
Graph Neural Ordinary Differential Equations

Michael Poli* 1, Stefano Massaroli* 2, Junyoung Park* 1

Atsushi Yamashita2, Hajime Asama2, Jinkyoo Park1

1Department of Industrial & Systems Engineering, KAIST, Daejeon, South Korea
2Department of Precision Engineering, The University of Tokyo, Tokyo, Japan

{poli m, junyoung, jinkyoo.park}@kaist.ac.kr,
{massaroli, yamashita, asama}@robot.t.u-tokyo.ac.jp∗

Abstract

We extend the framework of graph neural networks (GNN)
to continuous time. Graph neural ordinary differential equa-
tions (GDEs) are introduced as the counterpart to GNNs
where the input–output relationship is determined by a con-
tinuum of GNN layers. The GDE framework is shown to be
compatible with the majority of commonly used GNN mod-
els with minimal modification to the original formulations.
We evaluate the effectiveness of GDEs on both static as well
as dynamic datasets. Results prove their general applicability
in cases where the data is not generated by continuous time
dynamical network processes.

1 Introduction
Introducing appropriate inductive biases on deep learning
models is a well known approach to improving sample ef-
ficiency and generalization performance (Battaglia et al.
2018). Graph neural networks (GNNs) represent a general
computational framework for imposing such inductive bi-
ases when the target problem structure can be encoded as
a graph or in settings where prior knowledge about rela-
tionships among input entities can itself be described as
a graph (Li, Chen, and Koltun 2018; Gasse et al. 2019;
Sanchez-Gonzalez et al. 2018). GNNs have shown remark-
able results in various application areas such as node clas-
sification (Atwood and Towsley 2016), graph classification
(Yan, Xiong, and Lin 2018) and forecasting (Li et al. 2017;
Park and Park 2019) as well as generative tasks (Li et al.
2018).

A different but equally important class of inductive bi-
ases is concerned with the class of systems from which
the data is collected. Although deep learning has tradition-
ally been a field dominated by discrete models, recent ad-
vances propose a treatment of neural networks as models
equipped with a continuum of layers (Chen et al. 2018).
This view allows a reformulation of the forward pass as the
solution of the initial value problem of an ordinary differen-
tial equation (ODE). Such approaches allow direct modeling
of ODEs and enhance the performance of neural networks

∗These authors contributed equally to the work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A graph neural ordinary differential equation
(GDE) models vector fields defined on graph–structured
data, both in cases when the structure is fixed or changes
in time. This is achieved by equipping the model with a con-
tinuum of graph neural network (GNN) layers.

on tasks involving continuous time processes (Rubanova,
Chen, and Duvenaud 2019). Our work is aimed at bridg-
ing the gap between geometric deep learning and contin-
uous models. Graph neural ordinary differential equations
(GDEs) cast common tasks on graph–structured data into a
system–theoretic framework, as shown in Figure (1). GDEs
provide flexibility due to their structure defined by a con-
tinuum of GNN layers and can therefore accommodate ir-
regularly sampled sequential data. We show that GDEs of-
fer improved performance in a traffic forecasting applica-
tion due to their ability to track the underlying dynamics
and adjust the prediction horizon according to timestamp
information. In general, no assumptions on the data gen-
erating process are necessary in order for GDEs to be ef-
fective. Indeed, following recent work connecting different
discretization schemes of ODEs (Lu et al. 2017) to pre-
viously known architectures such as FractalNets (Larsson,
Maire, and Shakhnarovich 2016), we show that GDEs can
equivalently be utilized as high–performance general pur-
pose models. In the standard transductive semi–supervised
node classification tasks on datasets Cora, Pubmed and Cite-
seer, GDEs are shown to be competitive with their state–of–

the–art discrete counterpart, graph convolutional networks
(GCNs) (Kipf and Welling 2016). Finally, we show that
training GDEs with adaptive ODE solvers leads to deep
GNN models without the need to specify the number of lay-
ers a–priori, sidestepping known depth–limitations of GNNs
(Zhang 2019). We summarize our contributions as follows:

• We introduce graph ordinary differential equation net-
works (GDEs), continuous counterparts to graphical mod-
els. We show that the proposed framework includes most
common GNN models and naturally extends to spatio-
temporal and autoregressive models on graphs.

• We validate GDEs experimentally on a static semi–
supervised node classification task on standard datasets
Cora, Citeseer and Pubmed. GDEs are shown to be com-
petitive with well known state–of–the–art models.

• We conduct an experiment on a forecasting task with
severely undersampled data. We compare GDEs and an
equivalent discrete GNN model, showing that GDEs of-
fers improved performance in tasks involving dynamical
systems thanks to their continuous nature.

2 Background
Notation Let N be the set of natural numbers and R is the
the one of reals. Scalars are indicated as lowercase letters,
vectors as bold lowercase, matrices and tensors as bold up-
percase and sets with calligraphic letters. Let V be a finite
set with | V | = n whose element are called nodes and let
E be a finite set of tuples of V elements. Its elements are
called edges and are such that ∀eij ∈ E , eij = (vi, vj)
and vi, vj ∈ V . A graph G is defined as the collection of
nodes and edges, i.e. G := (V, E). The adjeciency matrix
A ∈ Rn×n of a graph is defined as

Aij =

{
1 eij ∈ E
0 eij 6∈ E

If G is an attributed graph, the feature vector of each v ∈ V
is xv ∈ Rd. All the feature vectors are collected in a matrix
X ∈ Rn×d. Note that often, the features of graphs exhibits
temporal dependency, i.e. X := Xt.

Graph neural networks Current work on GNNs and
ODEs is limited in scope and constrains the GNN archi-
tecture to the tracking of Hamiltonian functions (Sanchez-
Gonzalez et al. 2019) or generative modeling (Deng et al.
2019). Our focus is developing general, continuous coun-
terparts of the main variants of static GNNs: graph convo-
lutional networks (GCNs) (Kipf and Welling 2016), diffu-
sion graph convolution (DGC) (Atwood and Towsley 2016),
graph attention networks (GATs) (Veličković et al. 2017)
as well as recurrent models: graph convolutional recurrent
networks (GCRNNs) (Cui et al. 2018) and gated unit graph
convolutional networks (GCGRU) (Zhao, Chen, and Cho
2018).

Neural ordinary differential equations Continuous neu-
ral network architectures are built upon the observation that,

for particular classes of discrete models such as ResNets (He
et al. 2016), their inter–layer dynamics:

hs+1 = hs + f(hs,θ), s ∈ N (1)

resemble Euler discretizations of an ordinary differential
equation (ODE). The continuous counterpart of neural net-
work layers with equal input and output dimensions can
therefore be described by a first order ODE of the type:

dhs
ds

= f(s,hs,θ), s ∈ S ⊂ R (2)

It has been noted that the choice of discretization scheme
of (2) can describe previously known discrete multi–step ar-
chitectures (Lu et al. 2017). As a result, the neural ordinary
differential equation (NODE) (Chen et al. 2018) framework
is not limited to the modeling of differential equations and
can guide discovery of novel general purpose models.

A motivating example Multi–agent systems permeate
science in a variety of fields: from physics to robotics, game-
theory, finance and molecular biology, among others. Based
on the interplay between nonlinear dynamical systems and
graphs, dynamical network theory has been developed as a
widely applicable, classical approach to control and stabi-
lization (Wang and Chen 2002; Li, Wang, and Chen 2004)
of such systems.

Often, closed–form analytic formulations are not avail-
able and forecasting or decision making tasks have to rely
on noisy, irregularly sampled observations. The primary pur-
pose of GDEs is to offer a data–driven approach to the mod-
eling of dynamical networks, particularly when the govern-
ing equations are highly nonlinear and therefore challenging
to approach with classical or analytical methods.

3 Graph Neural Ordinary Differential
Equations

Without any loss of generality, the inter–layer dynamics of a
GNN node feature matrix can be represented in the form{

Hs+1 = Hs + F (s,Hs,Θs)
H0 = X

, s ∈ N

where F is a matrix–valued nonlinear function conditioned
on graph G and Θ is the tensor of trainable parameters of
the s-th layer. Note that the explicit dependence on s of the
dynamics is justified in some graph architectures, such as
diffusion graph convolutions (Atwood and Towsley 2016).

A graph neural differential ordinary equation (GDE) is
defined as the following Cauchy problem:{

Ḣs = F (s,Hs,Θ)
H0 = X

, s ∈ S ⊂ R (3)

where F : S ×Rn×d×Rp → Rn×d is a depth–varying vec-
tor field defined on graph G.

Well–posedness Let S := [0, 1]. Under mild conditions
on F, namely Lipsichitz continuity with respect to H and
uniform continuity with respect to s, for each initial condi-
tion (GDE input) X, the ODE in (3) admits a unique solu-
tion Hs defined in the whole S. Thus there is a mapping Ψ
from Rn×d to the space of absolutely continuous functions
S → Rn×d such that H := Ψ(X) satisfies the ODE in (3).
This implies the the output Y of the GDE satisfies

Y = Ψ(X)(1)

Symbolically, the output of the GDE is obtained by the fol-
lowing

Y = X +

∫
S

F(τ,Hτ ,Θ)dτ

Integration domain We restrict the integration interval to
S := [0, 1], given that any other integration time can be
considered a rescaled version of S. In application where
S acquires a specific meaning (i.e forecasting with irreg-
ular timestamps) the integration domain can be appropri-
ately tuned to evolve GDE dynamics between arrival times
(Rubanova, Chen, and Duvenaud 2019) without assump-
tions on underlying vector field (Che et al. 2018).

GDE training GDEs can be trained with a variety of
methods. Standard backpropagation through the computa-
tional graph, adjoint method for O(1) memory efficiency
(Chen et al. 2018), or backpropagation through a relaxed
spectral elements discretization (Quaglino et al. 2019). Nu-
merical instability in the form of accumulating errors on the
adjoint ODE during the backward pass of NODEs has been
observed in (Gholami, Keutzer, and Biros 2019). A proposed
solution is a hybrid checkpointing–adjoint scheme, where
the adjoint trajectory is reset at predetermined points in or-
der control the error dynamics.

Incorporating governing differential equation priors
GDEs belong to the toolbox of scientific deep learning
(Innes et al. 2019) along with Neural ODEs (Chen et al.
2018) and other continuous depth models. Scientific deep
learning is concerned with merging prior, incomplete knowl-
edge about governing equations with data-driven predic-
tions. Within this framework GDEs can be extended to set-
tings involving dynamical networks evolving according to
different classes of differential equations, such as stochastic
differential equations (SDEs):

{
dHs = F (s,Hs) dt+ G (s,Hs) dWt

H0 = X
, s ∈ S (4)

where F and G are GDEs that can be replaced by analytic
terms when available and W is a standard multidimensional
Wiener process. This extension enables a practical method
to link dynamical network theory and deep learning with the
objective of obtaining sample efficient, interpretable models.

3.1 Static Models
Graph convolution networks Based on graph spectral
theory, graph convolution network (GCN) (Kipf and Welling
2016) layers are in the form:

Hs+1 = σ(D̃−
1
2 ÃD̃−

1
2 HsWs)

where Ã := A + In and D̃ is a diagonal matrix defined as
D̃ii :=

∑
j Ãij

In order to obtain the model in the continuous depth do-
main, a skip connection can be added as

Hs+1 = Hs + σ(D̃−
1
2 ÃD̃−

1
2 HsWs)

and the corresponding continuous counterpart becomes

dHs

ds
= FGCN(H,Θ) := σ(D̃−

1
2 ÃD̃−

1
2 HsΘ)

Diffusion graph convolution Consider a diffusion graph
convolution (DGC) network (Atwood and Towsley 2016):

Hs+1 = Hs + σ (PsXWs) (5)

where σ : R → R is an activation function assumed to
act component–wise, P ∈ Rn×n is a probability transition
matrix, P := D−1A. The continuous counterpart of (5),
DGCDEs, can be therefore derived as:

dH

ds
= FDGC(s,X,Θ) := σ (PsXΘ) ,

which consists in a depth–varying vector field constant with
respect to the hidden node feature matrix.

Additional models and considerations We include ad-
ditional derivation of continuous counterparts of common
static GNN models such as graph attention networks (GAT)
(Veličković et al. 2017) as supplementary material.

While the definition of GDE models is given with F made
up by a single layer, in practice multi–layer architectures can
also be used without any loss of generality. In these models,
the vector field defined by F is computed by considering
wider neighborhoods of each node.

3.2 Spatio–Temporal Continuous Graph
Architectures

For settings involving a temporal component, the depth do-
main of GDEs coincides with the time domain s ≡ t and
can be adapted depending on the requirements. For exam-
ple, given a time window ∆t, the prediction performed by a
GDE assumes the form:

Ht+∆t = Ht +

∫ t+∆t

t

F (τ,Hτ ,Θ) dτ

regardless of the specific GDE architecture employed. Here,
GDEs represent a natural model class for autoregressive
modeling of sequences of graphs {Gt} and directly fit into
dynamical network theory. This line of reasoning natu-
rally leads to an extension of classical spatio–temporal ar-
chitectures in the form of hybrid dynamical systems (Van

Figure 2: Node embedding trajectories defined by a forward pass of GCDE–dopri5 on Cora, Citeseer and Pubmed. Color
differentiates between node labels.

Der Schaft and Schumacher 2000; Goebel, Sanfelice, and
Teel 2009), i.e., systems characterized by interacting con-
tinuous and discrete –time dynamics. Let (K, >), (T , >) be
linearly ordered sets; namely, K ⊂ N and T is a set of time
instants, T := {tk}k∈K. We suppose to be given a state-
graph data stream which is a sequence in the form

{(Xt,Gt)}t∈T

Our aim is to build a continuous model predicting, at
each tk ∈ T , the value of Xtk+1

, given (Xt,Gt). Let
us also define a hybrid time domain as the set I :=⋃
k∈K ([tk, tk+1], k) and a hybrid arc on I as a function Φ

such that for each k ∈ K, t 7→ Φ(t, k) is absolutely contin-
uous in {t : (t, j) ∈ dom Φ}.

The core idea is to have a GDE smoothly steering the la-
tent node features between two time instants and then apply
some discrete operator, resulting in a “jump” of H which is
then processed by an output layer. Therefore, solutions of
the proposed continuous spatio–temporal model are hybrid
arcs.

Ḣs = F(Hs,Θ)
(ṡ = 1)

H+
s = G(Hs,Xtk+1

)
k ← k + 1

s = tk+1

Figure 3: Schematic of autoregressive GDEs as hybrid au-
tomata.

Autoregressive GDEs The solution of a general autore-
gressive GDE model can be symbolically represented by:

Ḣs = F(Hs,Θ) s ∈ [tk, tk+1]

H+
s = G(Hs,Xtk) s = tk+1

Ytk+1
= K(Hs)

, k ∈ K (6)

Figure 4: Test loss and accuracy on the Cora experiments.
The shaded area is the 95% confidence interval
where F,G,K are GNN–like operators or general neural
network layers1 and H+ represent the value of H after the
discrete transition. The evolution of system (6) can be vi-
sualized by means of hybrid automata as shown in Fig.
3. Compared to standard recurrent models which are only
equipped with discrete jumps, system (6) incorporates a con-
tinuous flow of latent node features H between jumps. This
feature of autoregressive GDEs allows them to track dynam-
ical systems from irregular observations.

Different combinations of F,G,K can yield continuous
variants of most common spatio-temporal GNN models. It
should be noted that the operators F,G,K can themselves
have multi–layer structure.

Graph Differential Convolutional GRU We illustrate the
generality of (6) by deriving the continuous version of GC-
GRUs (Zhao, Chen, and Cho 2018) as:

Ḣs = FGCN(Ht) s ∈ [tk, tk+1]

H+
s = GCGRU(Hs,Xtk) s = tk+1

Ytk+1
= σ(WHs + b)

, k ∈ K

where W is a learnable weight matrix. The complete de-
scription of a GCGRU layer of computation is included as
supplementary material.

4 Experiments
We evaluate GDEs on a transductive node classification
task as well as a forecasting task. The code is available at
https://github.com/Zymrael/gde.

4.1 Transductive Node Classification
Experimental setup The first task involves performing
semi–supervised node classification on static graphs col-
lected from baseline datasets Cora, Pubmed and Citeseer

1More formal definitions of the hybrid model in the form of
hybrid inclusions can indeed be easily given. However, the techni-
calities involved are beyond the scope of this paper.

Model (depth) Cora Citeseer Pubmed Parameters

GCN(2) 81.4± 0.5% 70.9± 0.5% 79.0± 0.3% 184k/474k/64k
GAT (2) 83.0± 0.7% 72.5± 0.7% 79.0± 0.3% 93k/238k/39k

GCDE–rk4 (4) 83.8 ± 0.5% 72.5 ± 0.5% 79.5 ± 0.3% 188k/478k/68k
GCDE–dpr5 (108) 82.9± 0.7% 69.0± 0.8% 79.1± 0.4% 188k/478k/68k

Table 1: Test results in percentages across 100 runs (mean and standard deviation). All GCN models have hidden dimension set
to 64. For GAT and GCN64 results we refer to (Veličković et al. 2017).

(Sen et al. 2008). Main goal of these experiments is to
show the usefulness of GDEs as general GNNs variants even
when the data is not generated by continuous dynamical sys-
tems. We follow the standard experimental setup of (Kipf
and Welling 2016) for a fair comparison. The models are
optimized using Adam (Kingma and Ba 2014) with con-
stant learning rate 0.01. L2 weight penalty is set to 0.001
as a strong regularizer due to the small size of the training
sets (Monti et al. 2017). All convolution–based models are
equipped with a latent dimension of 64.

The performance of graph convolutional differential
equation (GCDE) is assessed with both a fixed-step
solver Runge–Kutta (Runge 1895; Kutta 1901) as well
as an adaptive–step solver, Dormand–Prince (Dormand
and Prince 1980). The resulting models are denoted as
GCDE–rk4 and GCDE–dpr5 respectively. We utilize the
torchdiffeq (Chen et al. 2018) PyTorch package to
solve and backpropagate through ODEs via the adjoint
method.

Discussion Following (Veličković et al. 2017), we report
mean and standard deviation across 100 training runs. The
best performing GCN in terms of layer depth is selected as a
baseline. GCDE–rk4 outperform GCNs across all datasets;
its structure offers a computationally efficient FractalNet–
like (Larsson, Maire, and Shakhnarovich 2016) structure
for GCNs that improves accuracy and training stability 4.
GCDEs do not require more parameters than their discrete
counterparts. Additionally, training GCDEs with adaptive
step solvers naturally leads to deeper models than possi-
ble with vanilla GCNs, whose layer depth greatly reduces
performance. We report the number of function evaluations
(NFE) of the ODE function contained in the GCDE as a
measure of its depth. It can be noted that the performance
of GCDE–dpr5 is slightly worse compared to GCDE–rk4,
since deeper models are penalized on these datasets by a lack
of sufficient regularization (Kipf and Welling 2016).

4.2 Forecasting
Experimental setup To evaluate the effectiveness of au-
toregressive GDE models on forecasting tasks we perform
a series of experiments on the established PeMS traffic
dataset. We follow the setup of (Yu, Yin, and Zhu 2018)
in which a subsampled version of PeMS, PeMS7(M), is
obtained via selection of 228 sensor stations and aggrega-
tion of their historical speed data into regular 5 minute fre-
quency time series. To simulate a challenging environment
with missing data and irregular timestamps, we undersample

the time series by performing independent Bernoulli trials
on each data point with probability 0.7 of removal. In order
to measure performance gains obtained by GDEs in settings
with data generated by continuous time systems, we employ
a GCDE–GRU as well as its discrete counterpart GCGRU
(Zhao, Chen, and Cho 2018). To contextualize the results
GRU performance on the task is included. For each model
under consideration we collect normalized RMSE (NRMSE)
and mean absolute percentage error (MAPE). More details
about the chosen metrics and data are included as supple-
mentary material.

Discussion The distribution of timestamp deltas (5 minute
units) used to adjust the ODE integration domain of GCDE–
GRU is shown in Figure 5. Non–constant differences be-
tween timestamps result in a challenging forecasting task for
a single model since the average prediction horizon changes
drastically over the course of training and testing. For a fair
comparison between models we include delta timestamps
information as an additional node feature for GCGNs and
GRUs.

The main objective of these experiments is to measure
the performance gain of GDEs when exploiting a correct
assumption about the underlying data generating process.
Traffic systems are intrinsically dynamic and continuous and
therefore a model able to track continuous underlying dy-
namics is expected to offer improved performance. Since
GCDE-GRUs and GCGRUs are designed to match exactly
in structure and number of parameters we can measure this
performance increase from the results shown in (2). GDEs
offer an average improvement of 3% in NRSME and 7% in
MAPE. A variety of other application areas with continu-
ous dynamics and irregular datasets could similarly benefit
from adopting GDEs as modeling tools: medicine, finance
or distributed control systems, to name a few.

5 Conclusion
In this work we introduce the graph neural ordinary differ-
ential equations (GDE), the continuous counterpart to graph
neural networks (GNN) where the inputs are propagated

Model (depth) MAPE NRMSE Parameters

GRU 27.52± 0.00 1.47± 0.00 9658
GCGRU 24.80± 0.12 1.44± 0.00 9985
GDE-GRU 23.08± 0.11 1.40± 0.01 9955

Table 2: Forecasting test results across 5 runs (mean and
standard deviation).

1 2 3 4 5 6 7 8 9 10 >=11
Timestamp deltas: t (5 minute units)

0

100

200

300

400

500

fr
eq

ue
nc

y

Distribution of timestamp differences

Train
Test

Figure 5: Distribution of deltas between timestamps tk+1 −
tk in the undersampled dataset. The time scale of required
predictions varies greatly during the task.

through a continuum of GNN layers. The GDE formulation
is general, as it can be adapted to include any GNN architec-
ture with minimal or no modifications. Additionally, GDEs
represents a natural approach to sequential forecasting prob-
lems with irregularly sampled data since they are able to ac-
commodate arbitrary timestamps. Finally, when GDEs are
coupled with adaptive step solvers, as is the case for NODEs
(Chen et al. 2018), they do not require apriori tuning of the
number of layers and can naturally lead to deeper models,
ultimately reducing the effort required on hyperparameter
search for an effective deployment across application areas.

References
Atwood, J., and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Advances in Neural Information Pro-
cessing Systems, 1993–2001.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y.
2018. Recurrent neural networks for multivariate time series
with missing values. Scientific reports 8(1):6085.
Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. In
Advances in neural information processing systems, 6571–
6583.
Cui, Z.; Henrickson, K.; Ke, R.; and Wang, Y. 2018. Traffic
graph convolutional recurrent neural network: A deep learn-
ing framework for network-scale traffic learning and fore-
casting. arXiv preprint arXiv:1802.07007.
Deng, Z.; Nawhal, M.; Meng, L.; and Mori, G. 2019. Con-
tinuous graph flow.
Dormand, J. R., and Prince, P. J. 1980. A family of em-
bedded runge-kutta formulae. Journal of computational and
applied mathematics 6(1):19–26.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and
Lodi, A. 2019. Exact combinatorial optimization with
graph convolutional neural networks. arXiv preprint
arXiv:1906.01629.

Gholami, A.; Keutzer, K.; and Biros, G. 2019. Anode: Un-
conditionally accurate memory-efficient gradients for neural
odes. arXiv preprint arXiv:1902.10298.
Goebel, R.; Sanfelice, R. G.; and Teel, A. R. 2009. Hy-
brid dynamical systems. IEEE Control Systems Magazine
29(2):28–93.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Innes, M.; Edelman, A.; Fischer, K.; Rackauckus, C.; Saba,
E.; Shah, V. B.; and Tebbutt, W. 2019. Zygote: A differen-
tiable programming system to bridge machine learning and
scientific computing. arXiv preprint arXiv:1907.07587.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Kutta, W. 1901. Beitrag zur naherungsweisen integration
totaler differentialgleichungen. Z. Math. Phys. 46:435–453.
Larsson, G.; Maire, M.; and Shakhnarovich, G. 2016. Frac-
talnet: Ultra-deep neural networks without residuals. arXiv
preprint arXiv:1605.07648.
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2017. Diffusion
convolutional recurrent neural network: Data-driven traffic
forecasting. arXiv preprint arXiv:1707.01926.
Li, Y.; Vinyals, O.; Dyer, C.; Pascanu, R.; and Battaglia, P.
2018. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Advances in Neural Information Processing Sys-
tems, 539–548.
Li, X.; Wang, X.; and Chen, G. 2004. Pinning a complex
dynamical network to its equilibrium. IEEE Transactions on
Circuits and Systems I: Regular Papers 51(10):2074–2087.
Lu, Y.; Zhong, A.; Li, Q.; and Dong, B. 2017. Be-
yond finite layer neural networks: Bridging deep architec-
tures and numerical differential equations. arXiv preprint
arXiv:1710.10121.
Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.;
and Bronstein, M. M. 2017. Geometric deep learning on
graphs and manifolds using mixture model cnns. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5115–5124.
Park, J., and Park, J. 2019. Physics-induced graph neu-
ral network: An application to wind-farm power estimation.
Energy 187:115883.
Quaglino, A.; Gallieri, M.; Masci, J.; and Koutnı́k, J. 2019.
Accelerating neural odes with spectral elements. arXiv
preprint arXiv:1906.07038.
Rubanova, Y.; Chen, R. T.; and Duvenaud, D. 2019. La-
tent odes for irregularly-sampled time series. arXiv preprint
arXiv:1907.03907.

Runge, C. 1895. Über die numerische auflösung von differ-
entialgleichungen. Mathematische Annalen 46(2):167–178.
Sanchez-Gonzalez, A.; Heess, N.; Springenberg, J. T.;
Merel, J.; Riedmiller, M.; Hadsell, R.; and Battaglia, P.
2018. Graph networks as learnable physics engines for in-
ference and control. arXiv preprint arXiv:1806.01242.
Sanchez-Gonzalez, A.; Bapst, V.; Cranmer, K.; and
Battaglia, P. 2019. Hamiltonian graph networks with ode
integrators. arXiv preprint arXiv:1909.12790.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3):93–93.
Van Der Schaft, A. J., and Schumacher, J. M. 2000. An intro-
duction to hybrid dynamical systems, volume 251. Springer
London.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.
Wang, X. F., and Chen, G. 2002. Synchronization in scale-
free dynamical networks: robustness and fragility. IEEE
Transactions on Circuits and Systems I: Fundamental The-
ory and Applications 49(1):54–62.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596.
Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.
Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-temporal graph
convolutional networks: A deep learning framework for traf-
fic forecasting. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI).
Zhang, J. 2019. Gresnet: Graph residuals for reviving deep
graph neural nets from suspended animation. arXiv preprint
arXiv:1909.05729.
Zhao, X.; Chen, F.; and Cho, J.-H. 2018. Deep learning
for predicting dynamic uncertain opinions in network data.
In 2018 IEEE International Conference on Big Data (Big
Data), 1150–1155. IEEE.

A Additional Static GDEs
Message passing neural networks Let us consider a sin-
gle node v ∈ V and define the set of neighbors of v as
N := {u ∈ V : (v, u) ∈ E ∨(u, v) ∈ E}. Message passing
neural networks (MPNNs) perform a spatial–based convolu-
tion on the node v as

h
(v)
s+1 = us

h(v),
∑

u∈N (v)

ms

(
h(v)
s ,h(u)

s

) (7)

where, in general, hv0 = xv while u and m are func-
tions with trainable parameters. For clarity of exposition, let
us(x,y) := x + gs(y) where gs is the actual parametrized
function. The (7) becomes

h
(v)
s+1 = h(v)

s + gs

 ∑
u∈N (v)

ms

(
h(v)
s ,h(u)

s

) (8)

and its continuous counterpart is

ḣ(v)
s = f

(v)
MPNN(H,Θ) := gs

 ∑
u∈N (v)

ms

(
h(v)
s ,h(u)

s

)
Graph Attention Networks Graph attention networks
(GATs) (Veličković et al. 2017) perform convolution on the
node v as

h
(v)
s+1 = σ

 ∑
u∈N (v)∪v

αvuWsh
(u)
s

 (9)

Similarly, to GCNs, a virtual skip connection can be intro-
duced allowing us to defined the GDE:

ḣ(v)
s = f

(v)
GAT(H,Θ) := σ

 ∑
u∈N (v)∪v

αvuΘh(u)
s


where αvu are attention coefficient which can be computed
following (Wu et al. 2019, eq. (23))

B Spatio Temporal GNNs
We include a complete description of GCGRUs to clarify the
model used in our experiments.

B.1 GCGRU
GCGRUs (Zhao, Chen, and Cho 2018) perform the follow-
ing computation on latents H and input features X:

Z = σ (Wxz ∗G Xt + Whz ∗G Ht−1)

R = σ (Wxr ∗G Xt + Whr ∗G Ht−1)

H̃ = tanh (Wxh ∗G Xt + Whh ∗G (R�Ht−1))

Ht = Z�Ht−1 + (1− Z)� H̃

(10)

where the operator ∗G denotes the standard graph convolu-
tion.

C Additional experimental details
Node classification The hyperbolic tangent (tanh) is used
as activation for GDNs. Smooth activations have been ob-
served to reduce stiffness (Chen et al. 2018) of the ODE and
therefore the number of function evaluations (NFE) required
for a solution that is within acceptable tolerances. All the
other activation functions are rectified linear units (ReLU).

Forecasting PeMS7(M) contains a weighted adjacency
matrix function of distances between stations. We threshold
A using the 80th. Ratio of train/test data is set to 0.5 post–
undersampling step. All models receive an input sequence of
5 graphs to perform prediction. We measured MAPE (mean
absolute percentage error) and NRMSE (IQR normalized
RMSE). These metrics are defined as follows:

MAPE(y, ŷ) =
100%

pT

∥∥∥∥∥
T∑
t=1

(yt − ŷt)� yt

∥∥∥∥∥
1

(11)

where y, and ŷ ∈ Rp is the set of vectorized target
and prediction of models respectively. � and ‖·‖1 denotes
Hadamard division and the 1-norm of vector.

yIQR = y0.75 − y0.25

NRMSE(y, ŷ) =
1

p

∥∥∥∥∥∥
√√√√ 1

T

T∑
t=1

(yt − ŷt)2 � yIQR

∥∥∥∥∥∥
1

where y0.75 and y0.25 denotes 75th and 25th percentiles
of each station’s measurement. yIQR vector denotes the in-
terquartile range of sensor measurements of the stations. (·)2

and
√
· denotes the element-wise squares and square root of

the input vector. yt and ŷt denote the target and prediction
vector respectively.

