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Abstract

Recent research efforts aiming to bridge the Neural-Symbolic
gap for RDFS reasoning proved empirically that deep learn-
ing techniques can be used to learn RDFS inference rules.
However, one of their main deficiencies compared to rule-
based reasoners is the lack of derivations for the inferred
triples (i.e. explainability in AI terms). In this paper, we build
on these approaches to provide not only the inferred graph
but also explain how these triples were inferred. We eval-
uated our justification model on two datasets: a synthetic
dataset– LUBM1 benchmark– and a real-world dataset –
ScholarlyData about conferences – where the lowest valida-
tion accuracy approached 96%.

Introduction
The famous saying in the Semantic Web (SW) community
“A Little Semantics Goes a Long Way” (Hendler 1997) ad-
vocates for using light semantics such as RDFS (Hayes and
Patel-Schneider 2014) in order to achieve the SW vision –
where humans and machines interact to process, produce
and reason about the Web of data. RDFS provides a way
to describe the classes of RDF resources, their hierarchy,
the relations among the different resources and the hierar-
chy of these relations. Given an RDF graph describing a set
of resources (A-Box) and an RDFS ontology describing the
classes and relations (T-Box), RDFS entailment rules gener-
ate new facts that extend our knowledge about the A-Box.

In many applications such as Question Answering
(QA) (Unger et al. 2012; Zou et al. 2014; Unger et al. 2014),
not only the inferred fact is required but also the deriva-
tion1 of the triple. The derivation can be useful to justify
the answer provided by the QA system which allows the
Human-in-the-loop (HITL) to validate or reject the answer.
An example of an RDFS derivation in LUBM (Guo, Pan,
and Heflin 2005) is shown in listing 1.

Listing 1: RDFS derivation example in LUBM
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1Derivation and justification are used interchangeably in this
paper.

_:UndergraduateStudent46 rdf:type
LUBM:Student .

⇐=
_:UndergraduateStudent46 rdf:type

LUBM:UndergraduateStudent .
LUBM:UndergraduateStudent rdfs:subClassOf

LUBM:Student .

Rule-based reasoners suffer from two main limitations:
1. Dealing with noisy data
2. Lack of support for approximate reasoning

These two limitations motivated the exploration of deep
learning techniques for SW reasoning. In (Hohenecker and
Lukasiewicz 2017), the authors propose Relational Tensor
Networks (RTN) as an adaptation for Recursive Neural Ten-
sor Networks (RNTN) (Socher et al. 2013). In (Ebrahimi et
al. 2018), the authors extend the End-to-end memory net-
works (MemN2N) (Sukhbaatar et al. 2015) to store RDF
triples and train the model to embed the knowledge graph
and predict if a triple can be inferred from the input graph.
(Makni and Hendler 2019) focus on the noise-tolerance as-
pect: by transforming the RDF graphs into a sequence of
“graph words” they model the RDFS inference task as a ma-
chine translation task of graph words.

Unfortunately, deep learning based reasoners suffer from
a problem that is common for deep learning approaches in
general: the lack of explainability which translates into the
inability to provide the derivation of the inferred triples. To-
wards combining the best of both worlds, this paper pro-
poses a graph2seq model that learns the generation of justi-
fications for the inferred triples.

Approach Overview
In order to input the RDF graph into the neural network–
that learns the generation of the inference graph and/or the
justification of the inferred triples– we first need to em-
bed the RDF graph into a format that can be fed to neu-
ral networks. The literature contains many approaches for
knowledge graph embedding such as: (Bordes et al. 2013;
Wang et al. 2014; Nickel, Rosasco, and Poggio 2016; Ris-
toski and Paulheim 2016; Ji et al. 2015; Trouillon et al. 2017;
Wang et al. 2017). However only a few are tailored for



RDFS reasoning. One approach in particular is the “graph
words” (Makni and Hendler 2019) technique that converts
an RDF graph into a sequence of graph word IDs. Besides
being tailored for RDFS reasoning, the choice of this embed-
ding technique is motivated by the availability of the code
and the expendability of the model as detailed further along.

The augmentation of the graph words model to support
the generation of the justifications for the inferred triples is
illustrated in Fig. 1. The upper segment depicts the graph
words translation approach (Inference Generation) where
each input graph is encoded into a 3D adjacency matrix
(or Tensor). Each layer in the 3D adjacency matrix corre-
sponds to the adjacency matrix between the RDF resources
which are linked according to a single predicate. These lay-
ers are then assigned an ID that represents their layout. The
sequence of these IDs represents the RDF graph hence the
naming “graph words”. The training set becomes a parallel
corpus between the sequence of graph words of the input
graph and the sequence of graph words of the inference. The
authors then trained a seq2seq (Sutskever, Vinyals, and Le
2014) model that learns the inference generation.

Figure 1: Explainable Deep RDFS reasoner (Approach
Overview)

The lower segment of Fig. 1 (derivation generation) de-
picts the core contribution of this paper. Among the dif-
ferent explainability research efforts for deep learning net-
works, the closest to our approach is rationalization (Harri-
son, Ehsan, and Riedl 2018). Rationalization of neural net-
works consists of training the neural network not only on
the input and target data, but also on the rationale behind
the target data. In our case, the justification is provided by a
rule-based reasoner (JENA (Carroll et al. 2004)). The train-
ing input consists of the input RDF graph represented as a
sequence of graph words as well as the encoded inferred
triple and the target is the encoded derivation. The justifica-
tion model is a modified seq2seq model with two sequences
as the input and one sequence as the output.

RDF Data Representation
In this section, we provide an overview of our data prepa-
ration process including ground-truthing and RDF tensors
creation.

Ground-Truthing
This process is applied on the following datasets:
LUBM (Guo, Pan, and Heflin 2005) and Scholarly-
Data (Gentile and Nuzzolese 2015). In order to generate the
ground truth, we split each dataset into sub-graphs where
each graph represents the description (using SPARQL DE-
SCRIBE) of a subject resource. The ground-truthing proce-
dure consists of the following steps:

1. Let L be the set of these sub-graphs.
2. For each graph l in L, we generate the inference i of l

according to the corresponding ontology using JENA.
3. For each inferred triple t in the inference graph i, we gen-

erate the justification graph j using JENA.
4. The training input is (l, i) and the target is j
This results into pairs of input graphs and inferred triples
(l, i).

In the case of LUBM1, the summarized derivations gen-
erated by JENA contain either one or at most two triples,
which will simplify the design of the justification neural
network model. On the contrary, the justifications generated
from the real-world datasets can be longer as detailed later.

RDF Tensors Creation
The encoding and embedding stages aim to transform RDF
graphs into a format suitable for neural network input. Given
that the training data has three components to be encoded:
the graph input, the inferred triple and the justification, we
extended the encoding technique proposed in (Makni and
Hendler 2019) (depicted in the upper segment of Fig. 1) to
support the encoding of the derivations. The encoding tech-
nique described in (Makni and Hendler 2019) can be briefly
described in the following steps:

1. Let P be the set of “active properties” which consists of
the intersection between the properties in the ontology
and the properties used in the A-Box. By using only the
intersection and not the full set of properties in the ontol-
ogy, the size of the embedding can be reduced dramati-
cally without affecting the inference.

2. Let P+ be the union of P and rdf:type.
3. A fixed arbitrary order is imposed on the set P+ through-

out the training.
4. Let OP be the ordered list resulting from this sorting.

Each property in OP is assigned a integer ID pi according
to its index.

5. Let GR be the set of global resources (i.e. classes in the
ontology). An arbitrary order is also imposed on GR and
maintained throughout the training. Each class in GR is
assigned an integer ID ci according to its index.

6. Let LR be the set of local resources (i.e. the RDF re-
sources that appear in the A-Box but not in the T-Box).
Each resource in LR is assigned an ID li with an offset
the size of GR. These IDs are reset when encoding the
next RDF graph.



In this simplified encoding technique, the global GR and lo-
cal LR resource sets are shared between the predicates. The
authors also propose a more complex encoding technique
where each group of predicates p has its own GRp and LRp

resource dictionaries.
By design, this encoding technique ensures that every re-

source that can appear in the inference has an ID assigned to
it when encoding the input graph. This allowed us to use the
same encoding technique for the input graph and the inferred
triple. In contrast, the properties that can appear in the jus-
tification such as rdfs:subClassOf and rdfs:subPropertyOf
are not present in P+ as they are not used in the A-Box. As
a remedy, we had to add the properties that are used in the
RDFS entailment rules (Hayes and Patel-Schneider 2014) to
P++ and similarly impose a fixed arbitrary order to assign
an ID to each of these properties. Knowing that the deriva-
tion can contain two triples, an order is also imposed to sort
these two triples according to the IDs of their predicates.

Imposing these lists of orders is mandatory for the train-
ing, otherwise the same inferred triple can have two targets
as its justification depending on the order of the derivation
triples. Keeping in mind that neural networks are functions’
approximators (Csáji 2001) but having the same input with
two possible targets makes the problem outside function ap-
proximation realm.

At this stage, the input consists of two lists:

Graph words sequence A sequence of layers’ IDs of size
P+ where each layer ID represents the layout of the ad-
jacency matrix according to the respective property.

Inferred triple encoding A sequence of 3IDs for the sub-
ject, property and object of the inferred triple. These IDs
are assigned according to the same encoding technique for
the input graph.

The target consists of:

Derivation encoding A padded sequence of size 6 corre-
sponding to the IDs for each resource in the derivation.

Finally, the embedding of each layer in the graph words se-
quence is computed using High-Order Proximity preserved
Embedding (HOPE) (Ou et al. 2016). For the inference and
derivation sequences, we use one-hot vector encoding.

Model Architecture
The architecture of the justification neural network is pro-
vided in the supplementary material. It is a modified seq2seq
model that takes two sequences as input. The graph input
part is a tensor of size (17, 280) where 17 represents the
length of the sequence (i.e. the size of P+ in the case of
LUBM). Each adjacency matrix in LUBM1 encoding is of
size 70 × 70. When using the HOPE embedding with a di-
mension of 4, we reduce the size of the binary matrix to a
real matrix of size 70× 4 hence the 280 parameter.

The input triple tensor is of size (3, 66) where 66 is the
size of the one-hot vector. Using the local resources set LR
played a major role in reducing the size of this one-hot vec-
tor making the training faster and even possible. Each se-
quence (the graph sequence and the triple sequence) go then

through similar seq2seq layers with a Bidirectional Recur-
rent Neural Network (BRNN) (Schuster and Paliwal 1997)
encoder which can be trained simultaneously in positive and
negative time directions. The hidden representations are then
merged in the concatenate layer before being decoded into
a sequence of 6 items which should represent the derivation.
Few dropout layers are introduced in the architecture with a
dropout factor of 0.2 to prevent over-fitting and improve the
generalization on the validation set.
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Figure 2: Baseline Model Performance on LUBM1 dataset

Evaluation
This section shows the evaluation results for the task of pro-
viding justifications for the inferred triples in LUBM1 both
using a baseline model and a full model architecture. Both
models were trained and evaluated using two NVIDIA Tesla
P100 GPUs used in parallel. LUBM1 dataset has around
one hundred thousand triples containing 17, 189 subject-
resources within 15 classes. The total number of pairs of
graphs and inferred triples is 78, 766. It is worth noting that
the same triple can be inferred by multiple graphs and the
total number of inferred triples in LUBM1 is smaller.

Baseline model
Our first experiment shows the performance of a baseline
model which gets as input only the inferred triple and out-
puts the justification. Fig. 2 shows training and validation
accuracy of the baseline model. In the first few iterations, the
training loss dropped significantly but stagnated afterwards.
Similarly, the validation accuracy increased in the first few
iterations 66% to 73% but improved very little later on.

It might be surprising that such a naive model can even
reach this accuracy especially that the justification of an in-
ferred triple depends on the input graph from which the in-
ferred triple was derived. For example, if the question is why
an entity is of type Person, the answer can be:

1. because it is of type Student

2. or because it is of type Professor.
Given that the majority of entities of type persons in LUBM1
are of type student and not professor, a naive model that al-
ways outputs justification 1 will be correct on the majority
of the cases–thus the surprising relatively high accuracy and
the stagnation when the model fails to generalize for smaller
classes.



Justification model
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Figure 3: Performance of our model on LUBM1 dataset

Our final model has a much better performance as shown in
Figures 3 and 4 showing a validation accuracy of 96% and
97.9% for LUBM1 and Scholarly datasets respectively.

Inference generation examples
Listing 2 shows an example of ground truth derivation and
listing 3 shows an example where the justification model
generates a wrong derivation by outputting the predicate un-
dergraduateDegreeFrom rather than doctoralDegreeFrom.

Listing 2: Ground truth derivation
_:FullProfessor3 rdf:type LUBM:Person .

⇐=

_:FullProfessor3 lubm:doctoralDegreeFrom
<http://www.University879.edu> .

Listing 3: Predicted wrong derivation
_:FullProfessor3 rdf:type LUBM:Person .

⇐=

_:FullProfessor3
lubm:undergraduateDegreeFrom
<http://www.University879.edu> .
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Figure 4: Performance of our model on ScholarlyData

Related Work
Opening the black box of deep neural networks Deep
learning models are often described as black box models as
they are not built in a way that allows for the backtracking
of their decision-making process. However, recent research
efforts are attempting to demystify the hidden processing of
deep learning networks and opening its black box such as
“Opening the Black Box of Deep Neural Networks via In-
formation” (Shwartz-Ziv and Tishby 2017) and “Rational-
ization: A Neural Machine Translation Approach to Gen-
erating Natural Language Explanations” (Harrison, Ehsan,
and Riedl 2018). In (Harrison, Ehsan, and Riedl 2018), the
authors train a deep model to play the video game Frogger.
They also feed the justifications generated by human players
for each action. The model was able to not only make deci-
sions that ultimately led to it winning the game, but it was
also able to justify the sequence of actions it took.

Deep Learning for Ontological Reasoning (Makni and
Hendler 2019) showed that neural network translation can
be utilized effectively in symbolic reasoning in the presence
of noise. The authors proposed an embedding technique tai-
lored for RDFS reasoning where graphs are represented as
layers where each layout is encoded as a 3D adjacency ma-
trix and forms a graph word. The input graph and its entail-
ment are then represented as a sequence of graph words and
the task of RDFS inference is then formulated as as trans-
lation task achieved through neural machine translation. In
this paper, we build on this approach (Makni and Hendler
2019) to provide the explainability advantage for RDFS rea-
soning. In (Ebrahimi et al. 2018), the authors extend the
End-to-end memory networks (MemN2N) (Sukhbaatar et al.
2015) to store RDF triples and train the model to embed the
knowledge graph and predict if a triple can be inferred from
the input graph.

Conclusion
In this paper, we aimed at combining the benefits of both
deep learning reasoners as well as the justification feature
in rule-based reasoners. We proposed a novel approach for
achieving explanability in RDFS reasoning which is inspired
by the rationalization technique for explainable AI. The pro-
posed grah2seq model takes as input an RDF graph as well
as a sequence representing an inferred fact and generates a
sequence representing the justification for the inferred triple.
Our results show that this approach can provide a very high
accuracy–up to 95.93% on LUBM1. Possible extension of
this work is to test is on larger RDF datasets and compare the
derivation generation timing. As noise-tolerance was one of
the motivations for proposing deep learning based reasoners,
it will also be worth-while to test the justification generator
model in the presence of noisy input data.
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Figure 1: Model Architecture


