
Combinatorial Optimization by Graph Pointer Networks and Hierarchical
Reinforcement Learning

Qiang Ma1, Suwen Ge1, Danyang He1, Darshan Thaker1, Iddo Drori1,2

1Columbia University 2Cornell University
{ma.qiang, sg3635, dh2914, darshan.thaker}@columbia.edu

idrori@cs.columbia.edu

Abstract
In this work, we introduce Graph Pointer Networks (GPNs)
trained using reinforcement learning (RL) for tackling the
traveling salesman problem (TSP). GPNs build upon Pointer
Networks by introducing a graph embedding layer on the
input, which captures relationships between nodes. Further-
more, to approximate solutions to constrained combinato-
rial optimization problems such as the TSP with time win-
dows, we train hierarchical GPNs (HGPNs) using RL, which
learns a hierarchical policy to find an optimal city permu-
tation under constraints. Each layer of the hierarchy is de-
signed with a separate reward function, resulting in sta-
ble training. Our results demonstrate that GPNs trained on
small-scale TSP50/100 problems generalize well to larger-
scale TSP500/1000 problems, with shorter tour lengths and
faster computational times. We verify that for constrained
TSP problems such as the TSP with time windows, the fea-
sible solutions found via hierarchical RL training outperform
previous baselines. In the spirit of reproducible research we
make our data, models, and code publicly available (Ma et al.
2019).

Introduction
Combinatorial optimization problems have received wide
attention in the past few decades. One of the most impor-
tant and practical problems is the traveling salesman prob-
lem (TSP). To introduce the TSP, consider a salesman who
is traveling on a tour across a set of cities while min-
imizing the overall tour length. TSP is known to be an
NP-hard problem (Papadimitriou 1977). Several approxi-
mation algorithms and heuristics for TSP have been pro-
posed such as the 2-opt heuristic (Aarts, Aarts, and Lenstra
2003), Christofides algorithm (Christofides 1976), and the
Lin-Kernighan heuristic (LKH) (Helsgaun 2000).

To solve combinatorial optimization problems, an in-
creasing number of recent works leverage machine learning
(ML) and reinforcement learning (RL) approach (Vinyals,
Fortunato, and Jaitly 2015; Bello et al. 2017; Nazari et al.
2018; Khalil et al. 2017; Kool, van Hoof, and Welling 2019a;
Joshi, Laurent, and Bresson 2019). A seq2seq model, known
as the pointer network (Vinyals, Fortunato, and Jaitly 2015),

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has great potential in approximating solutions to several
combinatorial optimization problems such as finding the
convex hull and the TSP. An RL framework for pointer net-
works has been proposed (Bello et al. 2017), which out-
performed most of the previous heuristics on TSP with
up to 100 nodes. Recently, motivated by the Transformer
architecture (Vaswani et al. 2017), Kool et al. proposed
an attention model (Kool, van Hoof, and Welling 2019a;
2019b) to solve routing problems such as the TSP and VRP,
significantly improving the result for small-scale TSP. How-
ever, scale is still an issue for the attention model.

As a powerful tool to capture graph information, Graph
Neural Networks (GNNs) (Kipf and Welling 2016; Xu et al.
2019; Gasse et al. 2019) have been studied extensively and
applied to solve combinatorial optimization problems. Li et
al. (Li, Chen, and Koltun 2018) applied a Graph Convolu-
tional Network (GCN) model (Kipf and Welling 2016) to
solve several graph-based combinatorial optimization prob-
lems. Dai et al. (Khalil et al. 2017) proposed a graph embed-
ding network trained with deep Q-learning and found that
this generalized well to larger-scale problems. In addition to
unconstrained problems, combinatorial optimization prob-
lems with constraints, e.g. TSP with time window (TSPTW),
have not been fully considered. In this work, we explore
the use of hierarchical RL methods (Kulkarni et al. 2016;
Haarnoja et al. 2018a) to tackle combinatorial optimization
problems with constraints, which are split into different sub-
tasks. Each layer of the hierarchy learns to search the fea-
sible solutions under constraints or learns the heuristics to
optimize the objective function.

In this work, we approximate solutions to larger-scale
TSP problems and address constrained combinatorial opti-
mization problems. Our contributions are three-fold: (i) We
propose a graph pointer network (GPN) to tackle the vanilla
TSP. The GPN extends the pointer network with graph em-
bedding layers and achieves faster convergence; (ii) We add
a vector context to the GPN architecture and train using early
stopping in order to generalize our model to tackle larger-
scale TSP instances, e.g. TSP1000, from a model trained on
a much smaller TSP50 instance; and (iii) We employ a hier-
archical RL framework along with the GPN architecture to
efficiently solve TSP with a time window constraint.

Preliminaries
Traveling Salesman Problem
In this work, we focus on solving the symmetric 2-
D Euclidean traveling salesman problem (TSP) (Lawler
et al. 1985). The graph of the symmetric TSP is com-
plete and undirected. Given a list of N city coordinates
{x1,x2, ...,xN} ⊂ R2, we wish to find an optimal permu-
tation σ over the cities that minimizes the tour length (Bello
et al. 2017):

L(σ,X) =

N∑
i=1

‖xσ(i) − xσ(i+1)‖2, (1)

where σ(1) = σ(N + 1), σ(i) ∈ {1, ..., N}, σ(i) 6= σ(j)
for any i 6= j, and X = [x>1 , ...,x

>
N]> ∈ RN×2 is a matrix

consisting of all city coordinates xi.

Reinforcement Learning for TSP
We begin by introducing the notation used to formulate the
TSP as a reinforcement learning problem. Let S be the state
space andA be the action space. Each state st ∈ S is defined
as the set of all previous visited cities, i.e. st = {xσ(i)}ti=1.
The action at ∈ A is defined as the next selected city, that
is at = xσ(t+1). Since σ(1) = σ(N + 1), it follows that
aN = xσ(N+1) = xσ(1), which means the last choice of the
route is the start city.

Denote a policy as πθ(at|st), which is a distribution over
candidate cities at given a set of visited cities st. Given a set
of visited cities, the policy will return a probability distribu-
tion over the next candidate cities that have not been chosen.
In our case, the policy is represented by a neural network
and the parameter θ represents the trainable weights of the
neural network. Furthermore, the reward function is defined
as the negative cost incurred from taking action at from state
st, i.e. r(st,at) = −‖xσ(t) − xσ(t+1)‖2. Then the expected
reward (Sutton and Barto 2018) is defined as follows:

E(st,at)∼πθ(st,at)

[
N∑
t=1

r(st,at)

]

= Eσ∼pθ(Γ),X∼X

[
N∑
t=1

−‖xσ(t) − xσ(t+1)‖2

] (2)

where X is the space of the set of cities, Γ is the space of
all possible permutations σ over X , and pθ(Γ) is the dis-
tribution over Γ, which is predicted by the neural network.
To maximize the above reward function, the network must
learn a policy to minimize the expected tour length. We em-
ploy the policy gradient algorithm (Sutton and Barto 2018)
to learn to maximize the reward function as described next.

Hierarchical Reinforcement Learning
Hierarchical RL for TSP
A key aspect of our work is tackling TSP with constraints.
Augmenting traditional RL reward functions with a penalty
term encourages solutions to be in the feasible set (Bello et
al. 2017); however, we find this method leads to unstable

training. Instead, we propose a hierarchical RL framework
to more efficiently tackle TSP with constraints.

Motivated by the work of Haarnoja et al. (Haarnoja et
al. 2018a; 2018b), we adopt a probabilistic graphical model
framework for control, as demonstrated in Figure 1. Each
layer of a hierarchy defines a policy, from which we sample
actions. At a given layer k ∈ {0, . . . ,K}, the current action
a

(k)
t is sampled from the policy πθk(a

(k)
t |s

(k)
t ,h

(k)
t), where

h
(k)
t ∈ H(k) is a latent variable from the previous layer in

the hierarchy andH(k) is its corresponding latent space. For
convenience of notation, on the k-th layer, we extend the
policy to both sample the action and provide the latent vari-
able, i.e. a(k)

t ,h
(k+1)
t ∼ πθk(·|s(k)

t ,h
(k)
t).

Each layer corresponds to a different RL task, so the re-
ward functions are hand-designed to be different for each
layer. For our experiments, we set lower layer reward func-
tions to simply bias solutions to be in the feasible set of
the constrained optimization problem, and set higher layer
reward functions to be the original optimization objective.
Hence the lower layer learns to search feasible solutions un-
der constraints and provide prior for higher layer. This hier-
archy yields fast convergence and better results.

(a) Middle Layer (b) Lowest Layer (c) Highest Layer

Figure 1: Graphical models for hierarchical RL framework.

Hierarchical Policy Gradient

We use the policy gradient method to learn a hier-
archical policy. Considering a hierarchical policy, the
objective function of the k-th layer is J(θk) =
−Eσ∼pθk(σ),X∼X [L(σ,X)]. Based on the REINFORCE al-
gorithm, the gradient of the k-th layer policy is expressed as
(Williams 1992; Bello et al. 2017):

∇θkJ(θk) =
1

B

B∑
i=1

[(
N∑
t=1

rk(s
(k)
i,t ,a

(k)
i,t)− bi,k

)

×

(
N∑
t=1

∇θk log πθk(a
(k)
i,t |s

(k)
i,t ,h

(k)
i,t)

)]
,

(3)

whereB is the batch size, πθk is the k-th layer policy, rk(·, ·)
is the reward function for the k-th layer, bi,k is the k-th layer
central self-critic baseline, and h

(k)
t is the latent variable

from the lower layer. The central self-critic baseline bi,k is

defined as:

bi,k =

N∑
t=1

(
rk(s̃

(k)
i,t , ã

(k)
i,t)
)

+

 1

B

N∑
t=1

B∑
j=1

(
rk(s

(k)
j,t ,a

(k)
j,t)− rk(s̃

(k)
j,t , ã

(k)
j,t)
) (4)

Based on Equation 3, θk are optimized using gradient de-
scent through the update rule θk ← θk + α∇θkJ(θk).

Layer-Wise Policy Optimization
Suppose we need to learn a (K+1)-layer hierarchical policy,
which includes πθ0 ,πθ1 ,...,πθK . Each policy is represented
by a GPN. In order to learn policy πθK , we first need to train
all lower layers πθk for k = 0, ...,K − 1 and fix the weights
of the neural networks. Then, for layer k = 0, ...,K − 1, we
sample (s

(k)
t ,a

(k)
t) based on πθk , and provide latent vari-

able h
(k+1)
t for the next higher layer. Finally, we can learn

the policy πθK from h
(K)
t . Algorithm 1 provides detailed

pseudo-code.

Algorithm 1 Layer-Wise Policy Optimization
1: procedure TRAIN(training set X , # of training steps
M0,M1, ...,MK , batch size B, learning rate α, the
number of layers K)

2: Initialize network parameters θk for k ∈ {0, ...,K}
3: for k = 0 to K do
4: for m = 1 to Mk do
5: Xi ∼Sample(X) for i ∈ {1, ..., B}
6: for j = 0 to k − 1 do
7: a

(j)
i,t ,h

(j+1)
i,t ∼ πθj (·|s

(j)
i,t ,h

(j)
i,t)

8: a
(k)
i,t ∼ πθk(·|s(k)

i,t ,h
(k)
i,t)

9: ã
(k)
i,t ∼ π

Greedy
θk

(·|s̃(k)
i,t ,h

(k)
i,t)

10: Compute J(θk),∇θkJ(θk)
11: θk ← θk + α∇θkJ(θk)

12: return πθ0 , πθ1 , ..., πθK

Graph Pointer Network
GPN Architecture
We propose a graph pointer network (GPN) based on the
pointer network (Bello et al. 2017) for approximately solv-
ing the TSP. The GPN architecture, which is shown in Figure
2, consists of an encoder and decoder component.

Encoder The encoder includes two parts: point encoder
and graph encoder. For the point encoder, each city co-
ordinate xi is embedded into a higher dimensional vector
x̃i ∈ Rd, where d is the hidden dimension. The vector x̃i for
the current city xi is then encoded by an LSTM. The hidden
variable xhi of the LSTM is passed to both the decoder and
the encoder in the next time step. For the graph encoder, we
use graph embedding layers to encode all city coordinates
X = [x>1 , ...,x

>
N]>, and pass it to the decoder.

Graph Embedding Layer In TSP, the context informa-
tion of a city node includes the neighbors’ information of
the city. In a GPN, context information is obtained by en-
coding all city coordinates X via a graph neural network
(GNN) (Kipf and Welling 2016; Xu et al. 2019). Each layer
of the GNN is expressed as:

xli = γxl−1
i Θ + (1− γ)φθ

(
1

|N (i)|
{xl−1

j }j∈N (i)∪{i}

)
,

(5)
where xli ∈ Rdl is the l-th layer variable with l ∈ {1, ..., L},
x0
i = xi, γ is a trainable parameter which regularizes the

eigenvalue of the weight matrix, Θ ∈ Rdl−1×dl is a train-
able weight matrix, N (i) is the adjacency set of node i,
and φθ : Rdl−1 → Rdl is the aggregation function (Kipf
and Welling 2016), which is represented by a neural net-
work. Furthermore, the graph embedding layer is further ex-
pressed as Xl = γXl−1Θ + (1 − γ)Φθ

(
Xl−1/|N (i)|

)
,

where Xl ∈ RN×dl , and Φθ : RN×dl−1 → RN×dl is the
aggregation function.

Vector Context In previous work (Bello et al. 2017), the
context is computed based on the 2D coordinates of all
cities, i.e. X ∈ RN×2. We refer to this context as point
context. In contrast, instead of using coordinate features di-
rectly, in this work, we use the vectors pointing from the
current city to all other cities as the context, which we re-
fer to as a vector context. For the current city xi, suppose
Xi = [x>i , ...,x

>
i]> ∈ RN×2 is a matrix with identical rows

xi. We define X̄i = X−Xi as the vector context. The j-th
row of X̄i is a vector pointing from node i to node j. Then
X̄i is passed into the graph embedding layers.

Decoder The decoder is based on an attention mechanism
and outputs the pointer vector ui, which is then passed to a
softmax layer to generate a distribution over the next candi-
date cities. Similar to pointer networks (Bello et al. 2017),
the attention mechanism and pointer vector ui is defined as:

u
(j)
i =

{
v> · tanh(Wrrj +Wqq) if j 6= σ(k),∀k < j,

−∞ otherwise,
(6)

where u
(j)
i is the j-th entry of the vector ui, Wr and Wq

are trainable matrices, q is a query vector from the hidden
variable of the LSTM, and ri is a reference vector contain-
ing the information of the context of all cities. Precisely, we
use the hidden variable xhi from the point encoder as the
query vector q, and use the context XL from the graph em-
bedding layer as the reference, i.e. q = xhi and rj = XL

j .
The distribution policy over all candidate cities is given by
πθ(ai|si) = pi = softmax(ui). We predict the next visited
city ai = xσ(i+1), by sampling or choosing greedily from
the policy πθ(ai|si).

Hierarchical GPN Architecture
In this section, we use the proposed GPN to design a hi-
erarchical architecture. The architecture of a two-layer hi-
erarchical GPN (HGPN) is illustrated in Figure 3. In con-
trast to a single-layer GPN, the coordinate x

(k)
i at k-th layer

Figure 2: Architecture for Graph Pointer Network.

is first passed as input to a lower-level neural network and
the network outputs a pointer vector u(k−1)

i . Then, u(k−1)
i

is added to the pointer vector u
(k)
i of a higher layer, i.e.

p
(k)
i = softmax(u

(k)
i +αu

(k−1)
i), where α is a trainable pa-

rameter. This plays an important role since u
(k−1)
i contains

lower layer information which provides a prior distribution
over the output cities. The output x(k)

i+1 is then sampled from

πθ(·|s(k)
i ,h

(k)
i) = p

(k)
i , where h

(k)
i = u

(k−1)
i is the latent

variable from the lower layer.

Figure 3: A two layer hierarchical architecture of GPN.

Experiments
In this section, we provide more experiments and implemen-
tation details for the experiments. We use L = 3 graph em-
bedding layers to encode the context in the GPN. The aggre-
gation function used is a single layer fully connected neural
network. The graph embedding layer is expressed as

Xl = γXl−1Θ + (1− γ)g(Xl−1W/|N (i)|+ b), (7)

where g(·) is the ReLU activation function, W ∈ Rdl−1×da

and b ∈ RN×da are trainable weights and biases with dl =
da = 128 for l = 1, 2, 3. The training data is generated
randomly from a [0, 1]2 uniform distribution. In each epoch,
the training data is generated on the fly.

Experiments for larger-scale TSP
In real world applications, most practical TSP instances have
hundreds or thousands of nodes. We find that the proposed
GPN model generalizes well from small-scale TSP problems

to larger scale. The generalization capacity increases by an
order of magnitude.

In Table 1, we train a GPN model with vector context on
TSP50 data with 10 epochs, and use this model to predict
the routes on TSP250/500/750/1000. Furthermore, we use a
local search algorithm 2-opt to improve our results after pre-
diction. The baseline models Pointer Network (PN) (Bello et
al. 2017), s2v-DQN (Khalil et al. 2017) and Attention Model
(AM) (Kool, van Hoof, and Welling 2019a) are also trained
with TSP50 data. Results are averaged over 1000 TSP in-
stances. The results are also compared with LKH, Concorde,
nearest neighbor, 2-opt, farthest insertion and Google OR-
Tools (Google 2016).

Table 1 shows that our GPN model outperforms PN
and AM when we train with TSP50 instances and gener-
alize to larger-scale problems. With local search added, the
GPN+2opt has similar tour length to s2v-DQN, but saves
≈ 20% running time. Compared with the 2-opt heuristic, the
GPN+2opt uses ≈ 25% less running time, which means the
GPN model can be treated as a good initialization method.
The GPN+2opt also outperforms OR-Tools on TSP1000. On
Table 1, GPN does not outperform the state-of-the-art TSP
solver, e.g. LKH and Farthest Insertion. However, it still
has the potential to be an effective initialization method,
since the GPN shows good generalization capabilities and
can solve TSP instances in parallel. Some sample tours are
shown in Figure 4.

(a) TPS250 (GPN+2opt) (b) TPS500 (GPN+2opt)

(c) TPS750 (GPN+2opt) (d) TPS1000 (GPN+2opt)

Figure 4: Sample tours for TSP250/500/750/1000. Approx-
imate solutions of larger-scale TSP predicted by GPN and
2-opt heuristics.

As aforementioned, the generalization capacity of the
GPN model is roughly an order of magnitude larger than the
size of the instances the model is trained on. More specifi-
cally, we train the GPN models on TSP20/50/100 and use

Table 1: Comparison for larger-scale TSP. Each result is obtained by running on 1000 random TSP instances. Tour Len refers
to average tour length. Time refers to total running time (sec) of 1000 instances.

TSP 250 TSP 500 TSP 750 TSP 1000
Method Tour Len. Time Tour Len. Time Tour Len. Time Tour Len. Time
LKH 11.893 9792s 16.542 23070s 20.129 36840s 23.130 50680s
Concorde 11.89 1894s 16.55 13902s 20.10 32993s 23.11 47804s
Nearest Neighbor 14.928 25s 20.791 60s 25.219 115s 28.973 136s
2-opt 13.253 303s 18.600 1363s 22.668 3296s 26.111 6153s
Farthest Insertion 13.026 33s 18.288 160s 22.342 454s 25.741 945s
OR-Tools (Savings) 12.652 5000s 17.653 5000s 22.933 5000s 28.332 5000s
OR-Tools (Christofides) 12.289 5000s 17.449 5000s 22.395 5000s 26.477 5000s
s2v-DQN 13.079 476s 18.428 1508s 22.550 3182s 26.046 5600s
Pointer Net 14.249 29s 21.409 280s 27.382 782s 32.714 3133s
Attention Model 14.032 2s 24.789 14s 28.281 42s 34.055 136s
GPN (ours) 13.679 32s 19.605 111s 24.337 232s 28.471 393s
GPN+2opt (ours) 12.942 214s 18.358 974s 22.541 2278s 26.129 4410s

these models to predict on TSP500/1000. The results are
shown in Table 2, which demonstrates that the results im-
prove if we increase the size of the training TSP instances.

Table 2: Comparison for larger-scale TSP. The GPNs are
trained with different size of TSP instances and generalize
on larger-scale problems.

TSP 500 TSP 1000
Model Tour Len. Time Tour Len. Time
GPN (TSP20) 22.320 107s 33.649 391s
GPN (TSP50) 19.605 111s 28.471 393s
GPN (TSP100) 19.527 109s 28.036 408s

Experiments for TSP with time window
We consider a well known constrained TSP problem, the
TSP with Time Windows (TSPTW). In TSPTW, each node i
has its own service time interval [ei, li], where ei is the enter-
ing time and li is the leaving time. A city cannot be visited
after its leaving time. In this experiment, we consider the
following formalization of the TSPTW problem:
min
σ

cN

s.t. ci+1 − ci ≥ ‖xσ(i+1) − xσ(i)‖2, i ∈ {1, ..., N − 1},
ei ≤ ci ≤ li i ∈ {1, ..., N},

where ci is the arriving time for the i-th city. To tackle
the TSPTW problem, we construct a two-layer hierarchical
GPN (HGPN) trained on TSPTW20 instances.

At prediction time, we use both the greedy and sampling
method. The result is improved by sampling 100 or 500
times. Table 3 demonstrates that our HGPN framework out-
performs all other baselines on TSPTW including the single-
layer GPN. All instances have feasible solutions based on
our training setup; however the algorithms may occasionally
fail to find a feasible solution, which we quantify by using
the percentage of feasible solutions as an evaluation metric.
The HGPN achieves a much higher percentage of feasible
solutions compared to the baselines. Figure 5 shows sample
tours.

Table 3: Results for TSPTW20. Cost: objective of TSPTW.
Time: prediction time. Feasible %: the percentage of in-
stances that are predicted to have feasible solutions.

Method Cost Time Feasible %
OR-Tools (Savings) 4.045 121s 72.06%
ACO 4.655 204s 62.10%
GPN-greedy 4.209 1s 99.87%
HGPN-greedy 4.178 1s 99.88%
HGPN-sampling-100 4.013 99s 100%
HGPN-sampling-500 3.991 494s 100%

Figure 5: Sample tours for TSPTW20. For the text on each
node, the first line is the arriving time, and the second line is
the time window.

Conclusion
In this work, we propose a Graph Pointer Network (GPN)
framework which efficiently solves larger-scale TSP by us-
ing graph neural networks. Training a hierarchical RL model
allows our approach to additionally tackle constrained com-
binatorial optimization problems such as the TSPTW. Our
experimental results demonstrate that the GPN generalizes
well from small-scale to larger-scale problems, outperform-
ing previous RL methods for combinatorial optimization. In
the spirit of reproducible research, we make our data, mod-
els, and code publicly available (Ma et al. 2019).

References
Aarts, E.; Aarts, E. H.; and Lenstra, J. K. 2003. Local search
in combinatorial optimization. Princeton University Press.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2017. Neural combinatorial optimization with reinforce-
ment learning. International Conference on Learning Rep-
resentations Workshop.
Christofides, N. 1976. Worst-case analysis of a new heuris-
tic for the travelling salesman problem. Technical report,
Carnegie-Mellon University, Pittsburgh Management Sci-
ences Research Group.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact combinatorial optimization with graph con-
volutional neural networks. Advances in Neural Information
Processing Systems.
Google. 2016. Or-tools, Google optimization tools.
https://developers.google.com/optimization/routing.
Haarnoja, T.; Hartikainen, K.; Abbeel, P.; and Levine, S.
2018a. Latent space policies for hierarchical reinforcement
learning. In International Conference on Machine Learning,
1846–1855.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018b.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
Conference on Machine Learning, 1856–1865.
Helsgaun, K. 2000. An effective implementation of the lin–
kernighan traveling salesman heuristic. European Journal
of Operational Research 126(1):106–130.
Joshi, C. K.; Laurent, T.; and Bresson, X. 2019. An effi-
cient graph convolutional network technique for the travel-
ling salesman problem. arXiv preprint arXiv:1906.01227.
Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L.
2017. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing Sys-
tems, 6348–6358.
Kipf, T. N., and Welling, M. 2016. Semi-supervised clas-
sification with graph convolutional networks. International
Conference on Learning Representations.
Kool, W.; van Hoof, H.; and Welling, M. 2019a. Attention,
learn to solve routing problems! International Conference
on Learning Representations.
Kool, W.; van Hoof, H.; and Welling, M. 2019b. Buy 4 re-
inforce samples, get a baseline for free! International Con-
ference on Learning Representations.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In
Advances in Neural Information Processing Systems, 3675–
3683.
Lawler, E. L.; Lenstra, J. K.; Kan, A. R.; Shmoys, D. B.;
et al. 1985. The traveling salesman problem: a guided tour
of combinatorial optimization, volume 3. Wiley New York.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree

search. In Advances in Neural Information Processing Sys-
tems, 537–546.
Ma, Q.; Ge, S.; He, D.; Thaker, D.; and Drori, I.
2019. GitHub Repository for Combinatorial Optimiza-
tion by Graph Pointer Networksand Hierarchical Reinforce-
ment Learning. https://github.com/qiang-ma/graph-pointer-
network.
Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takác, M. 2018.
Reinforcement learning for solving the vehicle routing prob-
lem. In Advances in Neural Information Processing Systems,
9839–9849.
Papadimitriou, C. H. 1977. The euclidean travelling sales-
man problem is np-complete. Theoretical Computer Science
4(3):237–244.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT Press.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In Advances in Neural Information Processing
Systems, 2692–2700.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8(3-4):229–256.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? International Confer-
ence on Learning Representations.

