣∣∣∣ ∂f∂µ − I∣∣∣∣∣∣

1
≤ exp(−δβ)

(
K2β

1
2α−K2β exp(−δβ)

)
where

|| · ||1 is the operator 1-norm.

We now show that the approximate gradient obtained by
taking ∂f

∂µ = I can be calculated by unrolling a single itera-
tion of the forward-pass updates from Equation 2 at conver-
gence. Examining Equation 3, we see that the first term (µ`i)
is constant with respect to x, since here µ is a fixed value.
Hence,

−∂fk
∂x

=
∂

∂x

∑
j rjkxj∑
j rjk

which is just the update equation for µk. Since the forward-
pass updates are written entirely in terms of differentiable
functions, we can automatically compute the approximate
backward pass with respect to x by applying standard au-
todifferentiation tools to the final update of the forward pass.
Compared to computing the exact analytical gradients, this
avoids the need to explicitly reason about or invert ∂f∂µ . The
final iteration (the one which is differentiated through) re-
quires time O(npK), linear in the size of the data.

Compared to differentiating by unrolling the entire se-
quence of updates in the computational graph (as has been
suggested for other problems (Domke 2012; Andrychowicz
et al. 2016; Zheng et al. 2015)), our approach has two key ad-
vantages. First, it avoids storing the entire history of updates
and backpropagating through all of them. Second, we can
in fact use entirely non-differentiable operations to arrive
at the fixed point, e.g., heuristics for the K-means problem,
stochastic methods which only examine subsets of the data,
etc. This allows the forward pass to scale to larger datasets
since we can use the best algorithmic tools available, not
just those that can be explicitly encoded in the autodifferen-
tiation tool’s computational graph.

Obtaining solutions to the optimization problem
Having obtained the cluster assignments r, along with the
centers µ, in a differentiable manner, we need a way to (1)

differentiably interpret the clustering as a soft solution to the
optimization problem, (2) differentiate a relaxation of the
objective value of the graph optimization problem in terms
of that solution, and then (3) round to a discrete solution at
test time. We give a generic means of accomplishing these
three steps for two broad classes of problems: those that in-
volve partitioning the graph into K disjoint components,
and those that that involve selecting a subset of K nodes.

Partitioning: (1) We can naturally interpret the clus-
ter assignments r as a soft partitioning of the graph.
(2) One generic continuous objective function (defined
on soft partitions) follows from the random process of
assigning each node j to a partition with probabilities
given by rj , repeating this process independently across
all nodes. This gives the expected training decision loss
` = Erhard∼r[f(rhard, Atrain)], where rhard ∼ r denotes
this random assignment. ` is differentiable wrt r, and can
be computed in closed form via standard autodifferentiation
tools for many problems of interest (see below). (3) At test
time, we simply apply a hard maximum to r.

Subset selection: (1) Here, it is less obvious how to
obtain a subset of K nodes from the cluster assignments.
Our continuous solution will be a vector x, 0 ≤ x ≤ 1,
where ||x||1 = K. Intuitively, xj is the probability of in-
cluding xj in the solution. Our approach obtains xj by plac-
ing greater probability mass on nodes that are near the clus-
ter centers. Specifically, each center µi is endowed with one
unit of probability mass, which it allocates to the points x as
aij = softmin(η||x − µi||)j . The total probability allocated
to node j is bj =

∑K
i=1 aij . Since we may have bj > 1,

we pass b through a sigmoid function to cap the entries at
1; specifically, we take x = 2 ∗ σ(γb) − 0.5 where γ is a
tunable parameter. If the resulting x exceeds the budget con-
straint (||x||1 > K), we output Kx

||x||1 .
(2) We interpret this solution in terms of the objec-

tive similarly as above. Specifically, we consider drawing
a discrete solution xhard ∼ x where every node j is in-
cluded (i.e., set to 1) independently with probability xj
from the end of step (1). The training objective is then
Exhard∼x[f(xhard, Atrain)]. Often, this can again be com-
puted and differentiated through in closed form (see below).

(3) At test time, we need a feasible discrete vector x;
note that independently rounding the individual entries may
produce a vector with more than K ones. Here, we apply
a generic approach based on pipage rounding (Ageev and
Sviridenko 2004), a randomized rounding scheme which
has been applied to many problems. Pipage rounding can
be implemented to produce a random feasible solution in
time O(n) (Karimi et al. 2017); in practice we round several
times and take the solution with the best decision loss on the
observed edges. While pipage rounding has theoretical guar-
antees only for specific classes of functions, we find it more
broadly successful (e.g., facility location). However, more
domain-specific rounding methods can also be applied.

Experimental results
We now show experiments on domains that combine link
prediction with optimization.

Learning problem: In link prediction, we observe a par-
tial graph and aim to infer which unobserved edges are
present. In each of the experiments, we hold out 60% of the
edges in the graph, with 40% observed during training. We
used a graph dataset which is not included in our results to
set our method’s hyperparameters, which were kept constant
across datasets (see appendix for details). The learning task
is to use the training edges to predict whether the remaining
edges are present, after which we will solve an optimization
problem on the predicted graph. The objective is to find a
solution with high objective value measured on the entire
graph, not just the training edges.

Optimization problems: We consider two optimiza-
tion tasks, one from each of the broad classes intro-
duced above. First, community detection aims to parti-
tion the nodes of the graph into K distinct subgroups
which are dense internally, but with few edges across
groups. Formally, the objective is to find a partition
maximizing the modularity (Newman 2006b), defined as
1

2m

∑
u,v∈V

∑K
k=1

[
Auv − dudv

2m

]
rukrvk. Here, dv is the

degree of node v, and rvk is 1 if node v is assigned to com-
munity k and zero otherwise. This measures the number of
edges within communities compared to the expected num-
ber if edges were placed randomly. Our clustering module
has one cluster for each of the K communities. Defining B
to be the modularity matrix with entriesBuv = Auv− dudv

2m ,
our training objective (the expected value of a partition sam-
pled according to r) is 1

2mTr
[
r>Btrainr

]
.

Second, minmax facility location, where the decision
problem is to select a subset of K nodes from the graph,
minimizing the maximum distance from any node to a fa-
cility (selected node). Letting d(v, S) be the shortest path
length from a vertex v to a set of vertices S, the objective
is f(S) = min|S|≤kmaxv∈V d(v, S). To obtain the train-
ing loss, we take two steps. First, we replace d(v, S) by
ES∼x[d(v, S)], where S ∼ x denotes drawing a set from
the product distribution with marginals x. This can easily be
calculated in closed form (Karimi et al. 2017). Second, we
replace the min with a softmin.

Baseline learning methods: We instantiate CLUSTER-
NET using a 2-layer GCN for node embeddings, followed
by a clustering layer. We compare to three families of base-
lines. First, GCN-2stage, the two-stage approach which first
trains a model for link prediction, and then inputs the pre-
dicted graph into an optimization algorithm. For link predic-
tion, we use the GCN-based system of (Schlichtkrull et al.
2018) (we also adopt their training procedure, including neg-
ative sampling and edge dropout). For the optimization al-
gorithms, we use standard approaches for each domain, out-
lined below. Second, “train”, which runs each optimization
algorithm only on the observed training subgraph (without
attempting any link prediction). Third, GCN-e2e, an end-
to-end approach which does not include explicit algorithm
structure. We train a GCN-based network to directly predict
the final decision variable (r or x) using the same training
objectives as our own model. Empirically, we observed best
performance with a 2-layer GCN. This baseline allows us to
isolate the benefits of including algorithmic structure.

Table 1: Performance on the community detection task
Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 0.54 0.55 0.29 0.49 0.30 0.72 0.73 0.52 0.58 0.76
GCN-e2e 0.16 0.02 0.13 0.12 0.13 0.19 0.03 0.16 0.20 0.23
Train-CNM 0.20 0.42 0.09 0.01 0.14 0.08 0.34 0.05 0.57 0.77
Train-Newman 0.09 0.15 0.15 0.15 0.08 0.20 0.23 0.29 0.30 0.55
Train-SC 0.03 0.02 0.03 0.23 0.19 0.09 0.05 0.06 0.49 0.61
GCN-2stage-CNM 0.17 0.21 0.18 0.28 0.13 - - - - -
GCN-2stage-Newman 0.00 0.00 0.00 0.14 0.02 - - - - -
GCN-2stage-SC 0.14 0.16 0.04 0.31 0.25 - - - - -

Table 2: Performance on the facility location task.
Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 10 14 6 6 4 9 14 6 5 3
GCN-e2e 12 15 8 6 5 11 14 7 6 5
Train-greedy 14 16 8 8 6 9 14 7 6 5
Train-gonzalez 12 17 8 6 6 10 15 7 7 3
GCN-2Stage-greedy 14 17 8 7 6 - - - - -
GCN-2Stage-gonzalez 13 17 8 6 6 - - - - -

Baseline optimization approaches: In each domain, we
compare to expert-designed optimization algorithms found
in the literature. In community detection, we compare to
“CNM” (Clauset, Newman, and Moore 2004), an agglom-
erative approach, “Newman”, an approach that recursively
partitions the graph (Newman 2006a), and “SC”, which per-
forms spectral clustering (Von Luxburg 2007) on the mod-
ularity matrix. In facility location, we compare to “greedy”,
the common heuristic of iteratively selecting the point with
greatest marginal improvement in objective value, and “gon-
zalez” (Gonzalez 1985), an algorithm which iteratively se-
lects the node furthest from the current set. “gonzalez” at-
tains the optimal 2-approximation for this problem.

Datasets: We use several standard graph datasets: cora
(Sen et al. 2008) (a citation network with 2,708 nodes),
citeseer (Sen et al. 2008) (a citation network with 3,327
nodes), protein (Collection 2017c) (a protein interaction net-
work with 3,133 nodes), adol (Collection 2017a) (an adoles-
cent social network with 2,539 vertices), and fb (Collection
2017b; Leskovec and Mcauley 2012) (an online social net-
work with 2,888 nodes). For facility location, we use the
largest connected component of the graph (since otherwise
distances may be infinite). Cora and citeseer have node fea-
tures (based on a bag-of-words representation of the docu-
ment), which were given to all GCN-based methods. For the
other datasets, we generated unsupervised node2vec features
(Grover and Leskovec 2016) using the training edges.

Results: We start out with results for the combined
link prediction and optimization problem. Table 1 shows
the objective value obtained by each approach on the full
graph for community detection, with Table 2 showing fa-
cility location. We focus first on the “Learning + Opti-
mization” column which shows the combined link predic-

tion/optimization task. We use K = 5 clusters; K = 10 is
very similar and may be found in the appendix. CLUSTER-
NET outperforms the baselines in nearly all cases, often sub-
stantially. GCN-e2e learns to produce nontrivial solutions,
often rivaling the other baseline methods. However, the ex-
plicit structure used by our approach CLUSTERNET results
in much higher performance.

We next examine an optimization-only task where the en-
tire graph is available as input (the “Optimization” column
of Tables 1 and Table 2). This tests CLUSTERNET’s abil-
ity to learn to solve combinatorial optimization problems
compared to expert-designed algorithms, even when there is
no partial information or learning problem in play. We find
that CLUSTERNET is highly competitive, meeting and fre-
quently exceeding the baselines. It is particularly effective
for community detection, where we observe large (> 3x) im-
provements compared to the best baseline on some datasets.
At facility location, our method always at least ties the base-
lines, and frequently improves on them. These experiments
provide evidence that our approach, which is automatically
specialized during training to optimize on a given graph, can
rival and exceed hand-designed algorithms from the litera-
ture. The alternate learning approach, GCN-e2e, which is an
end-to-end approach that tries to learn to predicts optimiza-
tion solutions directly from the node features, at best ties
the baselines and typically underperforms. This underscores
the benefit of including algorithmic structure as a part of the
end-to-end architecture.

References
Ageev, A. A., and Sviridenko, M. I. 2004. Pipage rounding:
A new method of constructing algorithms with proven per-

formance guarantee. Journal of Combinatorial Optimization
8(3):307–328.
Ahmed, N. K.; Rossi, R.; Lee, J. B.; Willke, T. L.; Zhou,
R.; Kong, X.; and Eldardiry, H. 2018. Learning role-based
graph embeddings. arXiv preprint arXiv:1802.02896.
Amos, B., and Kolter, J. Z. 2017. Optnet: Differentiable
optimization as a layer in neural networks. In ICML.
Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; Shillingford, B.; and De Freitas, N.
2016. Learning to learn by gradient descent by gradient de-
scent. In Advances in Neural Information Processing Sys-
tems, 3981–3989.
Bahulkar, A.; Szymanski, B. K.; Baycik, N. O.; and Sharkey,
T. C. 2018. Community detection with edge augmenta-
tion in criminal networks. In 2018 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining (ASONAM).
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940.
Berlusconi, G.; Calderoni, F.; Parolini, N.; Verani, M.;
and Piccardi, C. 2016. Link prediction in criminal net-
works: A tool for criminal intelligence analysis. PloS one
11(4):e0154244.
Burgess, M.; Adar, E.; and Cafarella, M. 2016. Link-
prediction enhanced consensus clustering for complex net-
works. PloS one 11(5):e0153384.
Clauset, A.; Newman, M. E.; and Moore, C. 2004. Finding
community structure in very large networks. Physical review
E 70(6):066111.
Collection, K. N. 2017a. Adolescent health. http://konect.
uni-koblenz.de/networks/moreno health.
Collection, K. N. 2017b. Facebook (nips). http://konect.uni-
koblenz.de/networks/ego-facebook.
Collection, K. N. 2017c. Human protein (vidal). http://
konect.uni-koblenz.de/networks/maayan-vidal.
Domke, J. 2012. Generic methods for optimization-based
modeling. In Artificial Intelligence and Statistics, 318–326.
Donti, P.; Amos, B.; and Kolter, J. Z. 2017. Task-based
end-to-end model learning in stochastic optimization. In
Advances in Neural Information Processing Systems, 5484–
5494.
Gonzalez, T. F. 1985. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science 38:293–
306.
Greff, K.; Rasmus, A.; Berglund, M.; Hao, T.; Valpola, H.;
and Schmidhuber, J. 2016. Tagger: Deep unsupervised per-
ceptual grouping. In NeurIPS.
Greff, K.; van Steenkiste, S.; and Schmidhuber, J. 2017.
Neural expectation maximization. In NeurIPS.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855–864. ACM.

Guo, X.; Gao, L.; Liu, X.; and Yin, J. 2017. Improved deep
embedded clustering with local structure preservation. In
IJCAI.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS.
Karimi, M.; Lucic, M.; Hassani, H.; and Krause, A. 2017.
Stochastic submodular maximization: The case of coverage
functions. In Advances in Neural Information Processing
Systems.
Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L.
2017. Learning combinatorial optimization algorithms over
graphs. In NIPS.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
learn to solve routing problems! In ICLR.
Law, M. T.; Urtasun, R.; and Zemel, R. S. 2017. Deep
spectral clustering learning. In ICML.
Leskovec, J., and Mcauley, J. J. 2012. Learning to discover
social circles in ego networks. In Advances in neural infor-
mation processing systems, 539–547.
MacKay, D. J. 2003. Information theory, inference and
learning algorithms. Cambridge university press.
Nazi, A.; Hang, W.; Goldie, A.; Ravi, S.; and Mirhoseini, A.
2019. Gap: Generalizable approximate graph partitioning
framework. arXiv preprint arXiv:1903.00614.
Newman, M. E. 2006a. Finding community structure in
networks using the eigenvectors of matrices. Physical review
E 74(3):036104.
Newman, M. E. 2006b. Modularity and community struc-
ture in networks. Proceedings of the National Academy of
Sciences 103(23):8577–8582.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710. ACM.
Schlichtkrull, M.; Kipf, T.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European Semantic
Web Conference.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3):93–93.
Shaham, U.; Stanton, K.; Li, H.; Nadler, B.; Basri, R.; and
Kluger, Y. 2018. Spectralnet: Spectral clustering using deep
neural networks. In ICLR.
Tan, S.-Y.; Wu, J.; Lü, L.; Li, M.-J.; and Lu, X. 2016.
Efficient network disintegration under incomplete informa-
tion: the comic effect of link prediction. Scientific reports
6:22916.
Tian, F.; Gao, B.; Cui, Q.; Chen, E.; and Liu, T.-Y. 2014.
Learning deep representations for graph clustering. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.
Titsias, M. 2016. One-vs-each approximation to softmax for
scalable estimation of probabilities. In NeurIPS.

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In NIPS.
Von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and computing 17(4):395–416.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the
data-decisions pipeline: Decision-focused learning for com-
binatorial optimization. In AAAI.
Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, 478–487.
Yan, B., and Gregory, S. 2012. Detecting commu-
nity structure in networks using edge prediction methods.
Journal of Statistical Mechanics: Theory and Experiment
2012(09):P09008.
Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; and Zhang,
W. 2016. Modularity based community detection with deep
learning. In IJCAI, volume 16, 2252–2258.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018. Hierarchical graph representation learn-
ing with differentiable pooling. In Advances in Neural In-
formation Processing Systems, 4800–4810.
Zhang, M., and Chen, Y. 2018. Link prediction based on
graph neural networks. In NIPS.
Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.;
Su, Z.; Du, D.; Huang, C.; and Torr, P. H. 2015. Conditional
random fields as recurrent neural networks. In Proceedings
of the IEEE international conference on computer vision,
1529–1537.

Supplemental material: proofs
Exact expression for gradients
DefineRi =

∑n
j=1 rji andCi =

∑n
j=1 rjixj . We will work

with Ci ∈ Rp×1 as a column vector. For a fixed i, j, we have

∂fi,·
∂xj

= −
Rixj

[
∂rji
∂xj

]>
− Ci

[
∂rji
∂xj

]>
R2
i

− rji
Ri
I

where I denotes the p-dimensional identity matrix. Simi-
larly, fixing i, k gives

∂fi,·
∂µk

= δikI −
Ri
∑n
j=1 xj

[
∂rji
∂µk

]>
− Ci

[∑n
j=1

∂rji
∂µk

]>
R2
i

Guarantee for approximate gradients
Proposition 2. Suppose that for all points j, ||xj − µi|| −
||xj − µc(j)|| ≥ δ for all i 6= c(j) and that for all clusters

i,
∑n
j=1 rji ≥ αn. Moreover, suppose that βδ > log 2βK2

α .

Then,
∣∣∣∣∣∣ ∂f∂µ − I∣∣∣∣∣∣

1
≤ exp(−δβ)

(
K2β

1
2α−K2β exp(−δβ)

)
where

|| · ||1 is the operator 1-norm.

We focus on the off-diagonal component of ∂fim
∂µk`

, given
by

A(i,m),(k,`) = −
Ri
∑n
j=1 x

m
j

[
∂rji
∂µ`k

]
− Cmi

[∑n
j=1

∂rji
∂µ`k

]
R2
i

The key term here is ∂rji
∂µ`k

. Let sji = −β||xj − µi|| Since
r is defined via the softmax function, we have

∂rji
∂µ`k

=
∂rji
∂sjk

∂sjk
∂µ`k

where

∂rji
∂sjk

=

{
rji(1− rji) if i = k
−rjirjk otherwise.

Note now via Lemma 1, in both cases we have that∣∣∣∣ ∂rji∂sjk

∣∣∣∣ ≤ K exp(−βδ)

Define ε = K exp(−βδ) and note that we have that∣∣∣∂sjk∂µ`k

∣∣∣ ≤ β, since we defined s in terms of cosine similarity
and have assumed that the input is normalized. Putting this
together, we have

∣∣A(i,m),(k,`)

∣∣ ≤ ∑n
j=1 x

m
j εβ

Ri
+
Cmi nεβ

R2
i

≤
εβ
∑n
j=1 x

m
j

αn
+
µmi nεβ

Ri

≤
εβ
∑n
j=1 x

m
j

αn
+
µmi εβ

α

and so

||A||1 = max
(k,`)

∑
(i,m)

A(i,m),(k,`)

≤ max
(k,`)

∑
(i,m)

εβ
∑n
j=1 x

m
j

αn
+
µmi εβ

α

≤ max
(k,`)

∑
i

εβn

αn
+
εβ

α
(since ||xj ||1, ||µi||1 ≤ 1)

≤ 2Kεβ

α

=
2K2β exp(−βδ)

α
.

Since by assumption βδ > log 2βK2

α , we know that
||A||1 < 1 and applying Lemma 2 competes the proof.
Lemma 1. Consider a point j and let i = argmaxk rjk.
Then, rji ≥ 1

1+K exp(−βδ) , and correspondingly,∑
k 6=i rjk ≤

K exp(−βδ)
K exp(−βδ)+1 ≤ K exp(−βδ).

Proof. Equation 4 of (Titsias 2016) gives that

rij ≥
∏
k 6=i

1

1 + exp(−(si − sk))
.

Since by assumption we have−||xj−µi|| ≥ δ||xj−µk||,
we obtain

rij ≥
∏
k 6=i

1

1 + exp(−δβ)

≥ 1

1 +K exp(−δβ)
(using that exp(−δβ) ≤ 1).

which proves the lemma.

Lemma 2. Suppose that for a matrix A, ||A − I|| ≤ δ for
some δ < 1 and an operator norm || · ||. Then, ||A−1−I|| ≤
δ

1−δ .

Proof. Let B = I −A. We have

A−1 = (I −B)−1

=

∞∑
i=0

Bi (using the Neumann series representation)

= I +

∞∑
i=1

Bi

and so ||A−1 − I||∞ =
∣∣∣∣∑∞

i=1B
i
∣∣∣∣
∞. We have∣∣∣∣∣

∣∣∣∣∣
∞∑
i=1

Bi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑
i=1

||Bi||∞

≤
∞∑
i=1

||B||i∞

(since operator norms are submultiplicative)

=
δ

1− δ
(geometric series).

Experimental setup details
Hyperparameters
All methods were trained with the Adam optimizer. For the
single-graph experiments, we tested the following settings
on the pubmed graph (which was not used in our single-
graph experiments):

• β = 1, 10, 30, 50
• learning rate = 0.01, 0.001
• training iterations = 100, 200, ..., 1000
• Number of forward pass k-means updates: 1, 3
• Whether to increase the number of k-means updates to 5

after 500 training iterations.

• GCN hidden layer size: 20, 50, 100
• Embedding dimension: 20, 50, 100

For all single-graph experiments we used β = 30 for the
facility location objective and β = 50 for community detec-
tion, γ = 100, GCN hidden layer = embedding dimension
= 50, 1 k-means update in the forward pass, learning rate
= 0.01, and 1000 training iterations, with the number of k-
means updates increasing to 5 after 500 iterations.

We tested the following set of hyperparameters on the val-
idation set for each graph distribution

• β = 30, 50, 70, 100
• learning rate = 0.01, 0.001
• dropout = 0.5, 0.2
• training iterations = 10, 20...300
• Number of forward pass k-means updates: 1, 5, 10, 15
• Hidden layer size: 20, 50, 100
• Embedding dimension: 20, 50, 100

We selected β = 70, learning rate = 0.001, dropout =
0.2, and hidden layer = embedding dimension = 50 for all
experiments. On the synthetic graphs we used 70 training it-
erations and 10 forward-pass k-means updates. For pubmed,
we used 220 and 1, respectively.

Synthetic graph generation
Each node has a set of attributes yi (in this case, demo-
graphic features simulated from real population data); node
i forms a connection to node j with probability proportional
to e−

1
ρ ||yi−yj ||d(j) where d(j) is the degree of node j. This

models both the homophily and heavy-tailed degree distri-
bution seen in real world networks. We took ρ = 0.025 to
obtain a high degree of homophily, so that there is meaning-
ful community structure. In order to make the problem more
difficult, our method does not observe the features y; instead,
we generate unsupervised features from the graph structure
alone using role2vec (Ahmed et al. 2018) (which gener-
ates inductive representations based on motif counts that are
meaningful across graphs). Each graph has 500 nodes.

Code
Code and data for all of the experiments in the paper may
be found on github. We do not include the link here for
anonymity, but will include it in the final version of the pa-
per.

Hardware
All methods were run on a machine with 14 i9 3.1 GHz cores
and 128 GB of RAM. For fair runtime comparisons with the
baselines, all methods were run on CPU.

Additional experimental results
We run experiments on Intel i9 7940X @ 3.1 GHz with 128
GB of RAM. We report runtime in seconds. For algorithms
with learned models, we report both the training time and
the time to complete a single forward pass.

Table 3: Results for community detection. “-” for GCN-2Stage-Newman in the Learning + optimization section denotes that
the method could not be run due to numerical issues.

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 0.56 0.53 0.28 0.47 0.28 0.71 0.76 0.52 0.55 0.80
GCN-e2e 0.01 0.01 0.06 0.08 0.00 0.07 0.08 0.14 0.15 0.15
Train-CNM 0.20 0.44 0.09 0.01 0.17 0.08 0.34 0.05 0.60 0.80
Train-Newman 0.08 0.15 0.15 0.14 0.07 0.20 0.22 0.29 0.30 0.47
Train-SC 0.06 0.04 0.05 0.22 0.21 0.15 0.08 0.07 0.46 0.79
GCN-2stage-CNM 0.20 0.23 0.18 0.32 0.08 - - - - -
GCN-2stage-Newman 0.01 0.00 0.00 - 0.00 - - - - -
GCN-2stage-SC 0.13 0.18 0.10 0.29 0.18 - - - - -

Table 4: Results for facility location
Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 9 14 7 5 2 8 13 6 5 2
GCN-e2e 12 15 8 6 4 10 14 7 5 4
Train-greedy 14 16 8 8 6 9 14 7 6 5
Train-gonzalez 11 15 8 7 6 9 13 7 6 2
GCN-2Stage-greedy 14 16 8 7 6 - - - - -
GCN-2Stage-gonzalez 12 16 8 6 5 - - - - -

Table 5: Timing results for the community detection task (s)
cora cite. prot. adol fb

ClusterNet - Training Time 59.48 149.73 129.63 56.68 54.33
ClusterNet - Forward Pass 0.04 0.12 0.11 0.04 0.05
GCN-e2e - Training Time 36.83 54.99 34.60 29.04 28.17
GCN-e2e - Forward Pass 0.002 0.005 0.002 0.003 0.001
Train-CNM 1.31 1.28 1.02 1.03 2.94
Train-Newman 9.99 15.89 15.19 11.45 7.25
Train-SC 0.41 0.62 0.55 0.38 0.48
GCN-2Stage - Training Time 68.79 72.20 75.69 103.56 57.62
GCN-2Stage-CNM 119.34 178.39 159.64 101.64 142.02
GCN-2Stage-New. 37.96 58.26 51.70 33.14 43.88
GCN-2Stage-SC 0.40 0.61 0.50 0.33 0.36

Table 6: Timing results for the kcenter task (s)
cora cite. prot. adol fb

ClusterNet - Training Time 264.14 555.84 488.37 244.74 246.57
ClusterNet - Forward Pass 0.10 0.23 0.20 0.09 0.11
GCN-e2e - Training Time 237.68 511.23 446.76 229.49 221.28
GCN-e2e - Forward Pass 0.003 0.006 .005 0.004 .003
Train-Greedy 1029.18 2387 1966 619.06 1244.09
Train-Gonzalez 0.082 0.14 0.12 0.07 .066
GCN-2Stage - Training Time 73.82 70.21 103.98 75.48 104.66
GCN-2Stage-Greedy 1189.15 2367 2017 621.59 1237.871
GCN-2Stage-Gonzalez 0.18 0.28 0.25 0.13 0.13

Table 7: Timing results in the inductive setting for community detection task (s)
synthetic pubmed

ClusterNet - Training time 6.57 13.74
ClusterNet - Forward Pass 0.003 0.008
GCN-e2e - Training time 11.40 15.86
GCN-e2e - Forward Pass 0.04 0.03
Train-CNM 0.08 0.17
Train-Newman 0.65 1.83
Train-SC 0.03 0.04
2Stage - Train 10.98 15.86
2Stage-CNM 3.23 13.73
2Stage-New. 1.12 4.29
2Stage-SC 0.04 0.10

Table 8: Timing results in the inductive setting for the kcenter task (s)
synthetic pubmed

ClusterNet - Training Time 14.36 43.06
ClusterNet - Forward Pass 0.005 0.02
GCN-e2e - Training Time 9.49 33.73
GCN-e2e - Forward Pass 0.01 0.02
Train-Gonzalez 0.07 0.49
Train-Greedy 4.99 32.7
2Stage - Train 11.00 15.78
2Stage-Gonzalez 0.07 0.07
2Stage-Greedy 5.31 16.16

