
Lagrangian Propagation Graph Neural Networks

Matteo Tiezzi1, Giuseppe Marra1,2, Stefano Melacci1, Marco Maggini1, Marco Gori1

1 Department of Information Engineering and Science (DIISM), University of Siena, Siena, Italy
{mtiezzi,mela,maggini,marco}@diism.unisi.it

2 Department of Information Engineering (DIINFO), University of Florence, Florence, Italy
g.marra@unifi.it

Abstract
In the last years, the popularity of deep learning techniques has
renewed the interest in neural models able to process complex
patterns, that are naturally encoded as graphs. In particular,
different architectures have been proposed to extend the orig-
inal Graph Neural Network (GNN) model. GNNs exploit a
set of state variables, each assigned to a graph node, and a
diffusion mechanism among neighbor nodes, to implement an
iterative state update procedure that computes the fixed point
of the (learnable) state transition function. In this paper, we
propose a novel approach to state computation and learning for
GNNs, based on a constraint optimisation task solved in the
Lagrangian framework. The state convergence procedure is
implicitly expressed by the constraint satisfaction mechanism
and does not require a separate iterative phase for each epoch
of the learning procedure. In fact, the computational structure
is based on the search for saddle points of the Lagrangian in
the adjoint space of weights, neural outputs (node states), and
Lagrange multipliers. The proposed approach is compared ex-
perimentally with other popular models for processing graphs.

1 Introduction
Graph Neural Networks (Scarselli et al., 2009) learn the
encoding for nodes in a graph to solve a given task, tak-
ing into account both the information local to each node
and the whole graph topology. The computation is based on
an iterative scheme implying the diffusion of information
among neighboring nodes, aimed at reaching an equilibrium
for the node state representations that provide a local en-
coding of the graph for the given task. The encoding is a
computationally expensive relaxation process, that computes
the fixed point of the state transition function. A maximum
number of iterations can be defined, but this limits the lo-
cal encoding to a maximum depth of the neighborhood of
each node. Some proposals were aimed at simplifying this
step, such as the scheme proposed in (Li et al., 2016) that
exploits gated recurrent units. Recent approaches differ in
the choice of the neighborhood aggregation method and the
graph level pooling scheme, and can be categorized into two
main areas. Spectral approaches exploit particular embed-
dings of the graph and the convolution operation defined in

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the spectral domain (Bruna et al., 2014). Characterized by
computational drawbacks, simplified approaches consider
smooth reparametrization (Henaff, Bruna, and LeCun, 2015)
or approximation of the spectral filters (Defferrard, Bresson,
and Vandergheynst, 2016). Graph Convolutional Networks
(GCNs) (Kipf and Welling, 2017), restrict filters to operate
in a 1-hop neighborhood of each node. Spatial methods, like
PATCHY-SAN (Niepert, Ahmed, and Kutzkov, 2016; Du-
venaud et al., 2015), DCNNs (Atwood and Towsley, 2016),
GraphSAGE (Hamilton, Ying, and Leskovec, 2017), GATs
(Veličković et al., 2017), SortPooling (Zhang et al., 2018),
GIN (Xu et al., 2018), exploit directly the graph topology,
without the need of an intermediate representation, mainly
distinguished by the definition and capabilities of the aggre-
gation operator used to compute the node states.

In this paper, we propose a new learning mechanism for
GNNs based on a Lagrangian formulation, that allows the
embedding of the fixed point computation into the optimiza-
tion problem constraints. In the proposed scheme the network
state representations and the weights are jointly optimized
without the need of applying the fixed point relaxation proce-
dure at each weight update epoch. A Lagrangian formulation
of learning neural networks can be found in the seminal work
of LeCun et al. (1988), that studies a theoretical framework
for Backpropagation. More recently Carreira-Perpinan and
Wang (2014) and Taylor et al. (2016) introduced the idea of
training networks, transformed into a constraint–based repre-
sentation, through an extension of the space of the learnable
parameters. By framing the optimization of neural networks
in the Lagrangian framework, where neuron computations
are expressed as constraints, the main goal is to obtain a
local algorithm, in which different layers can be updated in
parallel. On the contrary in the proposed approach, we use a
novel mixed strategy. In particular, the majority of the com-
putations still rely on Backpropagation, whereas constraints
are exploited only to express the diffusion mechanism. This
allows us to carry out both the optimization of the neural
network weights and the diffusion process at the same time,
instead of alternating them into two distinct phases (like in
Scarselli et al. (2009)).
It has already been shown that algorithms on graphs can
be effectively learned exploiting a constrained fixed-point

formulation. For example, SSE (Dai et al., 2018) exploits
the Reinforcement Learning policy iteration algorithm for
the interleaved evaluation of the fixed point equation and
the improvement of the transition and output functions. Our
approach, starting from similar assumptions, exploits the uni-
fying Lagrangian framework for learning both the transition
and the output functions. Thus, by framing the optimization
algorithm into a standard gradient descent/ascent scheme, we
are allowed to use recent update rules (e.g. Adam) without
the need to resort to ad-hoc moving average updates.
The paper is organized as follows. Section 2 briefly reviews
the GNN model, then in Section 3 the proposed constrained
optimization problem is formulated. Section 4 reports the
experimental evaluation of Lagrangian learning for GNNs.
Finally, Section 5 draws the conclusions and proposes the
future research directions.

2 Graph Neural Networks
The term Graph Neural Network (GNN) refers to a general
computational model, that exploits the processing and learn-
ing schemes of neural networks to process non Euclidean
data, i.e. data organized as graphs.

Given an input graph G = (V,E), where V is a finite set
of nodes andE ⊆ V ×V collects the arcs, GNNs apply a two-
phase computation on G. In the encoding (or aggregation)
phase the model computes a state vector for each node in V
by (iteratively) combining the states of neighboring nodes
(i.e. nodes u, v ∈ V that are connected by an arc (u, v) ∈
E). In the second phase, usually referred to as output (or
readout), the latent representations encoded by the node states
are exploited to compute the model output. The GNN can
implement either a node-focused function, where an output
is produced for each node of the input graph, or a graph-
focused function, where the representations of all the nodes
are aggregated to yield a single output for the input graph.

The GNN is defined by the state transition function fa
required in the encoding phase and the output function fr
exploited in the output phase, as follows:

x(t)
v = fa(x

(t−1)
ne[v] , lne[v], l(v,ch[v]), l(pa[v],v), x

(t−1)
v , lv|θfa),

(1)

yv = fr(x
(T)
v |θfr), (2a)

yG = fr({x(T)
v , v ∈ V }|θfr), (2b)

where x(t)
v ∈ Rs is the state of the node v at iteration t,

pa[v] = {u ∈ V : (u, v) ∈ E} is the set of the parents of
node v in G, ch[v] = {u ∈ V : (v, u) ∈ E} are the children
of v in G, ne[v] = pa[v] ∪ ch[v] are the neighbors of the
node v in G, lu ∈ Rm is the feature vector available for node
u ∈ V , and l(u,w) ∈ Rd is the feature vector available for the
arc (u,w) ∈ E1. The vectors θfa and θfr collect the model
parameters (the neural network weights) to be adapted during

1With abuse of notation, we denote the set {x(t−1)
u : u ∈

ne[v]} by x(t−1)

ne[v] . Similar definitions apply for lne[v], l(v,ch[v]), and
l(pa[v],v).

the learning procedure. Equations (2a) and (2b) are the two
variants of the output function for node-focused or graph-
focused tasks, respectively. Different implementations have
been proposed for fa. For instance, the original scheme, pro-
posed in (Scarselli et al., 2009), aggregates the contributions
of the neighbor nodes by a sum as∑

u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv|θh) , (3)

where the function h() is implemented by a feedforward
neural network with s outputs and 2s + 2m + 2d inputs
obtained by the concatenation of its arguments.
The recursive application of the state transition function fa
on the graph nodes implements a diffusion mechanism that
is iterated for T steps to yield the node states. In fact, by
stacking t times the aggregation of 1-hop neighborhoods
by fa, the information computed at a given node can be
transferred to the nodes that are distant at most t-hops.

In the original GNN model (Scarselli et al., 2009), eq.
(1) is executed until convergence of the state representation,
i.e. until x(t)

v ' x
(t−1)
v , v ∈ V . This scheme corresponds

to the computation of the fixed point of the state transition
function fa on the input graph. In order to guarantee the
convergence of this phase, the transition function is required
to be a contraction map.
Basically, the encoding phase, through the iteration of fa,
finds a solution to the fixed point problem defined by the
constraint2

∀v ∈ V, xv = fa,v (4)
This diffusion mechanism is more general than executing only
a fixed number of iterations. However, it can be computation-
ally expensive and, hence, many recent GNN architectures
apply only a fixed number of iterations for all nodes.

3 A constraint-based formulation of GNNs
Neural network learning can be cast as a Lagragian optimiza-
tion problem by a formulation that requires the minimization
of the classical data fitting loss (and eventually a regular-
ization term) and the satisfaction of a set of architectural
constraints that describe the computation performed on the
data. Given this formulation, the solution can be computed
by finding the saddle points of the associated Lagrangian
in the space defined by the original network parameters and
the Lagrange multipliers. The constraints can be exploited
to enforce the computational structure that characterizes the
GNN models.

The computation of Graph Neural Networks is driven by
the input graph topology that defines the constraints among
the computed state variables xv, v ∈ V . In particular, the
fixed point computation aims at solving eq. (4), that imposes
a constraint between the node states and the way they are
computed by the state transition function.
In the original GNN learning algorithm, the computation
of the fixed point is required at each epoch of the learning

2Henceforth, fa,v is used to denote the state transi-
tion function applied to a node v ∈ V , i.e. fa,v =
fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|θfa).

procedure, as implemented by the iterative application of the
transition function. Moreover, also the gradient computation
requires to take into account the relaxation procedure, by
a backpropagation schema through the replicas of the state
transition network exploited during the iterations for the fixed
point computation. This procedure may be time consuming
when the number of iterations T for convergence to the fixed
point is high (for instance in the case of large graphs).

We consider a Lagrangian formulation of the problem by
adding free variables corresponding to the node states xv,
such that the fixed point is directly defined by the constraints
themselves, as

∀v ∈ V, G (xv − fa,v) = 0

where G(x) is a function characterized by G(0) = 0, such
that the satisfaction of the constraints implies the solution
of eq. (4). Possible choices are G(x) = x, G(x) = x2, or
G(x) = max(||x||1 − ε, 0), where ε ≥ 0 is a parameter
that can be used to allow tolerance in the satisfaction of the
constraint. The hard formulation of the problem requires
ε = 0, but by setting ε to a small positive value it is possible
to obtain a better generalization and tolerance to noise.

In the following, for simplicity, we will refer to a node-
focused task, such that for some (or all) nodes v ∈ S ⊆ V
of the input graph G, a target output yv is provided as a
supervision3. If L(fr(xv|θfrr), yv) is the loss function used
to measure the target fitting approximation for node v ∈ S,
the formulation of the learning task is:

min
θfa ,θfr ,X

∑
v∈S

L(fr(xv|θfr), yv)

subject to G (xv − fa,v) = 0, ∀ v ∈ V (5)

where θfa and θfr are the weights of the MLPs implementing
the state transition function and the output function, respec-
tively, and X = {xv : v ∈ V } is the set of the introduced
free state variables.

This problem statement implicitly includes the definition
of the fixed point of the state transition function in the optimal
solution, since for any solution the constraints are satisfied
and hence the computed optimal xv are solutions of eq. (4).
As shown in the previous subsection, the constrained opti-
mization problem of eq. (5) can framed into the Lagrangian
framework by introducing for each constraint a Lagrange
multiplier λv , to define the Lagrangian function

L(θfa , θfr , X,Λ) =
∑
v∈S

[L(fr(xv|θfr), yv)+

+λvG (xv − fa,v)] , (6)

where Λ is the set of the |V | Lagrangian multipliers. Finally,
we can define the unconstrained optimization problem as the
search for saddle points in the adjoint space (θfa , θfr , X,Λ)

3For the sake of simplicity we consider only the case when
a single graph is provided for learning. The extension for more
graphs is straightforward for node-focused tasks, since they can
be considered as a single graph composed by the given graphs as
disconnected components.

as:

min
θfa ,θfr ,X

max
Λ
L(θfa , θfr , X,Λ)

that can be solved by gradient descent with respect to the
variables θfa , θfr , X and gradient ascent with respect to the
Lagrange multipliers Λ.
The gradient can be computed locally to each node, given
the local variables and those of the neighboring nodes4. Be-
ing fa and fr implemented by feedforward neural networks,
their derivatives are obtained easily by applying a classical
backpropagation scheme, in order to optimize the Lagrangian
function in the descent-ascent scheme, aiming at the saddle
point, following Platt and Barr (1988).

Even if the proposed formulation adds the free state vari-
ables xv and the Lagrange multipliers λv, v ∈ V , there is
no significant increase in the memory requirements since the
state variables are also required in the original formulation
and there is just a Lagrange multiplier for each node.

The learning algorithm is based on a mixed strategy where
(i) Backpropagation is used to efficiently update the weights
of the neural networks that implement the state transition and
output functions, and, (ii) the diffusion mechanism evolves
gradually by enforcing the convergence of the state transition
function to a fixed point by virtue of the constraints. This
last point is a novel approach in training GNNs. In fact, in
classical approaches, the encoding phase (see Section 2) is
completely executed during the forward pass to compute
the node states and, only after this phase is completed, the
backward step is applied to update the weights of fa and fr.
In the proposed scheme, both the neural network weights and
the node state variables are simultaneously updated, forcing
the state representation function towards a fixed point of fa
in order to satisfy the constraints.

Common graph models exploit synchronous updates
among all nodes and multiple iterations for the node state em-
bedding, with a computational complexity for each parameter
updateO(T (|V |+ |E|)), where T is the number of iterations,
|V | the number of nodes and |E| the number of edges. By
simultaneously carrying on the optimization of neural models
and the diffusion process, our scheme relies only on 1-hop
neighbors for each parameter update, hence showing a com-
putational cost ofO(|V |+ |E|). From the memory cost view-
point, the persistent state variable matrix requires O(|V |)
space. However, it represents a much cheaper cost than most
of GNN models, usually requiring O(T |V |) space. In fact,
those methods need to store all the intermediate state values
of all the iterations, for a latter use in back-propagation.

4 Experiments
The evaluation was carried out on two classes of tasks. Ar-
tificial tasks (Subgraph matching and Clique detection) are
commonly exploited as benchmarks for GNNs, thus, allow-
ing a direct comparison of the proposed constraint based
optimization algorithm with respect to the original GNN
learning scheme, on the same architecture. The second class

4The derivatives of the Lagrangian are reported in the Appendix
B.

of tasks consists of graph classification in the domains of
social networks and bioinformatics.

In the experiments we considered two different implemen-
tations of the state transition function fa,v:

f (SUM)
a,v =

∑
u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv|θh) (7)

f (AVG)
a,v = 1

|ne[v]|

∑
u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv|θh) (8)

4.1 Artificial Tasks
We designed a batch of experiments on the following two
tasks to validate our simple local optimization approach to
constraint-based networks. In particular, we want to show
that our optimization scheme can learn better transition and
output functions than the corresponding GNN model of
Scarselli et al. (2009). Moreover, we want to investigate the
behaviour of the algorithm for different choices of the func-
tion G(x), i.e. when using different modalities to enforce
the state convergence constraints. In particular, we tested
functions with different properties: ε-insensitive functions,
i.e G(x) = 0, ∀x : −ε ≤ x ≤ ε, unilateral functions, i.e.
G(x) ∈ R+, and bilateral functions, i.e. G(x) ∈ R (a G func-
tion is either unilateral or bilateral). The considered choices
for G(x) are: x (lin), max(x, ε)−max(−x, ε) (lin− ε), |x|
(abs), max(|x| − ε, 0) (abs− ε), and x2 (squared).

Subgraph Matching. Given a graphG and a graph S such
that |S| ≤ |G|, the subgraph matching problem consists in
finding the nodes of a subgraph Ŝ ⊂ G which is isomorphic
to S. The task is that of learning a function τ , such that
τS(G,n) = 1, n ∈ V , when the node n belongs to the
given subgraph S, otherwise τS(G,n) = 0. The problem
of finding a given subgraph is common in many practical
problems and corresponds, for instance, to finding a particular
small molecule inside a greater compound. An example of a
subgraph structure is shown, on the left, in Fig. 1. Our dataset
is composed of 100 different graphs, each one having 7 nodes.
The number of nodes of the target subgraph S is instead 3.

Figure 1: On the left, an example of a subgraph matching
problem, where the graph with the blue nodes is matched
against the bigger graph. On the right, an example of a graph
containing a clique. The green nodes represent a fully con-
nected subgraph of dimension 4, whereas the red nodes do
not belong to the clique.

Clique localization A clique is a complete graph, i.e. a
graph in which each node is connected with all the others.
In a network, overlapping cliques (i.e. cliques that share
some nodes) are admitted. Clique localization is a particular
instance of the subgraph matching problem, with S being
complete. However, the several symmetries contained in a
clique makes the graph isomorphism test more difficult. In-
deed, it is known that the graph isomorphism has polynomial
time solutions only in absence of symmetries. A clique ex-
ample is shown in Fig. 1. In the experiments, we consider a
dataset composed by graphs having 7 nodes each, where the
dimension of the maximal clique is 3 nodes.

Results. Following the experimental setting of Scarselli et
al. (2009), we exploited a training, validation and test set
having the same size, i.e. 100 graphs each. We performed
a tuning of the hyperparemeters5. The proposed model is
compared with the GNN model of Scarselli et al. (2009),
with the same number of hidden neurons of the fa and fr
functions. Results are presented in Table 1.

Constraints characterized by unilateral functions usually
offer better performances than equivalent bilateral constraints.
This might be due to the fact that keeping constraints positive
(as in unilateral constraints) provides a more stable learning
process. Moreover, smoother constraints (i.e squared) or ε–
insensitive constraints tend to perform slightly better than
the hard versions. This can be due to the fact that as the
constraints move closer to 0 they tend to give a small or null
contribution, for squared and abs-ε respectively, acting as
regularizers.

4.2 Graph Classification
We used 4 benchmarks in bioinformatics (MUTAG, PTC,
NCI1, PROTEINS) and 2 in social network analysis (IMDB-
BINARY, IMDB-MULTI) (Yanardag and Vishwanathan,
2015). In MUTAG, PTC, NCI1, and PROTEINS, the graph
nodes have categorical input labels (e.g. the atom symbol). In
the social network datasets, there are no node labels and we
followed the approach in Xu et al. (2018), where the nodes
were labeled by one-hot encodings of their degrees. Dataset
statistics are summarized in Table 2.

We compared the proposed Lagrangian Propagation GNN
(LP-GNN) scheme with some of the state-of-the-art neural
models for graph classification, such as Graph Convolutional
Neural Networks. All the GNN-like models have a number
of layers/iterations equal to 5. An important difference with
these models is that, by using a different transition function
at each iteration, at a cost of a much larger number of pa-
rameters, they have a much higher representational power.
Even though our model could, in principle, stack multiple
diffusion processes at different levels (i.e. different latent
representation of the nodes) and, then, have multiple tran-
sition functions, we have not explored this direction in this
evaluation. We applied the settings of (Niepert, Ahmed, and
Kutzkov, 2016), using the same models6. In particular, we

5See Appendix C for the details.
6See Appendix D for a detailed list of the references.

Model Subgraph Clique

G ε Acc(avg) Acc(std) Acc(avg) Acc(std)

LP-GNN

abs
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

lin
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

squared - 96.17 1.01 93.07 2.18

Scarselli et al. (2009) - - 95.86 0.64 91.86 1.12

Table 1: Accuracy on the artificial datasets, for the proposed model (Lagrangian Propagation GNN - LP-GNN) and the original
GNN model for different settings.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
graphs 1000 1500 188 1113 344 4110
classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PATCHYSAN 71.0 ± 2.2 45.2 ± 2.8 92.6 ± 4.2 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWL 74.5 ± 5.9 51.5 ± 3.6 87.9 ± 9.8 – – –
GIN 75.1 ± 5.1 52.3 ± 2.8 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7
GNN 60.9 ± 5.7 41.1 ± 3.8 88.8 ± 11.5 76.4 ± 4.4 61.2 ± 8.5 51.5 ± 2.6
LP-GNN* 71.2 ± 4.7 46.6 ± 3.7 90.5 ± 7.0 77.1 ± 4.3 64.4 ± 5.9 68.4 ± 2.1

Table 2: Average accuracy and standard deviation for the graph classification benchmarks, evaluated on the test set, for different
GNN models. The proposed model is denoted as LP GNN and marked with a star.

performed 10-fold cross-validation and reported both the av-
erage and standard deviation of validation accuracy across
the 10 folds within the cross-validation. The stopping epoch
is selected as the epoch with the best cross-validation accu-
racy averaged over the 10 folds. The hyperparameters were
tuned by grid search7. Results are shown in Table 2.

As previously stated, differently from the baseline mod-
els, our approach does not rely on a deep stack of layers
based on differently learnable filters. Despite of this fact, the
simple GNN model trained by the proposed scheme offers
performances that, on average, are preferable or on-par to the
ones obtained by more complex models that exploit a larger
amount of parameters. Moreover, it is interesting to note that
for current GNN models, the role of the architecture depth
is twofold. First, as it is common in deep learning, depth
is used to perform a multi-layer feature extraction of node
inputs. Secondly, it allows node information to flow through
the graph fostering the realisation of a diffusion mechanism.
Conversely, our model strictly splits these two processes. We
believe this distinction to be a fundamental ingredient for a
clearer understanding of which mechanism, between diffu-
sion and node deep representation, is concurring in achieving
specific performances. Indeed, in this paper, we show that

7See Appendix D for details.

the diffusion mechanism paired only with a simple shallow
representation of nodes is sufficient to match performances
of much deeper and complex networks.

5 Conclusions and Future Work
We proposed a formulation of the GNN learning task as a
constrained optimization that allows us to avoid the explicit
computation of the fixed point needed to encode the graph.
The proposed framework defines how to jointly optimize
the model weights and the state representation without the
need of separate phases. This approach simplifies the com-
putational scheme of GNNs and allows us to incorporate
alternative strategies in the fixed point optimization by the
choice of the constraint function G(). As shown in the ex-
perimental evaluation, the appropriate functions may affect
generalization and robustness to noise.

Future work will be devoted to explore systematically the
properties of the proposed algorithm in terms of convergence
and complexity. Furthermore, the proposed constraint-based
scheme can be extended to all the other methods proposed
in the literature that exploit more sophisticated architectures.
Finally, LP-GNN can be extended allowing the diffusion
mechanism to take place at multiple layers allowing a con-
trolled integration of diffusion and deep feature extraction
mechanisms.

Acknowledgments
This work was partly supported by the PRIN 2017 project
RexLearn, funded by the Italian Ministry of Education, Uni-
versity and Research (grant no. 2017TWNMH2).

References
Atwood, J., and Towsley, D. 2016. Diffusion-convolutional

neural networks. In Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, 1993–2001.

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral networks and locally connected networks on
graphs. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings.

Carreira-Perpinan, M., and Wang, W. 2014. Distributed
optimization of deeply nested systems. In Artificial Intelli-
gence and Statistics, 10–19.

Dai, H.; Kozareva, Z.; Dai, B.; Smola, A.; and Song, L. 2018.
Learning steady-states of iterative algorithms over graphs.
In International Conference on Machine Learning, 1114–
1122.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast local-
ized spectral filtering. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, 3837–3845.

Duvenaud, D. K.; Maclaurin, D.; Aguilera-Iparraguirre, J.;
Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; and
Adams, R. P. 2015. Convolutional networks on graphs
for learning molecular fingerprints. In Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, 2224–2232.

Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS.

Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep con-
volutional networks on graph-structured data. CoRR
abs/1506.05163.

Ivanov, S., and Burnaev, E. 2018. Anonymous walk embed-
dings. arXiv preprint arXiv:1805.11921.

Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In 5th Inter-
national Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

LeCun, Y.; Touresky, D.; Hinton, G.; and Sejnowski, T. 1988.
A theoretical framework for back-propagation. In Pro-
ceedings of the 1988 connectionist models summer school,
volume 1, 21–28. CMU, Pittsburgh, Pa: Morgan Kauf-
mann.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. S. 2016.
Gated graph sequence neural networks. In 4th Interna-
tional Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In Proceedings
of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24,
2016, 2014–2023.

Platt, J. C., and Barr, A. H. 1988. Constrained differential
optimization. In Neural Information Processing Systems,
612–621.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
IEEE Trans. Neural Networks 20(1):61–80.

Taylor, G.; Burmeister, R.; Xu, Z.; Singh, B.; Patel, A.; and
Goldstein, T. 2016. Training neural networks without
gradients: A scalable admm approach. In International
conference on machine learning, 2722–2731.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018. How pow-
erful are graph neural networks? CoRR abs/1810.00826.

Yanardag, P., and Vishwanathan, S. 2015. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
1365–1374. ACM.

Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artifi-
cial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, 4438–4445.

A Appendix
In Table 3 we list some implementations of the transition
function fa, as proposed in the literature. It should be noted
that this function may depend on a variable number of in-
puts, given that the nodes v ∈ V may have different degrees
de[v] = |ne[v]|. Moreover, in general, the proposed imple-
mentations are invariant with respect to permutations of the
nodes in ne[v], unless some predefined ordering is given for
the neighbors of each node.

B Lagrangian derivatives
The gradient can be computed locally to each node, given
the local variables and those of the neighboring nodes. In
fact, the derivatives of the Lagrangian with respect to the
considered parameters are:

∂L
∂xv

= L′f ′r,v + λvG′v(1− f ′a,v)−
∑

w:v∈ne[w]

λwG′wf ′a,w (9)

∂L
∂θfa

= −
∑
v∈S

λvG′vf ′a,v (10)

∂L
∂θfr

=
∑
v∈S

L′f ′r,v (11)

∂L
∂λv

= Gv (12)

where, fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|θfa),
f ′a,v is its first derivative, which is computed with respect
to the same argument as in the partial derivative on the left
side, fr,v = fr(xv|θfr), f ′r,v is its first derivative, Gv =
G (xv − fa,v) and G′v is its first derivative, and, finally, L′
is the first derivative of L. Note that when parameters are
vectors, the reported gradients should be considered element-
wise.

C Artificial Tasks experimental settings
We tuned the hyperparameters on the validation data, by se-
lecting the node state dimension from the set {5, 10, 35, }, the
dropout drop-rate from the set {0., 0.7}, the state transition
function from {f (AVG)

a,v , f (SUM)
a,v } and their number of hidden

units from {5, 20, 50} . We used the Adam optimizer (Tensor-
Flow). Learning rate for parameters θfa and θfr is selected
from the set {10−5, 10−4, 10−3}, and the learning rate for
the variables xv and λv from the set {10−4, 10−3, 10−2}.

D Graph Classification experimental settings
The models used in the comparison are: Diffusion-
Convolutional Neural Networks (DCNN) (Atwood and
Towsley, 2016), PATCHY-SAN (Niepert, Ahmed, and
Kutzkov, 2016), Deep Graph CNN (DGCNN) (Zhang et
al., 2018), AWL (Ivanov and Burnaev, 2018) , GIN-GNN
(Xu et al., 2018), original GNN (Scarselli et al., 2009). Apart
from original GNN, we report the accuracy as reported in the
referred papers.

We tuned the hyperparameters by searching: (1) the num-
ber of hidden units for both the fa and fr functions from

the set {5, 20, 50, 70, 150}; (2) the state transition function
from {f (AVG)

a,v , f (SUM)
a,v }; (3) the dropout ratio from {0, 0.7};

(4) the size of the node state xv from {10, 35, 50, 70, 150};
(5) learning rates for both the θfa , θfr , xv and λv from
{0.1, 0.01, 0.001}.

Function Implementation

Scarselli et al. (2009) Sum
∑
u∈ne[v] h(xu, lu, l(v,u), l(u,v), xv, lv|θh)

Xu et al. (2018) Sum h(xv +
∑
u∈ne[v] xu)

Kipf and Welling (2017) Mean h

Å
1

|ne[v]|+1 (xv +
∑
u∈ne[v] xu)

ã
Hamilton, Ying, and Leskovec (2017) Max maxu∈ne[v] h(xu)

Table 3: Simplified implementations of the state transition function fa(). The function h() is implemented by a feedforward
neural network with s outputs, whose input is the concatenation of its arguments (f.i. in the first case the input consists of a
vector of 2s+ 2m+ 2d entries, with l(u,v) ∈ Rd and lu ∈ Rm). For the sake of clarity, some of these formulas are reported in a
simplified form w.r.t. the original proposal. For example, the ”mean” function in Kipf and Welling (2017) is a weighted mean,
where the weights come from the normalized graph adjacency matrix, or the ”max” function in Hamilton, Ying, and Leskovec
(2017) is followed by a concatenation.

lin lin-ε abs abs-ε squared

G(x) x max(x, ε)−max(−x, ε) |x| max(|x| − ε, 0) x2

Unilateral × × X X X
ε-insensitive × X × X ×

Table 4: The considered variants of the G function. By introducing ε-insensitive constraint satisfaction, we can inject into our
hard-optimization scheme a controlled amount (i.e. ε) of unsatisfaction tolerance.

