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Abstract
Learning dynamics on complex networks governed by dif-
ferential equation systems is crucial for understanding, pre-
dicting, and controlling complex systems in science and en-
gineering. However, this task is very challenging due to the
intrinsic complexities in the structures of the high dimensional
systems, their elusive continuous-time nonlinear dynamics,
and their structural-dynamic dependencies. To address these
challenges, we propose a differential deep learning model to
learn continuous-time dynamics on complex networks in a
data-driven way. We model differential equation systems by
graph neural networks. Instead of mapping through a discrete
number of hidden layers in the forward process, we solve
the initial value problem by integrating the neural differential
equation systems over time numerically. In the backward pro-
cess, we learn the optimal parameters by back-propagating
against the forward integration. We validate our model by
learning and predicting various real-world dynamics on dif-
ferent complex networks in both (continuous-time) network
dynamics learning setting and (regularly-sampled) structured
sequence learning setting, and then apply our model to graph
semi-supervised classification tasks (a one-snapshot case). The
promising experimental results demonstrate our model’s capa-
bility of jointly capturing the structure, dynamics, and seman-
tics of complex systems in a unified framework.

1 Introduction
Real-world complex systems, such as brain (Gerstner et al.
2014), ecological systems (Gao, Barzel, and Barabási 2016),
gene regulation (Alon 2006), human health (Bashan et al.
2016), and social networks (Zang et al. 2018), etc., are usu-
ally modeled as complex networks and their evolution are
governed by some underlying nonlinear dynamics (Newman,
Barabasi, and Watts 2011). Revealing such complex network
dynamics is crucial for understanding the complex systems in
nature. Effective analytical tools developed for this goal can
further help us predict and control these complex systems.

Although the theory of (nonlinear) dynamical systems has
been widely studied in different fields including applied math
(Strogatz 2018),statistical physics (Newman, Barabasi, and
Watts 2011), engineering (Slotine, Li, and others 1991), ecol-
ogy (Gao, Barzel, and Barabási 2016) and biology (Bashan
et al. 2016), these developed models are typically based on a
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clear knowledge of the network evolution mechanism which
are thus usually referred to as mechanistic models. Given the
complexity of the real world, there is still a large number of
complex networks whose underlying dynamics are unknown
yet (e.g., they can be too complex to be modeled by explicit
mathematical functions). At the same time, massive data are
usually generated during the evolution of these networks.
Therefore, modern data-driven approaches are promising and
highly demanding in learning the elusive dynamics on com-
plex networks.

The development of a successful data-driven approach
for modeling the dynamics on complex networks is very
challenging: the interaction structures of the nodes in the
network are complex and the number of nodes is large,
which is referred to as the high-dimensionality of the com-
plex systems; the rules governing the dynamic change of the
nodes’ states in complex networks are nonlinear, continuous-
time and elusive; the structural and dynamic dependencies
within the system are difficult to model. Recently, there is
an emerging trend in the data-driven discovery of ordinary
differential equations (ODEs) or partial differential equations
(PDEs), including sparse regression method (Kutz et al. 2017;
Mangan et al. 2016; Rudy et al. 2017), residual network
(Qin, Wu, and Xiu 2018), feedforward neural network (Raissi,
Perdikaris, and Karniadakis 2018), etc. However, these meth-
ods can only handle very small ODE systems or PDEs which
consist of only few interaction terms. Effective learning of the
dynamics on large complex networks which consist of tens
of thousands of interaction terms is still largely unknown.

In this paper, we propose a differential deep learning ap-
proach to learn continuous-time dynamics on complex net-
works. We model (high-dimensional) differential equation
systems by graph neural networks to capture the instanta-
neous change of network dynamics. Instead of mapping
through a discrete number of layers in the forward process of
the conventional neural network models (LeCun, Bengio, and
Hinton 2015), we integrate the dynamics on graphs modeled
by a neural differential equation system over continuous time.
This is like a deep neural network with an infinite number of
layers (Chen et al. 2018). In a dynamical system view, the
continuous depth can be interpreted as continuous physical
time, and the outputs of a hidden layer at time t are instan-
taneous network dynamics at that moment. In the backward
learning process, we back-propagate the gradients of the su-



pervised information w.r.t. the learnable parameters against
the forward integration, leading to learning the differential
equation system in an end-to-end manner. Besides, we further
enhance our algorithm by learning the dynamics in a hidden
space learned from the original space of nodes’ states. We
name our model Neural Dynamics on Complex Networks
(NDCN).

We validate our approach by three general tasks: 1) (Net-
work dynamics learning): Can we learn the continuous-time
dynamics on complex networks? 2) (Structured sequence
learning): Can we predict the regularly-sampled structured
sequence? (Seo et al. 2018) 3) (One-snapshot learning): Can
we infer the semantic labels of nodes at the terminal time
moment? The experimental results show that our model can
accurately predict the real-world dynamics on various com-
plex networks, in both continuous-time setting and regularly-
sampled sequence setting. Besides, our model learns the se-
mantic labels of nodes in the setting of graph semi-supervised
learning (Kipf and Welling 2017) with very competitive per-
formance. Our framework potentially serves as a unified
framework to jointly capture the structure, dynamics, and
semantics of complex systems in a data-driven manner. Our
codes and datasets are open-sourced (Refer to Appendix A).

2 Related work
Dynamics of complex networks. Real-world complex sys-
tems are usually modeled as complex networks and driven by
nonlinear dynamics: the dynamics of brain and human micro-
bial are examined in (Gerstner et al. 2014) and (Bashan et al.
2016) respectively; (Gao, Barzel, and Barabási 2016) investi-
gated the resilience dynamics of complex systems. (Barzel,
Liu, and Barabási 2015) gave a pipeline to construct network
dynamics. To the best of our knowledge, our NDCN model
is the first neural network approach which learns continuous-
time dynamics on complex networks in a data-driven manner.

Data-driven discovery of dynamics. Recently, some
data-driven approaches are proposed to learn ODEs or PDEs,
including sparse regression (Kutz et al. 2017), residual net-
work (Qin, Wu, and Xiu 2018), feedforward neural network
(Raissi, Perdikaris, and Karniadakis 2018), coupled neural
networks (Raissi 2018) and so on. (Mangan et al. 2016) tries
to learn biological networks dynamics by sparse regression
over a large-enough library, which is not scalable to systems
with more than 10 nodes due to the factorial growth of the
complexity in the number of nodes. In all, none of them
can learn the dynamics on complex systems with more than
hundreds of nodes and tens of thousands of interactions.

Neural ODEs. Inspired by the residual network (He et
al. 2016) and ordinary differential equation (ODE) theory
(Lu et al. 2017; Ruthotto and Haber 2018), seminal work
neural ODE model (Chen et al. 2018) was proposed to re-
write residual networks, normalizing flows, and recurrent
neural network in a dynamical system way. However, our
NDCN model deals with large and complex differential equa-
tions systems. Besides, our model solves different problems,
namely learning the dynamics on complex networks.

Optimal control. Relationships between back-
propagation in deep learning and optimal control
theory are investigated in (Han, Li, and others 2018;

Benning et al. 2019). We formulate our loss function by
leveraging the concept of running loss and terminal loss in
optimal control. We give novel constraints in optimal control
which is modeled by neural differential equations systems
on graphs. Our model solves novel tasks, e.g. learning the
dynamics on complex networks and refer to Sec.3.1. and
inferring the terminal labels are done by our NDCN in a
data-driven manner.

Graph neural networks and temporal-GNNs. Graph
neural networks (GNNs) (Wu et al. 2019b), e.g., Graph
convolution network (GCN) (Kipf and Welling 2017),
attention-based GNN (AGNN) (Thekumparampil et al. 2018),
graph attention networks (GAT) (Veličković et al. 2017),
etc., achieved state-of-the-art performance on graph semi-
supervised learning tasks. However, existing GNNs usually
have 1 or 2 layers and can not go deep (Li, Han, and Wu 2018;
Wu et al. 2019b). Our NDCN gives a dynamical system view
on GNNs: the continuous depth can be interpreted as con-
tinuous physical time, and the outputs of a hidden layer at
time t are instantaneous network dynamics at that moment.
By capturing continuous-time network dynamics and their
transient behaviors, our model gives very competitive and
even better results than above GNNs.

By combining RNNs or convolution operators with GNNs,
temporal-GNNs (Yu, Yin, and Zhu 2017; Kazemi et al. 2019;
Narayan and Roe 2018; Seo et al. 2018) try to predict the
regularly-sampled structured sequences. However, these mod-
els can not be applied to continuous-time dynamics (observed
at arbitrary physical times with different time intervals). Our
NDCN not only predicts the continuous-time network dynam-
ics at an arbitrary time or semantic labels from one snapshot
but also predicts the structured sequences very well in a more
succinct way with much fewer parameters.

3 Preliminaries
3.1 Problem Definition
We first introduce a differential equation system which
models the dynamics on complex networks dX(t)

dt =

f
(
X(t), G,W (t), t

)
where X(t) ∈ Rn×d represents the

state (node feature values) of a dynamic system consisting of
n linked nodes at time t ∈ [0,∞), and each node is charac-
terized by d dimensional features. G = (V, E) is the network
structure capturing how the nodes are linked to each other.
W (t) are parameters which control how the system evolves
over time. X(0) = X0 is the initial states of this system at
time t = 0. The function f : Rn×d → Rn×d is a function
governing the dynamics of the system. In addition, nodes
can have various semantic labels Y (X,Θ, t) ∈ {0, 1}n×k at
time t, and Θ represents the parameters of this classification
function. The problems we are trying to solve in this paper
are:
• (Network dynamics learning) How to learn the

continuous-time dynamics dX(t)
dt on complex net-

works from empirical data? Mathematically, given a
graph G and the observations of the states of system
{ ˆX(t1), ˆX(t2), ..., ˆX(tT )|0 ≤ t1 < ... < tT }, and t1
to tT are arbitrary physical time stamps, can we learn



differential equation systems dX(t)
dt = f(X,G,W, t) to

generate or predict continuous-time dynamics X(t) at ar-
bitrary physical time t? The arbitrary physical time means
that {t1, ..., tT } are possibly irregularly sampled with dif-
ferent observational time intervals. When t > tT , we
call the task extrapolation prediction, while t < tT and
t 6= {t1, ..., tT } for interpolation prediction.

• (Structured sequence learning). As a special case when
t1, t2, ..., tT are sampled regularly with equal time inter-
vals, the above problem degenerates to a structured se-
quence learning task with an emphasis on sequential order
instead of arbitrary physical time. The goal is to extrapolate
next m steps’ X[tT + 1], ..., X[tT +m] .

• (One-snapshot learning) How to learn the semantic la-
bels of Y (X(tT )) at the moment t = tT for each node?
As a special case of above problem with an emphasis on a
specific moment and without loss of generality, we focus
on the moment at the terminal time tT . The function Y
can be a mapping from the nodes’ states (e.g. humidity) to
their labels (e.g. taking umbrella or not).

3.2 Network Dynamics
Let
−−→
xi(t) ∈ Rd×1 be d dimensional features of node i at time

t and thus X(t) = [. . . ,
−−→
xi(t), . . . ]

T ∈ Rn×d. We investigate
the following three real-world network dynamics and it is
worth noting that the number of the interaction terms which
contain Ai,j can be very large.

• The heat diffusion dynamics d
−−−→
xi(t)
dt =

−ki,j
∑n

j=1Ai,j(
−→xi − −→xj) governed by Newton’s

law of cooling (Luikov 2012), which states that the rate
of heat change of node i is proportional to the difference
of the temperature between node i and its neighbors with
heat capacity matrix A.

• The mutualistic interaction dynamics among species in

ecology, governed by equation d
−−−→
xi(t)
dt = bi + −→xi(1 −

−→xi

ki
)(
−→xi

ci
− 1) +

∑n
j=1Ai,j

−→xi
−→xj

di+ei
−→xi+hj

−→xj
(For brevity, the

operations between vectors are element-wise). The mu-
tualistic differential equation systems (Gao, Barzel, and
Barabási 2016) capture the abundance ~xi(t) of species i,
consisting of incoming migration term bi, logistic growth
with population capacity ki (Zang et al. 2018) and Allee
effect (Allee et al. 1949) with cold-start threshold ci, and
mutualistic interaction term with interaction network A.

• The gene regulatory dynamics governed by Michaelis-

Menten equation d
−−−→
xi(t)
dt = −bi−→xif +

∑n
j=1Ai,j

−→xj
h

−→xj
h+1

where the first term models degradation when f = 1 or
dimerization when f = 2, and the second term captures
genetic activation tuned by the Hill coefficient h (Alon
2006; Gao, Barzel, and Barabási 2016).

Complex Networks. We consider following networks: (a)
Grid network, where each node is connected with 8 neighbors
; (b) Random network, generated by Erdós and Rényi model
(Erdos and Renyi 1959) ; (c) Power-law network, generated
by Albert-Barabási model (Barabási and Albert 1999) ; (d)
Small-world network, generated by Watts-Strogatz model

(Watts and Strogatz 1998) ; and (e) Community network,
generated by random partition model (Fortunato 2010) .

Visualization. To visualize dynamics on complex networks
over time is not trivial. We first generate a network with n
nodes by aforementioned network models. The nodes are
re-ordered according to the community detection method
by Newman (Newman 2010) and each node has a unique
label from 1 to n. We layout these nodes on a 2-dimensional√
n ×
√
n grid and each grid point (r, c) ∈ N2 represents

the ith node where i = r
√
n + c + 1. Thus, nodes’ states

X(t) ∈ Rn×d at time t when d = 1 can be visualized as
a scalar field function X : N2 → R over the grid. Please
refer to Appendix B for the animations of these dynamics on
different complex networks over time.

4 General framework
We formulate our general framework as follows:

argmin
W (t),Θ(T )

L =

∫ T

0

R
(
X(t), G,W, t

)
dt + S

(
Y (X(T ),Θ)

)
subject to Xh(t) = fe

(
X(t)

)
dXh(t)

dt
= f

(
Xh(t), G,W, t

)
, Xh(0)

X(t) = fd

(
Xh(t)

)
(1)

whereR(X(t), G,W, t) is the running loss of the dynamics
on graph at time t, and S(Y (X(T ),Θ)) is the terminal
semantic loss at time T . The first constraint transforms X(t)
into hidden space Xh(t) through encoding function fe. The
second constraint is the governing dynamics in the hidden
space. The third constraint decodes the hidden signal back to
the original space with decoding function fd. The design of
fe, f , and fd are flexible to be any neural structure (e.g. fd is
a softmax function for classification). We denote our model
as Neural Dynamics on Complex Networks (NDCN).

By integrating dXh

dt = f(Xh, G,W, t) over time t from
initial state Xh(0), a.k.a. solving the initial value problem
(Boyce, DiPrima, and Meade 1992) for this differential equa-
tion system, we can get the hidden continuous-time dy-
namics Xh(t) = Xh(0) +

∫ T

0
f(Xh(τ), G,W, τ) dτ and

X(t) = fd(Xh(t)) at arbitrary time moment t > 0.
We solve the initial value problem by numerical methods

(e.g., 1st-order Euler method, high-order method Dormand-
Prince DOPRI5 (Dormand 1996), etc.). The numerical meth-
ods can approximate continuous-time dynamics X(t) at ar-
bitrary time t accurately with guaranteed error. In order to
learn the learnable parameters W , we back-propagate the
gradients of the loss function w.r.t the control parameters
∂L
∂W over the numerical integration process backwards in an
end-to-end manner, and solve the optimization problem by
stochastic gradient descent methods (e.g., Adam (Kingma
and Ba 2015)).

5 Learning continuous-time network
dynamics

In this section, we investigate if our NDCN model can learn
continuous-time network dynamics.



5.1 A Model Instance
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Figure 1: Illustration of an NDCN instance. a) Residual
Graph Neural Networks, b) ODE-GNN model and c) Our
Neural Dynamics on Complex Network (NDCN) model. The
integer l represents the discrete lth layer and the real number
t represents continuous physical time.

We solve the objective function in (1) with an emphasis
on running loss only. Without the loss of generality, we use
`1-norm loss as the running loss R. More concretely, we
adopt two fully connected neural layers with a nonlinear
hidden layer as the encoding function fe, a graph convolution
neural network (GCN) like structure (Kipf and Welling 2017)
but with a different graph diffusion operator Φ to model
the instantaneous network dynamics in the hidden space,
and a linear decoding function fd for regression tasks in the
original signal space. Thus, our model is (see neural structure
in Figure 1c) :

argmin
W∗,b∗

L =

∫ T

0

|X(t)− ˆX(t)| dt

subject to Xh(t) = tanh
(
X(t)We + be

)
W0 + b0

dXh(t)

dt
= ReLU

(
ΦXh(t)W + b

)
, Xh(0)

X(t) = Xh(t)Wd + bd

(2)

where ˆX(t) ∈ Rn×d is the supervised dynamic information
available at time stamp t (in the semi-supervised case the
missing information can be padded by 0). The |·| denotes `1-
norm loss (mean element-wise absolute value difference) be-
tween X(t) and ˆX(t) at time t ∈ [0, T ]. We adopt diffusion
operator Φ = D−

1
2 (D −A)D−

1
2 ∈ Rn×n which is the nor-

malized graph Laplacian where A ∈ Rn×n is the adjacency
matrix of the network and D ∈ Rn×n is the corresponding
node degree matrix. The W ∈ Rde×de and b ∈ Rn×de are
shared parameters (namely, the weights and bias of a linear
connection layer) over time t ∈ [0, T ]. The We ∈ Rd×de and
W0 ∈ Rde×de are the matrices in linear layers for encoding,
while Wd ∈ Rde×d are for decoding. The be, b0, b, bd are the
biases at the corresponding layer. We lean the parameters
We,W0,W,Wd, be, b0, b, bd from empirical data so that we
can learn X in a data-driven manner.

5.2 Experiments
Baselines. To the best of our knowledge, there are no base-
lines for learning continuous-time dynamics on complex net-
works, and thus we compare the ablation models of NDCN
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Law

Small 
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e

Figure 2: Heat diffusion on different networks. Each of the
five vertical panels represents the dynamics on one network
over physical time. For each network dynamics, we illustrate
the sampled ground truth dynamics (left) and the dynamics
generated by our NDCN (right) from top to bottom following
the direction of time.

for this task. By investigating ablation models we show that
our NDCN is a minimum model for this task. We keep the
loss function the same and construct the following baselines:
• The model without encoding fe and fd and thus no hid-

den space: dX(t)
dt = ReLU(ΦX(t)W + b) , namely ODE-

GNN, which learns the dynamics in the original signal
space X(t) as shown in Fig. 1b;

• The model without graph diffusion operator Φ: dXh(t)
dt =

ReLU(Xh(t)W+b), i.e., an ODE Neural Network, which
can be thought as a continuous-time version of forward
residual neural network (See Fig. 1a and Fig. 1b for the
difference between residual network and ODE network).

• The model without control parameters W : dXh(t)
dt =

ReLU(ΦXh(t)) which has no linear connection layer be-
tween t and t+ dt (where dt→ 0) and thus indicating a
determined dynamics to spread signals.

Experimental setup. We generate underlying networks
with 400 nodes by network models in Sec.3.2 and the il-
lustrations are shown in Fig. 2,10 and 11. We set the ini-
tial value X(0) the same for all the experiments and thus
different dynamics are only due to their different dynamic
rules and underlying networks (See Appendix B). We irregu-
larly sample 120 snapshots of the continuous-time dynamics
{ ˆX(t1), ..., ˆX(t120)|0 ≤ t1 < ... < t120 ≤ T} where the
time intervals between t1, ..., t120 are different. We randomly
choose 80 snapshots from ˆX(t1) to ˆX(t100) for training, the
left 20 snapshots from ˆX(t1) to ˆX(t100) for testing the in-
terpolation prediction task. We use ˆX(t101) to ˆX(t120) for
testing the extrapolation prediction task.

We use Dormand-Prince method (Dormand 1996) to get
the ground truth dynamics, and Euler method in the forward
process of our NDCN (More configurations in Appendix C).
We evaluate the results by the normalized `1 loss (normalized
by the mean element-wise value of ˆX(t)) (See Appendix F
for the `1 loss which leads to the same conclusion). Results
are the mean and standard deviation of the loss over 20 inde-



pendent runs for 3 dynamic laws on 5 different networks by
each method.

Results We visualize the ground-truth and learned dynam-
ics for heat diffusion in Fig. 2. Please see the biological mu-
tualistic dynamics and gene dynamics in Appendix Fig. 10
and 11, and please see the animations of these network dy-
namics in Appendix B. We find that one dynamic law may
behave quite different on different networks: heat dynamics
may gradually die out to be stable but follow different dy-
namic patterns in Fig. 2. Gene dynamics are asymptotically
stable on grid in Fig. 11a but unstable on random networks
in Fig. 11b or community networks in Fig. 11e. Both gene
regulation dynamics in Fig. 11c and biological mutualistic
dynamics in Fig. 10c show very bursty patterns on power-law
networks. However, and visually speaking, our NDCN learns
all these different network dynamics very well. The quan-
titative results of extrapolation are summarized in Table 1
(The easier task interpolation prediction shown in Table 7).
We observe that our NDCN captures different dynamics on
various complex networks accurately and outperforms all
the continuous-time baselines by a large margin, indicating
that our NDCN potentially serves as a minimum model in
learning continuous-time dynamics on complex networks.

6 Learning Regularly-sampled Dynamics
What’s more, our model also captures dynamics from
regularly-sampled network dynamics (i.e. the structured se-
quence learning setting) very well.

Baselines. We compare our model with the temporal-GNN
models which are usually combinations of RNN models and
GNN models (Kazemi et al. 2019; Narayan and Roe 2018;
Seo et al. 2018). We use GCN (Kipf and Welling 2017) as a
graph structure extractor and use LSTM/GRU/RNN (Lipton,
Berkowitz, and Elkan 2015) to learn the temporal relation-
ships between ordered structured sequences. We denote each
recurrent cell as LSTM/GRU/RNN and refer to Appendix E
for the detailed equations. The baselines are:
• LSTM-GNN: the temporal-GNN with LSTM cell X[t +

1] = LSTM(GCN(X[t], G)).
• GRU-GNN: the temporal-GNN with GRU cell X[t+ 1] =
GRU(GCN(X[t], G)).

• RNN-GNN: the temporal-GNN with RNN cell X[t+1] =
RNN(GCN(X[t], G)).

Experimental setup. We regularly sample 100
snapshots of the continuous-time network dynamics
{ ˆX[t1], ..., ˆX[t100]|0 ≤ t1 < ... < t120 ≤ T} where the
time intervals between t1, ..., t100 are the same. We use
first 80 snapshots ˆX[t1], ..., ˆX[t80] for training and the left
20 snapshots ˆX[t81], ..., ˆX[t100] for testing extrapolation
prediction task. We use 5 and 10 for hidden dimension of
GCN and RNN models respectively. Other settings are the
same as previous continuous-time dynamics experiment.

Results We summarize the results of the extrapolation pre-
diction of regularly-sampled dynamics in Table 2. Our NDCN
predicts different dynamics on these complex networks accu-
rately and outperforms the baselines in almost all the settings.

What’s more, our model capture the structure and dynamics
in a much more succinct way. The learnable parameters of
our NDCN , RNN-GNN, GRU-GNN, LSTM-GNN are 901,
24530, 64770, and 84890 respectively. Our model can learn
structured sequences very well with much fewer parameters
than temporal-GNN models.

7 Learning semantic labels at terminal time
We investigate the third question, i.e., how to learn the se-
mantic labels of each node at the terminal time? Various
graph neural networks (GNN) (Wu et al. 2019b) achieve
the state-of-the-art performance in graph semi-supervised
classification task (Yang, Cohen, and Salakhutdinov 2016;
Kipf and Welling 2017). Existing GNNs usually adopt 1
or 2 hidden layers and cannot go deep (Li, Han, and Wu
2018). Our framework follows the perspective of a dynami-
cal system, and goes beyond an integer number L of hidden
layers in GNNs to a real number depth t of hidden layers,
implying continuous-time dynamics on the graph. Refer to
Appendix G for the detailed information about the model,
datasets, baselines, and their configurations.

7.1 Experiments
We validate our model in the graph semi-supervised classifi-
cation setting. For the consistency of comparison with prior
works, we follow the same experimental setup as (Kipf and
Welling 2017; Veličković et al. 2017; Thekumparampil et al.
2018).

Results We summarize the results in Table 3. We find our
NDCN outperforms many state-of-the-art GNN models.

(a) (b) (c)

Figure 3: Our NDCN model captures continuous-time dynam-
ics. Mean classification accuracy of 100 runs over terminal
time when given a specific α. Insets are the accuracy over the
two-dimensional space of terminal time and α

By capturing the continuous-time network dynamics to
diffuse network signals, our NDCN gives better classifica-
tion accuracy at terminal time T ∈ R+. Figure 3 plots the
mean accuracy with error bars over terminal time T in the
abovementioned α settings (we further plot the accuracy over
terminal time T and α in the insets and Appendix H). We find
for all the three datasets their accuracy curves follow rise and
fall patterns around the best terminal time. Indeed, when the
terminal time T is too small or too large, the accuracy degen-
erates because the features of nodes are in under-diffusion
or over-diffusion states, implying the necessity in capturing
continuous-time dynamics. In contrast, previous GNNs can
only have an discrete number of layers which can not capture
the continuous-time network dynamics accurately.



Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics ac-
curately. Each result is the normalized `1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 29.9± 7.3 27.8± 5.1 24.9± 5.2 24.8± 3.2 30.2± 4.4
No-Graph 30.5± 1.7 5.8± 1.3 6.8± 0.5 10.7± 0.6 24.3± 3.0
No-Control 73.4± 14.4 28.2± 4.0 25.2± 4.3 30.8± 4.7 37.1± 3.7
NDCN 4.1± 1.2 4.3± 1.6 4.9± 0.5 2.5± 0.4 4.8± 1.0

Mutualistic
Interaction

No-Encode 45.3± 3.7 9.1± 2.9 29.9± 8.8 54.5± 3.6 14.5± 5.0
No-Graph 56.4± 1.1 6.7± 2.8 14.8± 6.3 54.5± 1.0 9.5± 1.5
No-Control 140.7± 13.0 10.8± 4.3 106.2± 42.6 115.8± 12.9 16.9± 3.1
NDCN 26.7± 4.7 3.8± 1.8 7.4± 2.6 14.4± 3.3 3.6± 1.5

Gene
Regulation

No-Encode 31.7± 14.1 17.5± 13.0 33.7± 9.9 25.5± 7.0 26.3± 10.4
No-Graph 13.3± 0.9 12.2± 0.2 43.7± 0.3 15.4± 0.3 19.6± 0.5
No-Control 65.2± 14.2 68.2± 6.6 70.3± 7.7 58.6± 17.4 64.2± 7.0
NDCN 16.0± 7.2 1.8± 0.5 3.6± 0.9 4.3± 0.9 2.5± 0.6

Table 2: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each
result is the normalized `1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each
method.

Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 12.8± 2.1 21.6± 7.7 12.4± 5.1 11.6± 2.2 13.5± 4.2
GRU-GNN 11.2± 2.2 9.1± 2.3 8.8± 1.3 9.3± 1.7 7.9± 0.8
RNN-GNN 18.8± 5.9 25.0± 5.6 18.9± 6.5 21.8± 3.8 16.1± 0.0
NDCN 4.3± 0.7 4.7± 1.7 5.4± 0.4 2.7± 0.4 5.3± 0.7

Mutualistic
Interaction

LSTM-GNN 51.4± 3.3 24.2± 24.2 27.0± 7.1 58.2± 2.4 25.0± 22.3
GRU-GNN 49.8± 4.1 1.0± 3.6 12.2± 0.8 51.1± 4.7 3.7± 4.0
RNN-GNN 56.6± 0.1 8.4± 11.3 12.0± 0.4 57.4± 1.9 8.2± 6.4
NDCN 29.8± 1.6 4.7± 1.1 11.2± 5.0 15.9± 2.2 3.8± 0.9

Gene
Regulation

LSTM-GNN 27.7± 3.2 67.3± 14.2 38.8± 12.7 13.1± 2.0 53.1± 16.4
GRU-GNN 24.2± 2.8 50.9± 6.4 35.1± 15.1 11.1± 1.8 46.2± 7.6
RNN-GNN 28.0± 6.8 56.5± 5.7 42.0± 12.8 14.0± 5.3 46.5± 3.5
NDCN 18.6± 9.9 2.4± 0.9 4.1± 1.4 5.5± 0.8 2.9± 0.5

Table 3: Test mean accuracy with standard deviation in per-
centage (%) over 100 runs. Our NDCN model gives very
competitive results compared with many GNN models.

Model Cora Citeseer Pubmed

GCN 81.5 70.3 79.0

AGNN 83.1± 0.1 71.7± 0.1 79.9± 0.1

GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3

NDCN 83.3± 0.6 73.1± 0.6 79.8± 0.4

8 Conclusion
We propose a differential deep learning model to learn
continuous-time dynamics on complex networks. We model
differential equations systems by graph neural networks
and integrate the neural differential equations systems over
time. By capturing the continuous-time network dynamics,
our NDCN gives the meanings of physical time and the
continuous-time network dynamics to the depth and hidden
outputs respectively, learns real-world dynamics on complex
network accurately in both (irregularly-sampled) continuous-
time setting and (regularly-sampled) structured sequence set-
ting, and outperforms many GNN models in the graph semi-
supervised classification task (a one-snapshot case). Codes
and datasets are open-sourced at https://github.com/
calvin-zcx/NeuralDynamics.
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A Reproducibility
To ensure the reproducibility, we open-sourced our datasets
and Pytorch implementation empowered by GPU and sparse
matrix at:

https:
//github.com/calvin-zcx/NeuralDynamics

B Animations of the real-world dynamics on
different networks

Please view the animations of the three real-world dynamics
on five different networks learned by different models at:

https://drive.google.com/open?id=
1KBl-6Oh7BRxcQNQrPeHuKPPI6lndDa5Y

We will find our NDCN captures the real-world dynamics on
different networks very accurately while the baselines can
not. The detailed experimental configurations are shown as
follows:

B.1 Underlying Networks
We generate various networks by as follows, and we visualize
their adjacency matrix after re-ordering their nodes by the
community detection method by Newman (Newman 2010).
• Grid network:
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Figure 4: Adjacency matrix of grid network taking on a cir-
culant matrix.

• Random network:

i m p o r t ne tworkx as nx
n = 400
G = nx . e r d o s r e n y i g r a p h
( n , 0 . 1 , s eed = seed )

• Power-law network:

n = 400
G = nx . b a r a b a s i a l b e r t g r a p h
( n , 5 , s eed = seed )
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Figure 5: Adjacency matrix of random network.
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Figure 6: Adjacency matrix of power-law network.

• Small-world network:

n = 400
G = nx . n e w m a n w a t t s s t r o g a t z g r a p h
( 4 0 0 , 5 , 0 . 5 , s eed = seed )

• Community network:

n1 = i n t ( n / 3 )
n2 = i n t ( n / 3 )
n3 = i n t ( n / 4 )
n4 = n − n1 − n2 −n3
G = nx . r a n d o m p a r t i t i o n g r a p h
( [ n1 , n2 , n3 , n4 ] , . 2 5 , . 0 1 , s eed = seed )

B.2 Initial Values of Network Dynamics
We set the initial valueX(0) the same for all the experimental
settings and thus different dynamics are only due to their
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Figure 7: Adjacency matrix of small-world network.
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Figure 8: Adjacency matrix of community network.

different dynamic rules and underlying networks modelled by
Ẋ = f(X,G,W, t) as shown in Fig. 2,?? and ??. Please see
above animations to check out different network dynamics.

n = 400
N = i n t ( np . c e i l ( np . s q r t ( n ) ) )
x0 = t o r c h . z e r o s (N, N)
x0 [ i n t ( 0 . 0 5∗N ) : i n t ( 0 . 2 5∗N) ,

i n t ( 0 . 0 5∗N ) : i n t ( 0 . 2 5∗N) ] = 25
# x0 [ 1 : 5 , 1 : 5 ] = 25
f o r N = 20 or n= 400 c a s e
x0 [ i n t ( 0 . 4 5∗N ) : i n t ( 0 . 7 5∗N) ,

i n t ( 0 . 4 5∗N ) : i n t ( 0 . 7 5∗N) ] = 20
# x0 [ 9 : 1 5 , 9 : 1 5 ] = 20 f o r N = 20 or n= 400 c a s e
x0 [ i n t ( 0 . 0 5∗N ) : i n t ( 0 . 2 5∗N) ,

i n t ( 0 . 3 5∗N ) : i n t ( 0 . 6 5∗N) ] = 17
# x0 [ 1 : 5 , 7 : 1 3 ] = 17 f o r N = 20 or n= 400 c a s e

B.3 Network Dynamics
We adopt the following three real-world dynamics from different
disciplines. Please see above animations to check out the visual-
ization of different network dynamics. The differential equation
systems are shown as follows:
• The heat diffusion dynamics governed by Newton’s law of cool-

ing (Luikov 2012),

d
−−→
xi(t)

dt
= −ki,j

∑n

j=1
Ai,j(

−→xi −−→xj) (3)

states that the rate of heat change of node i is proportional to the
difference in the temperatures between i and its neighbors with
heat capacity matrix A. We use k = 1 here.

• The mutualistic interaction dynamics among species in ecology,
governed by equation

d
−−→
xi(t)

dt
= bi +−→xi(1−

−→xi
ki

)(
−→xi
ci
− 1) +

n∑
j=1

Ai,j
−→xi−→xj

di + ei
−→xi + hj

−→xj
.

(4)
The mutualistic differential equation systems (Gao, Barzel, and

Barabási 2016) capture the abundance ~xi(t) of species i, consist-
ing of incoming migration term bi, logistic growth with popu-
lation capacity ki (Zang et al. 2018) and Allee effect (Allee et
al. 1949) with cold-start threshold ci, and mutualistic interaction
term with interaction network A. We use b = 0.1, k = 5.0,
c = 1.0, d = 5.0, e = 0.9, h = 0.1 here.

• The gene regulatory dynamics governed by Michaelis-Menten
equation

d
−−→
xi(t)

dt
= −bi ~xif +

∑n

j=1
Ai,j

−→xjh
−→xjh + 1

(5)

where the first term models degradation when f = 1 or dimeriza-
tion when f = 2, and the second term captures genetic activation
tuned by the Hill coefficient h (Gao, Barzel, and Barabási 2016).
We adopt b = 1.0, f = 1.0, h = 2.0 here.

B.4 Terminal Time:
We use T = 5 for mutualistic dynamics and gene regulatory dynam-
ics over different networks, and T = 5, 0.1, 0.75, 2, 0.2 for heat
dynamics on the grid, random graph, power-law network, small-
world network, and community network respectively due to their
different time scale of network dynamics. Please see above anima-
tions to check out different network dynamics.

B.5 Visualizations of network dynamics
Please see above animations to check out the visualization of differ-
ent network dynamics. We generate networks by aforementioned
network models with n = 400 nodes. The nodes are re-ordered
according to community detection method by Newman (Newman
2010). We visualize their adjacency matrices in Fig. 9,10 and 11.
We layout these networks in a grid and thus nodes’ states X(t)
are visualized as functions on the grid. Specifically, the nodes are
re-ordered according to community detection method by Newman
(Newman 2010) and each node has a unique label from 1 to n. We
layout these nodes on a 2-dimensional

√
n×
√
n grid and each grid

point (r, c) ∈ N2 represents the ith node where i = r
√
n+ c+ 1.

Thus, nodes’ states X(t) ∈ Rn×d when d = 1 can be visualized as
a scalar field function X : N2 → R over the grid.
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Figure 9: Heat diffusion on different networks. Each of the five vertical panels represents the dynamics on one network over
physical time. For each network dynamics, we illustrate the sampled ground truth dynamics (left) and the dynamics generated by
our NDCN (right) from top to bottom following the direction of time.

C Model configurations of Learning Network
Dynamics in both continuous-time and

regularly-sampled settings
We train our NDCN model by Adam (Kingma and Ba 2015). We
choose 20 as the hidden dimension of Xh ∈ Rn×20. We train our
model for a maximum of 2000 epochs using Adam (Kingma and
Ba 2015) with learning rate 0.01. We summarize our `2 regular-
ization parameter as in Table 4 and Table 5 for Section 5 learning
continuous-time network dynamics. We summarize our `2 regular-
ization parameter as in Table 6 for Section 6 learning regularly-
sampled dynamics.

D Continuous-time Interpolation Prediction

E Temporal-GNN models
We use following temporal-GNN models for structured sequence
learning:
• LSTM-GNN: the temporal-GNN with LSTM cell: X[t+ 1] =
LSTM(GCN(X[t], G)):

xt = ReLU(Φ ∗ (We ∗X[t] + be))

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

ˆX[t+ 1] = Wd ∗ ht + bd

(6)

• GRU-GNN: the temporal-GNN with GRU cell: X[t + 1] =
GRU(GCN(X[t], G)):

xt = ReLU(Φ ∗ (We ∗X[t] + be))

rt = σ(Wirxt + bir +Whrht−1 + bhr)

zt = σ(Wizxt + biz +Whzht−1 + bhz)

nt = tanh(Winxt + bin + r ∗ (Whnht−1 + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

ˆX[t+ 1] = Wd ∗ ht + bd
(7)

• RNN-GNN: the temporal-GNN with RNN cell: X[t + 1] =
RNN(GCN(X[t], G)):

xt = ReLU(Φ ∗ (We ∗X[t] + be))

ht = tanh(wihxt + bih + whhht−1 + bhh)

ˆX[t+ 1] = Wd ∗ ht + bd

(8)

We adopt the diffusion operator Φ = D̃−
1
2 (αI + (1− α)A)D̃−

1
2

where A is the adjacency matrix, D is the degree matrix and
D̃ = αI + (1 − α)D keeps Φ normalized. The differential
equation system dX

dt
= ΦX follows the dynamics of averag-

ing the neighborhood opinion as d
−−−→
xi(t)
dt

= α
(1−α)di+α

−−→
xi(t) +∑n

j Ai,j
1−α√

(1−α)di+α
√

(1−α)dj+α

−−−→
xj(t) for node i. When α = 0,

Φ averages the neighbors as normalized random walk, when α = 1,
Φ captures exponential dynamics without network effects. Here we
adopt α = 0.5, namely Φ averages both neighbors and itself as
GCN in (Kipf and Welling 2017).
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Figure 10: Biological mutualistic interaction on different networks.

Table 4: `2 regularization parameter configurations in continuous-time extrapolation prediction
Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1e-3 1e-6 1e-3 1e-3 1e-5
No-Graph 1e-3 1e-6 1e-3 1e-3 1e-5
No-Control 1e-3 1e-6 1e-3 1e-3 1e-5
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

No-Encode 1e-2 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-2 1e-4 1e-4 1e-4 1e-4
No-Control 1e-2 1e-4 1e-4 1e-4 1e-4
NDCN 1e-2 1e-4 1e-4 1e-4 1e-4

Gene
Regulation

No-Embed 1e-4 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-4 1e-4 1e-4 1e-4 1e-4
No-Control 1e-4 1e-4 1e-4 1e-4 1e-4
NDCN 1e-4 1e-4 1e-4 1e-4 1e-4

F Results in absolute error.

We show corresponding `1 loss error in Table 8,Table 9 and Ta-
ble 10 with respect to the normalized `1 loss error in Section 5
learning continuous-time network dynamics and Section 6 learning
regularly-sampled dynamics. The same conclusions can be made as
in Table 1,Table 7 and Table 2.

G Learning Semantic labels

We summarize datasets, baselines, and experimental setups in Sec-
tion 7 learning semantic labels at the terminal time.

G.1 A Model Instance

Following the same framework as in Section 3, we propose a simple
model with the terminal semantic loss S(Y (T )) modeled by the

cross-entropy loss for classification task:

argmin
We,be,Wd,bd

L =

∫ T

0

R(t) dt−
n∑

i=1

c∑
k=1

Ŷi,k(T ) log Yi,k(T )

subject to Xh(0) = tanh
(
X(0)We + be

)
dXh(t)

dt
= ReLU

(
ΦXh(t)

)
Y (T ) = softmax(Xh(T )Wd + bd)

(9)

where Y (T ) ∈ Rn×c is the label distributions of nodes at time
T ∈ R whose element Yi,k(T ) denotes the probability of the
node i = 1, . . . , n with label k = 1, . . . , c at time T . The
Ŷ ∈ Rn×c is the supervised information (again missing infor-
mation can be padded by 0) observed at time t = T . We use
differential equation system dX(t)

dt
= ReLU(ΦX(t)) to spread

the graph signals over continuous time [0, T ], i.e., Xh(T ) =

Xh(0) +
∫ T
0

ReLU
(

ΦXh(t)
)
dt.
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Figure 11: Gene regulation dynamics on different networks.

Table 5: `2 regularization parameter configurations in continuous-time interpolation prediction
Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1e-3 1e-6 1e-3 1e-3 1e-5
No-Graph 1e-3 1e-6 1e-3 1e-3 1e-5
No-Control 1e-3 1e-6 1e-3 1e-3 1e-5
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

No-Encode 1e-2 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-2 1e-4 1e-4 1e-4 1e-4
No-Control 1e-2 1e-4 1e-4 1e-4 1e-4
NDCN 1e-2 1e-4 1e-4 1e-4 1e-4

Gene
Regulation

No-Embed 1e-4 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-4 1e-4 1e-4 1e-4 1e-4
No-Control 1e-4 1e-4 1e-4 1e-4 1e-4
NDCN 1e-4 1e-4 1e-4 1e-4 1e-4

We model the running loss
∫ T
0
R(t) dt as the `2-norm regular-

izer of the learnable parameters
∫ T
0
R(t) dt = λ(|We|22 + |be|22 +

|Wd|22 + |bd|22) to avoid over-fitting. We adopt the diffusion oper-
ator Φ = D̃−

1
2 (αI + (1 − α)A)D̃−

1
2 where A is the adjacency

matrix, D is the degree matrix and D̃ = αI + (1− α)D keeps Φ
normalized. The parameter α ∈ [0, 1] tunes nodes’ adherence to
their previous information or their neighbors’ collective opinion.
We use it as a hyper-parameter here for simplicity and we can make
it as a learnable parameter later.

G.2 Datasets and Baselines.
We use three standard benchmark datasets (i.e., citation network
Cora, Citeseer and Pubmed), and follow the same fixed split scheme
for train, validation, and test as in (Yang, Cohen, and Salakhutdinov
2016; Kipf and Welling 2017; Thekumparampil et al. 2018). We
summarize the datasets in Appendix G.2 Table 11. We compare
our NDCN model with graph convolution network (GCN) (Kipf

and Welling 2017), attention-based graph neural network (AGNN)
(Thekumparampil et al. 2018), and graph attention networks (GAT)
(Veličković et al. 2017) with sophisticated attention parameters.

G.3 Experimental setup.
For the consistency of comparison with prior work, we follow the
same experimental setup as (Kipf and Welling 2017; Veličković et
al. 2017; Thekumparampil et al. 2018). We train our model based
on the training datasets and get the accuracy of classification results
from the test datasets with 1, 000 labels as summarized in Table 11.
Following hyper-parameter settings apply to all the datasets. We
set 16 evenly spaced time ticks in [0, T ] and solve the initial value
problem of integrating the differential equation systems numerically
by DOPRI5 (Dormand 1996). We train our model for a maximum
of 100 epochs using Adam (Kingma and Ba 2015) with learning
rate 0.01 and `2-norm regularization 0.024. We grid search the best
terminal time T ∈ [0.5, 1.5] and the α ∈ [0, 1]. We use 256 hidden
dimension. We report the mean and standard deviation of results



Table 6: `2 regularization parameter configurations in regularly-sampled extrapolation prediction
Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-2 1e-3 1e-4 1e-4 1e-4

Gene
Regulation

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-Control 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-4 1e-4 1e-4 1e-3 1e-3

Table 7: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accu-
rately. Each result is the normalized `1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 32.0± 12.7 26.7± 4.4 25.7± 3.8 27.9± 7.3 35.0± 6.3
No-Graph 41.9± 1.8 9.4± 0.6 18.2± 1.5 25.0± 2.1 25.0± 1.4
No-Control 56.8± 2.8 32.2± 7.0 33.5± 5.7 40.4± 3.4 39.1± 4.5
NDCN 3.2± 0.6 3.2± 0.4 5.6± 0.6 3.4± 0.4 4.3± 0.5

Mutualistic
Interaction

No-Encode 28.9± 2.0 19.9± 6.5 34.5± 13.4 27.6± 2.6 25.5± 8.7
No-Graph 28.7± 4.5 7.8± 2.4 23.2± 4.2 26.9± 3.8 14.1± 2.4
No-Control 72.2± 4.1 22.5± 10.2 63.8± 3.9 67.9± 2.9 33.9± 12.3
NDCN 7.6± 1.1 6.6± 2.4 6.5± 1.3 4.7± 0.7 7.9± 2.9

Gene
Regulation

No-Encode 39.2± 13.0 14.5± 12.4 33.6± 10.1 27.7± 9.4 21.2± 10.4
No-Graph 25.2± 2.3 11.9± 0.2 39.4± 1.3 15.7± 0.7 18.9± 0.3
No-Control 66.9± 8.8 31.7± 5.2 40.3± 6.6 49.0± 8.0 35.5± 5.3
NDCN 5.8± 1.0 1.5± 0.6 2.9± 0.5 4.2± 0.9 2.3± 0.6

for 100 runs in Table 3. It’s worthwhile to emphasize that in our
model there is no running control parameters (i.e. linear connection
layers in GNNs), no dropout (e.g., dropout rate 0.5 in GCN and 0.6
in GAT), no early stop, and no concept of layer/network depth (e.g.,
2 layers in GCN and GAT).

G.4 Results
We summarize the results in Table 3. We find our NDCN outper-
forms many state-of-the-art GNN models. Results for the baselines
are taken from (Kipf and Welling 2017; Veličković et al. 2017;
Thekumparampil et al. 2018; Wu et al. 2019a). We report the mean
and standard deviation of our results for 100 runs. We get our re-
ported results in Table 3 when terminal time T = 1.2 , α = 0 for
the Cora dataset, T = 1.0, α = 0.8 for the Citeseer dataset, and
T = 1.1, α = 0.4 for the Pubmed dataset.

(a) (b) (c)

Figure 12: Our NDCN model captures continuous-time dy-
namics. Mean classification accuracy of 100 runs over termi-
nal time when given a specific α. Insets are the accuracy over
the two-dimensional space of terminal time and α

By capturing the continuous-time network dynamics to diffuse
network signals, our NDCN gives better classification accuracy at
terminal time T ∈ R+. Figure 3 plots the mean accuracy with error
bars over terminal time T in the abovementioned α settings (we
further plot the accuracy over terminal time T and α in the insets and
Appendix H). We find for all the three datasets their accuracy curves
follow rise and fall patterns around the best terminal time. Indeed,

when the terminal time T is too small or too large, the accuracy
degenerates because the features of nodes are in under-diffusion or
over-diffusion states, implying the necessity in capturing continuous-
time dynamics. In contrast, previous GNNs can only have an discrete
number of layers which can not capture the continuous-time network
dynamics accurately.

H Accuracy over terminal time and α
By capturing the continuous-time network dynamics, our NDCN
gives better classification accuracy at terminal time T ∈ R+. In-
deed, when the terminal time is too small or too large, the accuracy
degenerates because the features of nodes are in under-diffusion
or over-diffusion states. We plot the mean accuracy of 100 runs of
our NDCN model over different terminal time T and α as shown in
the following heatmap plots. we find for all the three datasets their
accuracy curves follow rise and fall pattern around the best terminal
time.



Table 8: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network accurately. Each
result is the `1 error with standard deviation from 20 runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1.143± 0.280 1.060± 0.195 0.950± 0.199 0.948± 0.122 1.154± 0.167
No-Graph 1.166± 0.066 0.223± 0.049 0.260± 0.020 0.410± 0.023 0.926± 0.116
No-Control 2.803± 0.549 1.076± 0.153 0.962± 0.163 1.176± 0.179 1.417± 0.140
NDCN 0.158± 0.047 0.163± 0.060 0.187± 0.020 0.097± 0.016 0.183± 0.039

Mutualistic
Interaction

No-Encode 1.755± 0.138 1.402± 0.456 2.632± 0.775 1.947± 0.106 2.007± 0.695
No-Graph 2.174± 0.089 1.038± 0.434 1.301± 0.551 1.936± 0.085 1.323± 0.204
No-Control 5.434± 0.473 1.669± 0.662 9.353± 3.751 4.111± 0.417 2.344± 0.424
NDCN 1.038± 0.181 0.584± 0.277 0.653± 0.230 0.521± 0.124 0.502± 0.210

Gene
Regulation

No-Encode 2.164± 0.957 6.954± 5.190 3.240± 0.954 1.445± 0.395 8.204± 3.240
No-Graph 0.907± 0.058 4.872± 0.078 4.206± 0.025 0.875± 0.016 6.112± 0.143
No-Control 4.458± 0.978 27.119± 2.608 6.768± 0.741 3.320± 0.982 20.002± 2.160
NDCN 1.089± 0.487 0.715± 0.210 0.342± 0.088 0.243± 0.051 0.782± 0.199

Table 9: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network accurately. Each result
is the `1 error with standard deviation from 20 runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1.222± 0.486 1.020± 0.168 0.982± 0.143 1.066± 0.280 1.336± 0.239
No-Graph 1.600± 0.068 0.361± 0.022 0.694± 0.058 0.956± 0.079 0.954± 0.053
No-Control 2.169± 0.108 1.230± 0.266 1.280± 0.216 1.544± 0.128 1.495± 0.171
NDCN 0.121± 0.024 0.121± 0.017 0.214± 0.024 0.129± 0.017 0.165± 0.019

Mutualistic
Interaction

No-Encode 0.620± 0.081 2.424± 0.598 1.755± 0.560 0.488± 0.077 2.777± 0.773
No-Graph 0.626± 0.143 0.967± 0.269 1.180± 0.171 0.497± 0.101 1.578± 0.244
No-Control 1.534± 0.158 2.836± 1.022 3.328± 0.314 1.212± 0.116 3.601± 0.940
NDCN 0.164± 0.031 0.843± 0.267 0.333± 0.055 0.085± 0.014 0.852± 0.247

Gene
Regulation

No-Encode 1.753± 0.555 4.278± 3.374 2.560± 0.765 1.180± 0.389 5.106± 2.420
No-Graph 1.140± 0.101 3.768± 0.316 3.137± 0.264 0.672± 0.050 4.639± 0.399
No-Control 3.010± 0.228 9.939± 1.185 3.139± 0.313 2.082± 0.293 8.659± 0.952
NDCN 0.262± 0.046 0.455± 0.174 0.222± 0.034 0.180± 0.032 0.562± 0.130
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Figure 13: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Cora dataset
in heatmap plot.
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Figure 14: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Cora dataset
in 3D surface plot.



Table 10: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each result
is the `1 error with standard deviation from 20 runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 0.489± 0.081 0.824± 0.294 0.475± 0.196 0.442± 0.083 0.517± 0.162
GRU-GNN 0.428± 0.085 0.349± 0.090 0.337± 0.049 0.357± 0.065 0.302± 0.031
RNN-GNN 0.717± 0.227 0.957± 0.215 0.722± 0.247 0.833± 0.145 0.615± 0.000
NDCN 0.165± 0.027 0.180± 0.063 0.208± 0.015 0.103± 0.014 0.201± 0.029

Mutualistic
Interaction

LSTM-GNN 1.966± 0.126 3.749± 3.749 2.380± 0.626 2.044± 0.086 3.463± 3.095
GRU-GNN 1.905± 0.157 0.162± 0.564 1.077± 0.071 1.792± 0.165 0.510± 0.549
RNN-GNN 2.165± 0.004 1.303± 1.747 1.056± 0.034 2.012± 0.065 1.140± 0.887
NDCN 1.414± 0.060 0.734± 0.168 0.990± 0.442 0.557± 0.078 0.528± 0.122

Gene
Regulation

LSTM-GNN 1.883± 0.218 26.750± 5.634 3.733± 1.220 0.743± 0.112 16.534± 5.094
GRU-GNN 1.641± 0.191 20.240± 2.549 3.381± 1.455 0.626± 0.099 14.4± 2.358
RNN-GNN 1.906± 0.464 22.46± 2.276 4.036± 1.229 0.795± 0.300 14.496± 1.077
NDCN 1.267± 0.672 0.946± 0.357 0.397± 0.133 0.312± 0.043 0.901± 0.160

Table 11: Statistics for three real-world citation network
datasets. N, E, D, C represent number of nodes, edges, fea-
tures, classes respectively.

Dataset N E D C Train/Valid/Test

Cora 2, 708 5, 429 1, 433 7 140/500/1, 000
Citeseer 3, 327 4, 732 3, 703 6 120/500/1, 000
Pubmed 19, 717 44, 338 500 3 60/500/1, 000

Table 12: Test mean accuracy with standard deviation in
percentage (%) over 100 runs. Our NDCN model gives very
competitive results compared with many GNN models.

Model Cora Citeseer Pubmed

GCN 81.5 70.3 79.0

AGNN 83.1± 0.1 71.7± 0.1 79.9± 0.1

GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3

NDCN 83.3± 0.6 73.1± 0.6 79.8± 0.4
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Figure 15: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Citeseer
dataset.
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Figure 16: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Citeseer
dataset in 3D surface plot.
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Figure 17: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Pubmed
dataset.
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Figure 18: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Pubmed
dataset in 3D surface plot.


