
Neural Networks for Approximate DNF Counting: An Abridged Report*

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz
Department of Computer Science

University of Oxford, UK
{ralph.abboud,ismail.ceylan,thomas.lukasiewicz}@cs.ox.ac.uk

Abstract

Weighted model counting (WMC) has emerged as a preva-
lent approach for probabilistic inference. In its most general
form, WMC is #P-hard. Weighted DNF counting (weighted
#DNF) is a special case where approximations with proba-
bilistic guarantees are obtained in O(nm), where n denotes
the number of variables, and m the number of clauses of the
input DNF, but this is not scalable in practice. In this paper,
we propose a novel approach for weighted #DNF that com-
bines approximate model counting with deep learning, and
accurately approximates model counts in linear time when
width is bounded. We conduct experiments to validate our
method, and show that our model learns and generalizes very
well to large-scale #DNF instances.

1 Introduction
Propositional model counting (MC), or #SAT, is the task
of counting the number of satisfying assignments for a
given propositional formula (Gomes, Sabharwal, and Sel-
man 2009). Weighted model counting (WMC), or weighted
#SAT, additionally incorporates a weight function over the
set of all possible assignments. Offering an elegant for-
malism for encoding various probabilistic inference prob-
lems, WMC is a unifying approach for inference in a wide
a range of probabilistic models. In particular, probabilistic
graphical models (Koller and Friedman 2009), probabilis-
tic planning (Domshlak and Hoffmann 2007), probabilis-
tic logic programming (De Raedt, Kimmig, and Toivonen
2007), probabilistic databases (Suciu et al. 2011), and prob-
abilistic ontologies (Borgwardt, Ceylan, and Lukasiewicz
2017) can greatly benefit from advances in WMC.

Two important special cases of WMC are weighted #CNF
and weighted #DNF, which require the input formula to be
in conjunctive normal form (CNF) and disjunctive normal
form (DNF), respectively. Inference in probabilistic graphi-
cal models typically reduces to solving weighted #CNF in-
stances, while query evaluation in probabilistic databases

*This is a short version of a paper that will appear in the Pro-
ceedings of AAAI-20 (Abboud, Ceylan, and Lukasiewicz 2020),
and is also available at: arxiv.org/pdf/1904.02688.pdf.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reduces to solving weighted #DNF instances (Suciu et al.
2011). However, both weighted #CNF and weighted #DNF
are known to be #P-hard (Valiant 1979), and this computa-
tional complexity is a major bottleneck for solving large-
scale WMC instances. To overcome this bottleneck, ap-
proaches have been developed based on knowledge compila-
tion (KC) (Cadoli and Donini 1997; Selman and Kautz 1996)
and approximate solving (Ermon et al. 2013; Chakraborty,
Meel, and Vardi 2016; Meel, Shrotri, and Vardi 2017). KC
tools map WMC instances into a representation where they
can solved efficiently, but such representations could be ex-
ponentially sized in the worst case. Approximate solvers
return a model count estimate with probabilistic guaran-
tees, but they typically have impractical runtime complexity.
Hence, both approaches struggle to scale in practice.

In this paper, we focus on weighted #DNF, for which,
a relatively efficient approximation algorithm exists (Karp,
Luby, and Madras 1989). This algorithm, called KLM, runs
in O(nm), where n denotes the number of variables and m
the number of clauses of the input DNF formula. Our con-
tribution is to develop a neural-symbolic model, which per-
forms weighted #DNF approximation via a novel approach
that is based on graph neural networks (GNNs). By con-
struction, our model produces approximations in O(mw̄),
where w̄ denotes the average clause width. Our model does
not provide guarantees, but enables a speed-up of multiple
orders of magnitude in the average case relative to other
tools. This is especially true since, in practice, w̄ << n.

Our GNN learns to accurately estimate weighted model
counts and generalizes to novel formulas. Indeed, it com-
putes solutions to unseen weighted #DNF instances with
99% accuracy relative to an additive error threshold of 0.1
with respect to tight KLM approximations. It also general-
izes to larger problem instances involving up to 15K vari-
ables remarkably well, despite only seeing formulas with
at most 5K variables during training. These findings sug-
gest that GNNs can effectively and efficiently perform large-
scale #DNF through training with dense and reliable data.

2 Weighted Model Counting
Given a (finite) set S of propositional variables, a literal is
of the form v, or ¬v, where v ∈ S. A conjunctive clause is

a conjunction of literals, and a disjunctive clause is a dis-
junction of literals. A clause has width k if it has exactly k
literals. A formula φ is in conjunctive normal form (CNF)
if it is a conjunction of disjunctive clauses, and it is in dis-
junctive normal form (DNF) if it is a disjunction of con-
junctive clauses. We say that a DNF (resp., CNF) has width
k if it contains clauses of width at most k. An assignment
ν ∶ S ↦ {0,1} maps every variable to either 0 (false), or 1
(true). An assignment ν satisfies a propositional formula φ,
denoted ν ⊧ φ, in the usual sense, where ⊧ is the proposi-
tional entailment relation.

Given a propositional formula φ, its model count (MC)
#φ is the number of assignments ν satisfying φ. The
weighted model count (WMC) of φ is given by ∑ν⊧φw(ν),
where w ∶ A ↦ R is a weight function, and A is the set
of all possible assignments. In this work, we set w ∶ A ↦
[0,1] ∩Q such that every assignment is mapped to a ratio-
nal probability and ∑ν∈Aw(ν) = 1. As common in the liter-
ature, we view every propositional variable as an indepen-
dent Bernoulli random variable and assign probabilities to
literals.

Exactly solving weighted #DNF instances is #P-hard
and thus intractable. The KLM algorithm (Karp, Luby, and
Madras 1989) is a fully polynomial randomized approxima-
tion scheme (FPRAS), and provides probabilistic guarantees
for weighted #DNF. More formally, given an error ε > 0 and
a confidence value 0 < δ < 1, KLM computes µ̂, an approx-
imation of the true weighted model count µ, in polynomial
time such that Pr (µ(1 − ε) ≤ µ̂ ≤ µ(1 + ε)) ≥ 1 − δ.

3 Graph Neural Network Model

Graph neural networks (GNNs) (Gori, Monfardini, and
Scarselli 2005; Scarselli et al. 2009) are neural networks
specifically designed to process structured graph data. In a
GNN, every graph node x is given a vector representation
vx, which is updated iteratively. A node x receives informa-
tion from its neighborhood N(x), which is the set of nodes
connected by an edge to x. Let vx,t denote the value of vx at
iteration t. We write a node update as:

vx,t+1 = combine(vx,t, aggregate(N(x))),

where combine and aggregate are functions, and aggre-
gate is permutation-invariant. Upon termination of all iter-
ations, the final node representations are used to compute
the target output. GNNs are highly expressive computational
models: GNNs can be as discerning between graphs as the
Weisfeiler-Lehman (WL) graph isomorphism heuristic (Xu
et al. 2019; Morris et al. 2019), and can autonomously learn
relationships between nodes, identify important features and
generalize to unseen graphs.

We propose a new method for solving weighted #DNF
problems based on GNNs. We model DNF formulas as
graphs, and then build a GNN architecture to iterate over
these graphs to compute an approximate weighted model
count.

x1

¬x1
x2

¬x2
x3

¬x3
x4

¬x4

∧1 ∧2

∨

Figure 1: Graph encoding of the DNF formula
φ = (x1 ∧ ¬x2 ∧ x4) ∨ (x1 ∧ x2 ∧ ¬x3).

Model Setup
We encode a DNF formula as a graph with 3 layers as shown
in Figure 1: a literal layer, a conjunction layer, and a disjunc-
tion layer. In the literal layer, every DNF variable is repre-
sented by 2 nodes corresponding to its positive and negative
literals, which are connected by a (dashed) edge to highlight
that they are complementary. In the conjunction layer, ev-
ery node represents a conjunction and is connected to literal
nodes whose literals appear in the conjunction. Finally, the
disjunction layer contains a single disjunction node, which
is connected to all nodes in the conjunction layer.

To approximate the model count of a DNF formula, we
use a message-passing GNN model that iterates over the cor-
responding DNF graph and returns a Gaussian distribution.
We use layer-norm LSTMs (Li et al. 2016; Ba, Kiros, and
Hinton 2016) as our combine function, and sum as our ag-
gregate function. Initially, the network computes vector rep-
resentations for all literal nodes, given their probabilities, us-
ing a multi-layer perceptron (MLP) fenc. More formally, a
k−dimensional representation vxi,0 of a literal xi with prob-
ability pi is computed as vxi,0 = fenc(pi). Nodes in the
conjunction and disjunction layers are initialized to two rep-
resentation vectors vc and vd, respectively, and the values
for these vectors are learned over the course of training. Af-
ter initialization, node representations are updated across T
message passing iterations.

Message Passing Protocol
A message passing iteration consists of four steps:
(a) Literal layer nodes compute messages using an MLP
Ml and pass them to their neighboring conjunction layer
nodes. These conjunction nodes then aggregate these mes-
sages and update their representation using a layer-norm
LSTM Lc1 . The updated conjunction node representations,
denoted v̂xc,t+1, are given formally as

v̂xc,t+1 = Lc1(vxc,t, ∑
xl∈N(xl)

Ml(vxl,t)).

(b) Conjunction layer nodes send messages to the disjunc-
tion node via an MLP Mc. The disjunction node aggregates
these and updates using a layer-norm LSTM Ld, i.e.,

vxd,t+1 = Ld(vxd,t, ∑
xc∈N(xd)

Mc(v̂xc,t+1)).

x1

¬x1

x2

¬x2

c1

c2

d

(a)

x1

¬x1

x2

¬x2

c1

c2

d

(b)

x1

¬x1

x2

¬x2

c1

c2

d

(c)

x1

¬x1

x2

¬x2

c1

c2

d

(d)

Figure 2: Message passing protocol on the DNF formula ψ = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2).

(c) The disjunction node computes a message using an MLP
Md and sends it to the conjunction nodes, which update their
representation using a different LSTM cell Lc2 :

vxc,t+1 = Lc2(v̂xc,t+1,Md(vxd,t+1)).

(d) Using their latest representations, conjunction nodes
send messages to neighboring nodes in the literal layer. Lit-
eral layer nodes aggregate these messages and concatenate
them (represented with ∣∣) with messages from their corre-
sponding negated literal. Then, they use this message to up-
date their representations using a layer-norm LSTM Ll:

vxl,t+1 = Ll(vxl,t, (∑
xc∈N(xl)

Mc(vxc,t+1)∣∣Ml(v¬xl,t))).

A visual representation of the 4 message passing steps for
a simple formula is provided in Figure 2. In this protocol,
we use 2 distinct LSTM cells Lc1 and Lc2 to update the rep-
resentations of conjunction nodes at steps (a) and (c), so that
the network learns separate update procedures for literal-
based and disjunction-based updates. At the end of message
passing, the final disjunction node representation vxd,T is
passed through an MLP fout. The final layer of this MLP
consists of two neurons nµ and nσ , which return the mean
and standard deviation, respectively, of a predicted Gaussian
distribution.

Loss Function
Given ε and δ, KLM returns an estimate µ̂ of the true model
count µ within a multiplicative bound with respect to ε, and
this bound holds with probability 1 − δ. The multiplicity of
the bound interval on µ̂ w.r.t. ε makes it hard to fit standard
distributions on it. Hence, we apply a natural logarithm to
this bound to get the additive bound on logµ:

log µ̂ − log (1 + ε) ≤ logµ ≤ log µ̂ + log (1 + ε).

We then fit a Gaussian N (µ′, σ) to this bound by setting
µ′ = µ̂ and σ = log (1 + ε)/F−1(1 − δ

2
), where F −1 denotes

the inverse cumulative distribution function of the standard
Gaussian distribution. The GNN is thus trained to predict
logµ, a negative number. We adapt the exponential linear
unit (ELU) (Clevert, Unterthiner, and Hochreiter 2016) acti-
vation function and apply it to nµ and nσ . More specifically,

Table 1: Distribution of formula sizes in the training set.

Size (n) 50 100 250 500

Count 30000 20000 16000 12000

Size (n) 750 1000 2500 5000

Count 10000 8000 6000 3000

we use

ELU + 1(x) = {e
−x ifx ≤ 0

x + 1 otherwise,
such that nµ uses −ELU + 1(x), and nσ uses ELU + 1(x),
thereby restricting their outputs to be negative and positive,
respectively.

To compare the predicted Gaussian and the KLM result,
we use Kullback-Leibler (KL) divergence, which for two
Gaussians N1(µ1, σ1) and N2(µ2, σ2) is given by:

KL(N1,N2) = log
σ2
σ1

− 1

2
+ σ

2
1 + (µ1 − µ2)2

2σ2
2

.

We set N1 to be the prediction returned by the network and
N2 to be the KLM approximation. This choice is critical in
order to avoid the system minimizing the training loss by
learning to produce arbitrarily large values of σ2.

4 Experiments
We train our model on a large set of DNF formulas and mea-
sure its generalization relative to new DNF formulas. These
formulas are distinct in terms of structure (i.e., the under-
lying clauses and variables in every clause) and size (i.e,
the number of clauses and variables is larger), so our ex-
periments target generalization in both aspects. To evaluate
structure generalization, we run our GNN on unseen formu-
las of comparable size to training formulas and measure its
performance. To evaluate size generalization, we run tests
on novel, larger formulas and assess how well the GNN per-
forms.

Experimental Setup
In our experiments, we compare the predictions of the net-
work µ̂ with those of KLM and check whether their abso-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

KLM Approximations

G
N

N
A

pp
ro

xi
m

at
io

ns

Figure 3: A gray-scale heat map representing the distribution
of GNN predictions compared to KLM approximations.

Table 2: GNN accuracy (%) w.r.t. to additive thresholds.

Evaluation Data Thresholds
0.02 0.05 0.10 0.15

Training Set 87.14 98.80 99.97 99.99
Test Set 87.37 98.76 99.95 99.98

lute difference falls within pre-defined additive thresholds.
We opt for additive error, as opposed to multiplicative error,
as the former produces an absolute distance metric, whereas
the latter is relative to the model count.

Owing to the lack of standardized benchmarks, we gener-
ate synthetic formulas using a novel randomized procedure
designed to produce more variable formulas. We generate
100K distinct training formulas, where formula counts per
n are shown in Table 1. For every n, formulas are generated
with fixed clause width w ∈ {3,5,8,13,21,34} and number
of clauses m from {0.25,0.375,0.5,0.625,0.75} ⋅ n, such
that every valid setting is represented equally. More details
about our data generation can be found in the conference
version of this paper (Abboud, Ceylan, and Lukasiewicz
2020). The structure evaluation test set is generated analo-
gously, and contains 13080 distinct formulas. The size eval-
uation set contains 348 formulas with n = 10K and 116 for-
mulas with n = 15K, with one probability distribution each.
For all experiments, we use k = 128-dimensional vector rep-
resentations and run the system for T = 8 message passing
iterations. Further details on hyperparameter setup can be
found in the conference version of this paper.

Results
On the structure generalization test, network predictions
align very closely with those of KLM, as shown in Figure 3.
The model is within 0.02 of the KLM WMC estimate over
87.37% of the test set, and this rises to 99.95% for a thresh-
old of 0.1. The model also performs consistently across dif-
ferent n, with accuracy varying by at most 4.5% between
any two different n values for all four test thresholds. Over-

Table 3: GNN accuracy (%) over test set by threshold versus
number of formula variables (n).

n
Thresholds

0.02 0.05 0.10 0.15

50 85.58 98.58 99.98 100.0
100 87.87 98.87 100.0 100.0
250 87.93 99.24 100.0 100.0
500 87.67 99.40 99.99 100.0
750 87.56 99.15 100.0 100.0
1000 86.79 99.01 99.98 100.0
2500 90.06 98.17 99.85 99.94
5000 88.15 95.86 99.48 99.74

Table 4: Accuracy (%) by threshold with respect to additive
thresholds on size generalization test formulas.

n
Thresholds

0.02 0.05 0.10 0.15

10K 79.89 89.94 97.13 99.71
15K 72.41 81.90 94.83 97.41

all test results are given in Table 2.
The proximity between training and testing accuracies at

all thresholds shows that the network has not fit or memo-
rized its training formulas, but has instead learned a general
WMC procedure. The results parametrized by n are pro-
vided in Table 3. These results show that the network main-
tains a high accuracy (e.g., 95.5% for threshold 0.05) across
all n values, and so does not rely on a particular n to achieve
its high overall performance.

On the size generalization task, the model maintains ac-
curacies of 97.13% and 94.83% with a threshold of 0.1 on
10K and 15K-variable formulas respectively, despite having
as many as triple the variables as in training. The full results
for size generalization are given in Table 4.

These results show that reliable approximate model
counting on large-scale formulas can be achieved using neu-
ral message passing (NMP), even with training restricted to
smaller formulas. Further analysis of structure and size gen-
eralization results relative to clause widths, as well as addi-
tional experiments with different datasets and message pass-
ing iteration counts T can be found in the conference version
of this paper.

Running Time Analysis
In the average case, our GNN runs in O(mw̄), where w̄ de-
notes the average formula clause width. By contrast, KLM
runs in O(nm), so is much slower for standard cases in
practice, where w̄ << n. In the worst case, our GNN runs
in O(nm), which is asymptotically identical to KLM. How-
ever, in a best-case scenario where w̄ is upper-bounded, the
GNN complexity drops to just O(n +m), enabling linear-

1 2 3 4 5 6 7 8

1

3

5

7

9

11

13

15

17

19

21

Message Passing Iteration

Fo
rm

ul
as

Figure 4: GNN estimates over message passing iterations.
Red denotes small probability, blue denotes high probability.

time approximations to be made, whereas KLM remains
O(nm), since its complexity does not depend on w̄. Hence,
our system enables much faster approximations than KLM
in practice, where w̄ << n, and these approximations are in
linear time with bounded clause width w̄.

Our GNN also does not perform slower at smaller widths
w as with KLM, which relies on sampling. Random as-
signments in KLM are replaced when they satisfy a clause.
Hence, more replacements are made for smaller w, as clause
satisfaction is more likely, and this causes a heavy compu-
tational overhead. To illustrate, KLM needs 2375 seconds
(about 40 minutes) to run on a formula with n = 15K, and
w = 3 using ε = 0.1 and δ = 0.05, whereas it only requires
306s when w = 34. By contrast, the GNN requires only
0.104 and 0.223 seconds respectively. A detailed complexity
analysis for our tool, as well as a complete presentation of
KLM and GNN running times, can be found in the confer-
ence version of this paper.

Discussions: Analyzing the Model
To examine how the network makes predictions, we selected
21 formulas fi ∶ i ∈ [1,21] from the structure test set with
weighted KLM model counts of roughly 21−i

20
. We then ran

the network on these formulas and computed the predicted
probability at the end of every message passing iteration. Re-
sults are visualized in Figure 4. Initially, the network starts
with a low estimate. Then, in the first 3 iterations, it ac-
cumulates probabilities and hits a “spike”, which can be
mapped to messages from literal nodes reaching the disjunc-
tion node. Following this, the network lowers its estimates,
before adjusting and refining them in the final iterations.

Unlike (Selsam et al. 2019), where the estimate of satisfia-
bility increases mostly monotonically, our network estimates
fluctuate aggressively. A large initial estimate is made, and
then reduced and refined. In doing so, the network seems to
be initially estimating the naive sum of conjunction prob-
abilities, and subsequently revisiting its estimates as it bet-
ter captures intersections between conjunctions. This falls in
line with our observations, as any understanding of intersec-

tions can only occur starting from the third iteration, when
the disjunction and conjunction nodes will have passed each
other more global information. This also explains the limited
performance observed in our ablation study (cf. conference
paper): With just 2 iterations, the system cannot capture con-
junction intersections, so can only make naive estimates.

5 Related Work

Weighted #DNF belongs to the wider family of WMC prob-
lems, which have been extensively studied due to their con-
nection with probabilistic inference. Weighted #DNF is #P-
hard (Valiant 1979), so is highly intractable. Surprisingly,
even weighted #DNF counting on positive, partitioned DNF
formulas with clause width at most 2 (Provan and Ball 1983)
remains #P-hard.

Weighted #DNF has applications that depend on fast
online reasoning capabilities. For example, query evalua-
tion in probabilistic database systems can be reduced to
weighted #DNF through the so-called lineage representation
of queries (Suciu et al. 2011). Other models that build on
probabilistic databases can also directly benefit from such
advances (Ceylan, Darwiche, and Van den Broeck 2016;
Borgwardt, Ceylan, and Lukasiewicz 2017).

As a result, many methods have been developed to exactly
solve or approximate WMC solutions. One such method
is knowledge compilation (KC), where WMC problems are
compiled into a new representation in which they are solved
efficiently and exactly. KC pushes computational overhead
to a preprocessing phase, but compensates for this by sub-
sequently enabling efficient, linear-time probabilistic infer-
ence (Darwiche and Marquis 2002). However, compiled rep-
resentations can be of exponential size in the worst-case.

An alternative is to produce approximate solutions to
circumvent the intractability of WMC (Stockmeyer 1983).
Hashing-based methods (Ermon et al. 2013; Chakraborty,
Meel, and Vardi 2013; 2016) produce an approximation with
probabilistic guarantees. Importantly, (Chakraborty, Meel,
and Vardi 2013) also yields an FPRAS when restricted to
unweighted #DNF; see e.g. (Meel, Shrotri, and Vardi 2017).
However, none of these hashing methods can currently be
applied to weighted #DNF.

Our work builds on recent applications of GNNs
(Scarselli et al. 2009) on a variety of reasoning tasks, such as
SAT (Selsam et al. 2019) and the traveling salesman problem
(TSP) (Prates et al. 2019). These works achieve encouraging
results, but do not generalize beyond very small instances
(i.e., 40 variables) of their respective problems. This is ex-
pected, since SAT and TSP are NP-complete and are hard to
approximate with strong guarantees. By contrast, our work
tackles a problem with a known polynomial-time approx-
imation, learns from a dense dataset of approximate solu-
tions, and reliably generalizes to large-scale instances with
tolerable loss in performance. To our knowledge, our model
is the first proposal that combines reasoning and deep learn-
ing, while also scaling to realistic problem instance sizes.

6 Summary and Outlook
We presented a neural-symbolic approach to efficiently pro-
duce weighted #DNF approximations. This work shows that
neural networks can be effectively applied to large-scale
weighted #DNF given dense and reliable training data.

Looking forward, we will analyze the viability of GNNs
for other reasoning problems, particularly in light of their
expressive power, which could be limiting for problems
with less structured graph representations. We hope that this
work inspires further research leading to less data-dependent
neural-symbolic methods, and a greater understanding of
neural method performance over challenging problems.

7 Acknowledgements
This work was supported by the Alan Turing Institute un-
der the UK EPSRC grant EP/N510129/1, the AXA Re-
search Fund, and by the EPSRC grants EP/R013667/1,
EP/L012138/1, and EP/M025268/1. Ralph Abboud is
funded by the Oxford-DeepMind Graduate Scholarship and
the Alun Hughes Graduate Scholarship. Experiments for
this work were conducted on servers provided by the Ad-
vanced Research Computing (ARC) cluster administered by
the University of Oxford.

References
Abboud, R.; Ceylan, İ. İ.; and Lukasiewicz, T. 2020. Learn-
ing to Reason: Leveraging neural networks for approximate
DNF counting. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI).
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450.
Borgwardt, S.; Ceylan, İ. İ.; and Lukasiewicz, T. 2017.
Ontology-mediated queries for probabilistic databases. In
Proc. of AAAI.
Cadoli, M., and Donini, F. 1997. A survey on knowledge
compilation. AI Communications 10(3-4).
Ceylan, İ. İ.; Darwiche, A.; and Van den Broeck, G. 2016.
Open-world probabilistic databases. In Proc. of KR.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A
scalable approximate model counter. In Proc. of CP.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Al-
gorithmic improvements in approximate counting for prob-
abilistic inference: From linear to logarithmic SAT calls. In
Proc. of IJCAI.
Clevert, D.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and accurate deep network learning by exponential linear
units (ELUs). In Proc. of ICLR.
Darwiche, A., and Marquis, P. 2002. A Knowledge Compi-
lation Map. JAIR 17(1).
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog:
A probabilistic prolog and its application in link discovery.
In Proc. of IJCAI.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. JAIR 30(1).

Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013. Taming the curse of dimensionality: Discrete integra-
tion by hashing and optimization. In Proc. of ICML.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2009. Model
counting. In Handbook of Satisfiability. IOS Press.
Gori, M.; Monfardini, G.; and Scarselli, F. 2005. A new
model for learning in graph domains. In Proc. of IJCNN.
Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo
approximation algorithms for enumeration problems. J. Al-
gorithms 10(3).
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2016.
Gated graph sequence neural networks. In Proc. of ICLR.
Meel, K. S.; Shrotri, A. A.; and Vardi, M. Y. 2017. On
hashing-based approaches to approximate DNF-counting. In
Proc. of FSTTCS.
Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and Leman
go neural: Higher-order graph neural networks. In Proc. of
AAAI.
Prates, M. O. R.; Avelar, P. H. C.; Lemos, H.; Lamb, L.; and
Vardi, M. 2019. Learning to solve NP-complete problems
- A graph neural network for the decision TSP. In Proc. of
AAAI.
Provan, J. S., and Ball, M. O. 1983. The complexity of
counting cuts and of computing the probability that a graph
is connected. SIAM 12(4).
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
IEEE Transactions on Neural Networks 20(1).
Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximation. JACM 43(2).
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2019. Learning a SAT solver from single-bit
supervision. In Proc. of ICLR.
Stockmeyer, L. 1983. The complexity of approximate count-
ing. In Proc. of STOC. ACM.
Suciu, D.; Olteanu, D.; Ré, C.; and Koch, C. 2011. Proba-
bilistic Databases, volume 3. Morgan & Claypool.
Valiant, L. G. 1979. The complexity of computing the per-
manent. TCS 8(2).
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? In Proc. of ICLR.

