
Graph Neural Ordinary Differential Equations

Michael Poli* 1, Stefano Massaroli* 2, Junyoung Park* 1

Atsushi Yamashita2, Hajime Asama2, Jinkyoo Park1

1Department of Industrial & Systems Engineering, KAIST, Daejeon, South Korea
2Department of Precision Engineering, The University of Tokyo, Tokyo, Japan

{poli m, junyoung, jinkyoo.park}@kaist.ac.kr,
{massaroli, yamashita, asama}@robot.t.u-tokyo.ac.jp∗

Abstract

We extend the framework of graph neural networks (GNN)
to continuous time. Graph neural ordinary differential equa-
tions (GDEs) are introduced as the counterpart to GNNs
where the input–output relationship is determined by a con-
tinuum of GNN layers. The GDE framework is shown to be
compatible with the majority of commonly used GNN mod-
els with minimal modification to the original formulations.
We evaluate the effectiveness of GDEs on both static as well
as dynamic datasets. Results prove their general applicability
in cases where the data is not generated by continuous time
dynamical network processes.

1 Introduction
Introducing appropriate inductive biases on deep learning
models is a well known approach to improving sample ef-
ficiency and generalization performance (Battaglia et al.
2018). Graph neural networks (GNNs) represent a general
computational framework for imposing such inductive bi-
ases when the target problem structure can be encoded as
a graph or in settings where prior knowledge about rela-
tionships among input entities can itself be described as
a graph (Li, Chen, and Koltun 2018; Gasse et al. 2019;
Sanchez-Gonzalez et al. 2018). GNNs have shown remark-
able results in various application areas such as node clas-
sification (Atwood and Towsley 2016), graph classification
(Yan, Xiong, and Lin 2018) and forecasting (Li et al. 2017;
Park and Park 2019) as well as generative tasks (Li et al.
2018).

A different but equally important class of inductive bi-
ases is concerned with the class of systems from which
the data is collected. Although deep learning has tradition-
ally been a field dominated by discrete models, recent ad-
vances propose a treatment of neural networks as models
equipped with a continuum of layers (Chen et al. 2018).
This view allows a reformulation of the forward pass as the
solution of the initial value problem of an ordinary differen-
tial equation (ODE). Such approaches allow direct modeling
of ODEs and enhance the performance of neural networks

∗These authors contributed equally to the work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A graph neural ordinary differential equation
(GDE) models vector fields defined on graph–structured
data, both in cases when the structure is fixed or changes
in time. This is achieved by equipping the model with a con-
tinuum of graph neural network (GNN) layers.

on tasks involving continuous time processes (Rubanova,
Chen, and Duvenaud 2019). Our work is aimed at bridg-
ing the gap between geometric deep learning and contin-
uous models. Graph neural ordinary differential equations
(GDEs) cast common tasks on graph–structured data into a
system–theoretic framework, as shown in Figure (1). GDEs
provide flexibility due to their structure defined by a con-
tinuum of GNN layers and can therefore accommodate ir-
regularly sampled sequential data. We show that GDEs of-
fer improved performance in a traffic forecasting applica-
tion due to their ability to track the underlying dynamics
and adjust the prediction horizon according to timestamp
information. In general, no assumptions on the data gen-
erating process are necessary in order for GDEs to be ef-
fective. Indeed, following recent work connecting different
discretization schemes of ODEs (Lu et al. 2017) to pre-
viously known architectures such as FractalNets (Larsson,
Maire, and Shakhnarovich 2016), we show that GDEs can
equivalently be utilized as high–performance general pur-
pose models. In the standard transductive semi–supervised
node classification tasks on datasets Cora, Pubmed and Cite-
seer, GDEs are shown to be competitive with their state–of–

the–art discrete counterpart, graph convolutional networks
(GCNs) (Kipf and Welling 2016). Finally, we show that
training GDEs with adaptive ODE solvers leads to deep
GNN models without the need to specify the number of lay-
ers a–priori, sidestepping known depth–limitations of GNNs
(Zhang 2019). We summarize our contributions as follows:

• We introduce graph ordinary differential equation net-
works (GDEs), continuous counterparts to graphical mod-
els. We show that the proposed framework includes most
common GNN models and naturally extends to spatio-
temporal and autoregressive models on graphs.

• We validate GDEs experimentally on a static semi–
supervised node classification task on standard datasets
Cora, Citeseer and Pubmed. GDEs are shown to be com-
petitive with well known state–of–the–art models.

• We conduct an experiment on a forecasting task with
severely undersampled data. We compare GDEs and an
equivalent discrete GNN model, showing that GDEs of-
fers improved performance in tasks involving dynamical
systems thanks to their continuous nature.

2 Background
Notation Let N be the set of natural numbers and R is the
the one of reals. Scalars are indicated as lowercase letters,
vectors as bold lowercase, matrices and tensors as bold up-
percase and sets with calligraphic letters. Let V be a finite
set with | V | = n whose element are called nodes and let
E be a finite set of tuples of V elements. Its elements are
called edges and are such that ∀eij ∈ E ; eij = (vi; vj)
and vi; vj ∈ V . A graph G is defined as the collection of
nodes and edges, i.e. G := (V; E). The adjeciency matrix
A ∈ Rn×n of a graph is defined as

Aij =

�
1 eij ∈ E
0 eij 6∈ E

If G is an attributed graph, the feature vector of each v ∈ V
is xv ∈ Rd. All the feature vectors are collected in a matrix
X ∈ Rn×d. Note that often, the features of graphs exhibits
temporal dependency, i.e. X := Xt.

Graph neural networks Current work on GNNs and
ODEs is limited in scope and constrains the GNN archi-
tecture to the tracking of Hamiltonian functions (Sanchez-
Gonzalez et al. 2019) or generative modeling (Deng et al.
2019). Our focus is developing general, continuous coun-
terparts of the main variants of static GNNs: graph convo-
lutional networks (GCNs) (Kipf and Welling 2016), diffu-
sion graph convolution (DGC) (Atwood and Towsley 2016),
graph attention networks (GATs) (Veličković et al. 2017)
as well as recurrent models: graph convolutional recurrent
networks (GCRNNs) (Cui et al. 2018) and gated unit graph
convolutional networks (GCGRU) (Zhao, Chen, and Cho
2018).

Neural ordinary differential equations Continuous neu-
ral network architectures are built upon the observation that,

for particular classes of discrete models such as ResNets (He
et al. 2016), their inter–layer dynamics:

hs+1 = hs + f(hs;θ); s ∈ N (1)

resemble Euler discretizations of an ordinary differential
equation (ODE). The continuous counterpart of neural net-
work layers with equal input and output dimensions can
therefore be described by a first order ODE of the type:

dhs
ds

= f(s;hs;θ); s ∈ S ⊂ R (2)

It has been noted that the choice of discretization scheme
of (2) can describe previously known discrete multi–step ar-
chitectures (Lu et al. 2017). As a result, the neural ordinary
differential equation (NODE) (Chen et al. 2018) framework
is not limited to the modeling of differential equations and
can guide discovery of novel general purpose models.

A motivating example Multi–agent systems permeate
science in a variety of fields: from physics to robotics, game-
theory, finance and molecular biology, among others. Based
on the interplay between nonlinear dynamical systems and
graphs, dynamical network theory has been developed as a
widely applicable, classical approach to control and stabi-
lization (Wang and Chen 2002; Li, Wang, and Chen 2004)
of such systems.

Often, closed–form analytic formulations are not avail-
able and forecasting or decision making tasks have to rely
on noisy, irregularly sampled observations. The primary pur-
pose of GDEs is to offer a data–driven approach to the mod-
eling of dynamical networks, particularly when the govern-
ing equations are highly nonlinear and therefore challenging
to approach with classical or analytical methods.

3 Graph Neural Ordinary Differential
Equations

Without any loss of generality, the inter–layer dynamics of a
GNN node feature matrix can be represented in the form�

Hs+1 = Hs + F (s;Hs;�s)
H0 = X

; s ∈ N

where F is a matrix–valued nonlinear function conditioned
on graph G and � is the tensor of trainable parameters of
the s-th layer. Note that the explicit dependence on s of the
dynamics is justified in some graph architectures, such as
diffusion graph convolutions (Atwood and Towsley 2016).

A graph neural differential ordinary equation (GDE) is
defined as the following Cauchy problem:�

_Hs = F (s;Hs;�)
H0 = X

; s ∈ S ⊂ R (3)

where F : S ×Rn×d×Rp → Rn×d is a depth–varying vec-
tor field defined on graph G.

Well–posedness Let S := [0; 1]. Under mild conditions
on F, namely Lipsichitz continuity with respect to H and
uniform continuity with respect to s, for each initial condi-
tion (GDE input) X, the ODE in (3) admits a unique solu-
tion Hs defined in the whole S. Thus there is a mapping 	
from Rn×d to the space of absolutely continuous functions
S → Rn×d such that H := 	(X) satisfies the ODE in (3).
This implies the the output Y of the GDE satisfies

Y = 	(X)(1)

Symbolically, the output of the GDE is obtained by the fol-
lowing

Y = X +

Z
S

F(�;H� ;�)d�

Integration domain We restrict the integration interval to
S := [0; 1], given that any other integration time can be
considered a rescaled version of S. In application where
S acquires a specific meaning (i.e forecasting with irreg-
ular timestamps) the integration domain can be appropri-
ately tuned to evolve GDE dynamics between arrival times
(Rubanova, Chen, and Duvenaud 2019) without assump-
tions on underlying vector field (Che et al. 2018).

GDE training GDEs can be trained with a variety of
methods. Standard backpropagation through the computa-
tional graph, adjoint method for O(1) memory efficiency
(Chen et al. 2018), or backpropagation through a relaxed
spectral elements discretization (Quaglino et al. 2019). Nu-
merical instability in the form of accumulating errors on the
adjoint ODE during the backward pass of NODEs has been
observed in (Gholami, Keutzer, and Biros 2019). A proposed
solution is a hybrid checkpointing–adjoint scheme, where
the adjoint trajectory is reset at predetermined points in or-
der control the error dynamics.

Incorporating governing differential equation priors
GDEs belong to the toolbox of scientific deep learning
(Innes et al. 2019) along with Neural ODEs (Chen et al.
2018) and other continuous depth models. Scientific deep
learning is concerned with merging prior, incomplete knowl-
edge about governing equations with data-driven predic-
tions. Within this framework GDEs can be extended to set-
tings involving dynamical networks evolving according to
different classes of differential equations, such as stochastic
differential equations (SDEs):

�
dHs = F (s;Hs) dt+ G (s;Hs) dWt

H0 = X
; s ∈ S (4)

where F and G are GDEs that can be replaced by analytic
terms when available and W is a standard multidimensional
Wiener process. This extension enables a practical method
to link dynamical network theory and deep learning with the
objective of obtaining sample efficient, interpretable models.

3.1 Static Models
Graph convolution networks Based on graph spectral
theory, graph convolution network (GCN) (Kipf and Welling
2016) layers are in the form:

Hs+1 = �(~D−
1
2 ~A ~D−

1
2 HsWs)

where ~A := A + In and ~D is a diagonal matrix defined as
~Dii :=

P
j

~Aij
In order to obtain the model in the continuous depth do-

main, a skip connection can be added as

Hs+1 = Hs + �(~D−
1
2 ~A ~D−

1
2 HsWs)

and the corresponding continuous counterpart becomes

dHs

ds
= FGCN(H;�) := �(~D−

1
2 ~A ~D−

1
2 Hs�)

Diffusion graph convolution Consider a diffusion graph
convolution (DGC) network (Atwood and Towsley 2016):

Hs+1 = Hs + � (PsXWs) (5)

where � : R → R is an activation function assumed to
act component–wise, P ∈ Rn×n is a probability transition
matrix, P := D−1A. The continuous counterpart of (5),
DGCDEs, can be therefore derived as:

dH

ds
= FDGC(s;X;�) := � (PsX�) ;

which consists in a depth–varying vector field constant with
respect to the hidden node feature matrix.

Additional models and considerations We include ad-
ditional derivation of continuous counterparts of common
static GNN models such as graph attention networks (GAT)
(Veličković et al. 2017) as supplementary material.

While the definition of GDE models is given with F made
up by a single layer, in practice multi–layer architectures can
also be used without any loss of generality. In these models,
the vector field defined by F is computed by considering
wider neighborhoods of each node.

3.2 Spatio–Temporal Continuous Graph
Architectures

For settings involving a temporal component, the depth do-
main of GDEs coincides with the time domain s ≡ t and
can be adapted depending on the requirements. For exam-
ple, given a time window �t, the prediction performed by a
GDE assumes the form:

Ht+�t = Ht +

Z t+�t

t

F (�;H� ;�) d�

regardless of the specific GDE architecture employed. Here,
GDEs represent a natural model class for autoregressive
modeling of sequences of graphs {Gt} and directly fit into
dynamical network theory. This line of reasoning natu-
rally leads to an extension of classical spatio–temporal ar-
chitectures in the form of hybrid dynamical systems (Van

