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Abstract

GNNs with attention mechanism in aggregation have been
actively applied in various fields. Though the attention-based
GNNs have achieved remarkable results in various tasks, a
clear understanding of their discriminative capacities is miss-
ing. In this work, we start from theoretical analysis to un-
derstand the discriminative powers of those attention-based
GNNs. Our analysis determines all cases when attention-
based GNNs can always fail to distinguish certain distinct
structures. Those cases appear due to the ignorance of cardi-
nality information in attention-based aggregation. To improve
the expression power of attention-based GNNs, we propose
cardinality preserved attention (CPA) models for attention-
based GNNs. The experiments on node and graph classifica-
tion confirm our theoretical analysis and show the competi-
tive performance of our CPA models.

Introduction
In recent years, Graph Neural Networks (GNNs) have been
proposed to learn the representations of graph-structured
data and attract a growing interest (Scarselli et al. 2009;
Li et al. 2016; Duvenaud et al. 2015; Niepert, Ahmed, and
Kutzkov 2016; Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Zhang et al. 2018; Ying et al. 2018;
Morris et al. 2019a; Xu et al. 2019). When iteratively up-
dating node embeddings by aggregating node features and
structural information in the graph, most of the GNNs
will assign non-parametric weight between nodes (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Xu et al. 2019). Such aggregators fail to learn the infor-
mation between a target node and its neighbors, which is
important in real-world data since not all edges have sim-
ilar impacts. To make the edge weights trainable, attention
mechanism (Bahdanau, Cho, and Bengio 2014; Vaswani et
al. 2017) is incorporated in GNNs and achieves promis-
ing performance on various tasks (Veličković et al. 2018;
Thekumparampil et al. 2018). However, we are not clear
about the exact power of attention mechanism in graph rep-
resentation learning.
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In this work, we make efforts to theoretically analyze the
discriminative power of GNNs with attention-based aggre-
gators. Our findings reveal that previous proposed attention-
based aggregators fail to distinguish certain distinct struc-
tures due to the ignorance of cardinality information in ag-
gregation. Thus we propose models to preserve cardinality
in the attention mechanism so as to improve its discrimi-
native power. Our experiments on node/graph classification
confirm our theoretical analysis and the improvements from
our models. Moreover, our models achieve competitive re-
sults on graph classification benchmarks.

Preliminaries
Notations
Let G = (V,E) be a graph with set of nodes V and set
of edges E. We denote the set of node i and its nearest
neighbors N (i) as Ñ (i) = N (i) ∪ {i}. For the nodes in
Ñ (i), their feature vectors form a multiset M(i) = (Si, µi),
where Si = {s1, . . . , sn} is the ground set of M(i), and
µi : Si → N∗ is the multiplicity function that gives the mul-
tiplicity of each s ∈ Si. The cardinality |M | of a multiset is
the number of elements (with multiplicity) in the multiset.

Attention-Based GNNs
We focus on the Graph Neural Networks (GNNs) under the
massage-passing framework (Wu et al. 2019; Zhou et al.
2018). For attention-based GNNs, attention mechanism is
used in the nearest neighbor aggregation (Lee et al. 2018).
We can formulate the aggregation in l-th layer as follows:

el−1ij = Att
(
hl−1i , hl−1j

)
, (1)

αl−1
ij = softmax

(
el−1ij

)
=

exp(el−1ij )∑
k∈Ñ (i) exp

(
el−1ik

) , (2)

hli = f l
(∑

j∈Ñ (i)
αl−1
ij hl−1j

)
, (3)

where attention function Att computes eij , which is the at-
tention coefficient. αij is the attention weight and f is a
nonlinear function. In the final layer, since the node repre-
sentation hLi after L iterations contains the L-step neighbor-
hood information, it can be directly used for local/node-level



tasks. While for global/graph-level tasks, an extra readout
function g can be used to compute the whole graph repre-
sentation hG from all hLi : hG = g

( {
hLi ,∀i ∈ G

} )
.

Related Works
Since GNNs have achieved remarkable results in practice, a
clear understanding of the power of GNNs in graph repre-
sentational learning is needed to design better models and
make further improvements. Recent works (Morris et al.
2019b; Xu et al. 2019; Maron et al. 2019) focus on un-
derstanding the discriminative power of GNNs by compar-
ing it to the Weisfeiler-Lehman (WL) test (Weisfeiler and
Leman 1968) when deciding the graph isomorphism. It is
proved that massage-passing-based GNNs which aggregate
the nearest neighbor node features of a node for embedding
are at most as powerful as the 1-WL test (Xu et al. 2019).
Inspired by the higher discriminative power of the k-WL
test (k > 2) (Cai, Fürer, and Immerman 1992) than the
1-WL test, GNNs that have a theoretically higher discrim-
inative power than the massage-passing-based GNNs have
been proposed based on the k-WL test (Morris et al. 2019b;
Maron et al. 2019). However, the GNNs proposed in those
works don’t specifically contain the attention mechanism as
the part of their analysis. So it’s currently unknown whether
the attention mechanism will constrain the discriminative
power. Our work focuses on the massage-passing-based
GNNs with attention mechanism, which are upper bounded
by the 1-WL test.

Another recent work (Knyazev, Taylor, and Amer 2019)
aims to understand the attention mechanism over nodes in
GNNs with experiments in a controlled environment. How-
ever, the attention mechanism discussed in the work is used
in the pooling layer for the pooling of nodes, while our work
investigates the usage of attention mechanism in the aggre-
gation layer for the updating of nodes.

Limitation of Attention-Based GNNs
In this section, we theoretically analyze the discrimina-
tive power of attention-based GNNs and show their lim-
itations. The discriminative power means how well an
attention-based GNN can distinguish different elements (lo-
cal or global structures). We find that previously proposed
attention-based GNNs can fail in certain cases and the dis-
criminative power is limited. Besides, by theoretically find-
ing out all cases that always fail an attention-based GNN,
we reveal that those failures come from the lack of cardinal-
ity preservation in attention-based aggregators. The details
of proofs are included in the Supplemental Material.

Discriminative Power of Attention-based GNNs
We assume the node input feature space is countable. For
any attention-based GNNs, we give the conditions in Lemma
1 to make them reach the upper bound of discrimina-
tive power when distinguishing different elements (local or
global structures). In particular, each local structure belongs
to a node and is the k-height subtree structure rooted at the
node, which is naturally captured in the node feature hki af-
ter k iterations in a GNN. The global structure contains the
information of all such subtrees in a graph.

Lemma 1. Let A : G → Rg be a GNN following the neigh-
borhood aggregation scheme with the attention-based ag-
gregator (Equation 3). For global-level task, an extra read-
out function is used in the final layer. A can reach its upper
bound of discriminative power (can distinguish all distinct
local structures or be as powerful as the 1-WL test when
distinguishing distinct global structures) after sufficient it-
erations with the following conditions:
• Local-level: Function f and the weighted summation in

Equation 3 are injective.
• Global-level: Besides the conditions for local-level, A’s

readout function is injective.
With Lemma 1, we are interested in whether its condi-

tions can always be satisfied, so as to reach the upper bound
of discriminative capacity of an attention-based GNN. Since
the function f and the global-level readout function can
be predetermined to be injective, we focus on whether the
weighted summation function in attention-based aggregator
can be injective.

The Non-Injectivity of Attention-Based Aggregator
In this part, we aim to answer the following two questions:
Q 1. Can the attention-based GNNs actually reach the up-
per bound of discriminative power? In other words, can the
weighted summation function in an attention-based aggre-
gator be injective?
Q 2. If not, can we determine all of the cases that prevent
any kind of weighted summation function being injective?

In Theorem 1, we answer Q1 with No by giving the cases
that make the weighted summation function W not to be
injective. So that the attention-based GNNs can never meet
their upper bound of discriminative power, which is stated in
Corollary 1. Moreover, we answer Q2 with Yes in Theorem
1 by pointing out those cases are the only reason to always
prevent W being injective. This alleviates the difficulty of
summarizing the properties of those cases. Besides, we can
specifically propose methods to avoid those cases so as to let
W to be injective.
Theorem 1. Assume the input feature space X is count-
able. Given a multiset X ⊂ X and the node feature c of
the central node, the weighted summation function h(c,X)
in aggregation is defined as h(c,X) =

∑
x∈X αcxf(x),

where f : X → Rn is a mapping of input feature vec-
tor and αcx is the attention weight between f(c) and f(x)
calculated by the attention function Att in Equation 1 and
the softmax function in Equation 2. For all f and Att,
h(c1, X1) = h(c2, X2) if and only if c1 = c2, X1 = (S, µ)
and X2 = (S, k · µ) for k ∈ N∗. In other words, h will map
different multisets to the same embedding if and only if the
multisets have the same central node feature and the same
distribution of node features.
Corollary 1. Let A be the GNN defined in Lemma 1. A
never reaches its upper bound of discriminative power:

There exists two different subtrees S1 and S2 or two
graphs G1 and G2 that the Weisfeiler-Lehman test decides
as non-isomorphic, such that A always maps the two sub-
trees/graphs to the same embeddings.



Figure 1: An illustration of different attention-based aggre-
gators on multiset of node features. Given two distinct mul-
tisets H1 and H2 that have the same central node feature hi
and the same distribution of node features, aggregators will
map hi to hi1 and hi2 for H1 and H2. The Original model
will get h′i1 = h′i2 and fail to distinguish H1 and H2, while
our Additive and Scaled models can always distinguish H1

and H2 with h′′i1 6= h′′i2 and h′′′i1 6= h′′′i2.

Attention Mechanism Fails to Preserve Cardinality
With Theorem 1, we are now interested in the properties of
all cases that always prevent the weighted summation func-
tions W being injective. Since the multisets that all W fail
to distinguish share the same distribution of node features,
we can say that W ignores the multiplicity information of
each identical element in the multisets. Thus the cardinality
of the multiset is not preserved:

Corollary 2. Let A be the GNN defined in Lemma 1. The
attention-based aggregator in A cannot preserve the cardi-
nality information of the multiset of node features in aggre-
gation.

Cardinality Preserved Attention (CPA) Model
Since the cardinality of the multiset is not preserved in
attention-based aggregators, our goal is to propose modifi-
cations to any kind of attention mechanism to make them
capture the cardinality information. So that all of the cases
that always prevent attention-based aggregator being injec-
tive can be avoided. To achieve our goal, we modify the
Original weighted summation function in Equation 3 while
keeping the original expressive power in Equation 1:

Model 1. (Additive)

hli = f l
(∑

j∈Ñ (i)
αl−1
ij hl−1j + wl �

∑
j∈Ñ (i)

hl−1j

)
,

(4)

Model 2. (Scaled)

hli = f l
(
ψl
(∣∣Ñ (i)

∣∣)�∑
j∈Ñ (i)

αl−1
ij hl−1j

)
, (5)

where w is a non-zero vector ∈ Rn, � denotes the element-
wise multiplication, |Ñ (i)| equals to the cardinality of the
multiset Ñ (i), ψ : Z+ → Rn is an injective function.

In the Additive model, each element in the multiset will
contribute to the term that we added to preserve the cardinal-
ity information. In the Scaled model, the original weighted
summation is directly multiplied by a representational vec-
tor of the cardinality value. We summarize the effect of our
models in Corollary 3 and illustrate it in Figure 1.
Corollary 3. Let T be the original attention-based aggrega-
tor in Equation 3. With our proposed Cardinality Preserved
Attention (CPA) models in Equation 4 and 5, T ′s discrimi-
native power is increased: T can now distinguish all differ-
ent multisets in aggregation that it previously always fails to
distinguish.

Moreover, we simplify our models by fixing the values in
w and ψ(|Ñ (i)|) and define two CPA variants:
Model 3. (f-Additive)

hli = f l
(∑

j∈Ñ (i)
(αl−1

ij + 1)hl−1j

)
, (6)

Model 4. (f-Scaled)

hli = f l
(∣∣Ñ (i)

∣∣ ·∑
j∈Ñ (i)

αl−1
ij hl−1j

)
. (7)

Model 3 and 4 still preserve the cardinality information
and have the same time and space complexity as the Origi-
nal model in Equation 3.

Experiments
In our experiments, we focus on the following questions:
Q 3. Since attention-based GNNs (e.g. GAT) are originally
proposed for local-level tasks like node classification, will
those models fail or not meet the upper bound of discrimi-
native power when solving certain node classification tasks?
If so, can our proposed CPA models improve the original
model?
Q 4. For global-level tasks like graph classification, how
well can the original attention-based GNNs perform? Can
our proposed CPA models improve the original model?
Q 5. How the attention-based GNNs with our CPA models
perform compared to baselines?

To answer Question 3, we design a node classification task
which is to predict whether or not a node is included in a tri-
angle as one vertex in a graph. To answer Question 4 and 5,
we perform experiments on graph classification benchmarks
and evaluate the performance of attention-based GNNs with
CPA models.

Experimental Setup
Datasets In our synthetic task (TRIANGLE-NODE) for
predicting whether or not a node is included in a trian-
gle, we generate a graph with different node features. In
our experiment on graph classification, we use 6 benchmark
datasets: 2 social network datasets (REDDIT-BINARY (RE-
B), REDDIT-MULTI5K (RE-M5K)) and 4 bioinformatics
datasets (MUTAG, PROTEINS, ENZYMES, NCI1). More
details of the datasets are provided in Supplemental Mate-
rial.



Table 1: Testing accuracies(%) of GAT variants (the original
GAT and the GAT applied with each of our 4 CPA models)
on TRIANGLE-NODE dataset for node classification. We
highlight the result of the best performed model. The pro-
portion P of multisets that hold the properties in Theorem 1
among all multisets is also reported.

Dataset TRIANGLE-NODE
P (%) 29.2

Original 78.40 ± 7.65

Additive 91.31 ± 1.19
Scaled 91.38 ± 1.23

f-Additive 91.18 ± 1.24
f-Scaled 91.36 ± 1.26

Table 2: Testing accuracies(%) of GAT-GC variants (the
original one and the ones applied with each of our 4 CPA
models) on social network datasets. We highlight the result
of the best performed model per dataset. The proportion P
of multisets that hold the properties in Theorem 1 among all
multisets is also reported for each dataset.

Datasets RE-B RE-M5K
P (%) 100.0 100.0

Original 50.00 ± 0.00 20.00 ± 0.00

Additive 93.07 ± 1.82 57.39 ± 2.09
Scaled 92.36 ± 2.27 56.76 ± 2.26

f-Additive 93.05 ± 1.87 56.43 ± 2.38
f-Scaled 92.57 ± 2.06 57.22 ± 2.20

Models In our experiments, the Original model is the one
that uses the original version of an attention mechanism.
We apply each of our 4 CPA models (Additive, Scaled, f-
Additive and f-Scaled) to the original attention mechanism
for comparison. In the Additive and Scaled models, we take
advantage of the approximation capability of multi-layer
perceptron (MLP) (Hornik, Stinchcombe, and White 1989;
Hornik 1991) to model f and ψ.

For node classification, we use GAT (Veličković et
al. 2018) as the Original model. For graph classifica-
tion, we build a GNN (GAT-GC) based on GAT as
the Original model: We adopt the attention mechanism
in GAT to specify the form of Equation 1: eij =
LeakyReLU

(
a> [Whi‖Whj ]

)
. For the readout function, a

naive way is to only consider the node embeddings from the
last iteration. Although a sufficient number of iterations can
help to avoid the cases in Theorem 1 by aggregating more
diverse node features, the features from the latter iterations
may generalize worse and the GNNs usually have shallow
structures (Xu et al. 2019; Zhou et al. 2018). So the GAT-
GC adopts the same function as used in (Xu et al. 2018;
2019; Lee, Lee, and Kang 2019; Li et al. 2019), which
concatenates graph embeddings from all iterations: hG =

‖Lk=0

(
Readout(

{
hli
∣∣i ∈ G})), Readout function can be

sum or mean. With CPA models, the cases in Theorem 1

Figure 2: Training curves of GAT-GC variants on bioinfor-
matics datasets.

Table 3: Testing accuracies(%) of GAT-GC variants (the
original one and the ones applied with each of our 4 CPA
models) on bioinformatics datasets. We highlight the result
of the best performed model per dataset. The highlighted re-
sults are significantly higher than those from the correspond-
ing Original model under paired t-test at significance level
5%. The proportion P of multisets that hold the properties
in Theorem 1 among all multisets is also reported for each
dataset.

Datasets MUTAG PROTEINS ENZYMES NCI1
P (%) 56.9 29.3 29.4 43.3

Original 84.96± 7.65 75.64± 3.96 58.08± 6.82 80.29± 1.89

Additive 89.75± 6.39 76.61± 3.80 58.90± 6.96 81.92± 1.89
Scaled 89.65± 7.47 76.44± 3.77 58.35± 6.97 82.18± 1.67

f-Additive 90.34± 6.05 76.60± 3.91 59.80± 6.18 81.96± 2.01
f-Scaled 90.44± 6.44 76.81± 3.77 58.45± 6.35 82.28± 1.81

can be avoided in each iteration. Full experimental settings
are included in Supplemental Material.

Node Classification
For the TRIANGLE-NODE dataset, the proportion P of
multisets that hold the properties in Theorem 1 is 29.2%,
as shown in Table 1. The classification accuracy of the Orig-
inal model (GAT) is significantly lower than the CPA mod-
els. It supports the claim in Corollary 1: the Original model
fails to distinguish all distinct multisets in the dataset and ex-
hibits constrained discriminate power. On the contrary, CPA
models can distinguish all different multisets in the graph as
suggested in Corollary 3 and indeed significantly improve
the accuracy of the Original model as shown in Table 1. This
experiment thus well answers Question 3 that we raised.

Graph Classification
In this section, we aim to answer Question 4 by evaluating
the performance of variants of GAT-based GNN (GAT-GC)
on graph classification benchmarks. Besides, we compare



Table 4: Testing accuracies(%) for graph classification. We highlight the result of the best performed model for each dataset.
Our GAT-GC (f-Scaled) model achieves the top 2 on all 6 datasets.

Datasets MUTAG PROTEINS ENZYMES NCI1 RE-B RE-M5K
B

as
el

in
es

WL 82.05 ± 0.36 74.68 ± 0.49 52.22 ± 1.26 82.19 ± 0.18 81.10 ± 1.90 49.44 ± 2.36
PSCN 88.95 ± 4.37 75.00 ± 2.51 - 76.34 ± 1.68 86.30 ± 1.58 49.10 ± 0.70

DGCNN 85.83 ± 1.66 75.54 ± 0.94 51.00 ± 7.29 74.44 ± 0.47 76.02 ± 1.73 48.70 ± 4.54
GIN 89.40 ± 5.60 76.20 ± 2.80 - 82.70 ± 1.70 92.40 ± 2.50 57.50 ± 1.50

CapsGNN 86.67 ± 6.88 76.28 ± 3.63 54.67 ± 5.67 78.35 ± 1.55 - 52.88 ± 1.48

GAT-GC (f-Scaled) 90.44 ± 6.44 76.81 ± 3.77 58.45 ± 6.35 82.28 ± 1.81 92.57 ± 2.06 57.22 ± 2.20

our best-performed CPA model with baseline models to an-
swer Question 5.

Social Network Datasets Since the RE-B and RE-M5K
datasets don’t have original node features and we assign all
the node features to be the same, we have P = 100.0%
in those datasets. Thus all multisets in aggregation will be
mapped to the same embedding by the Original GAT-GC.
After a mean readout function on all multisets, all graphs
are finally mapped to the same embedding. The performance
of the Original model is just random guessing of the graph
labels as reported in Table 2. While our CPA models can
distinguish all different multisets and are confirmed to be
significantly better than the Original one.

Here we examine a naive approach to incorporate the
cardinality information in the Original model by assigning
node degrees as input node labels. By doing this way, the
node features are diverse and we get P = 0.0%, which
means that the cases in Theorem 1 can be all avoided.
However, the testing accuracies of Original can only reach
76.65± 9.87% on RE-B and 43.71± 9.05% on RE-M5K,
which are significantly lower than the results of CPA mod-
els in Table 2. Thus in practice, our proposed models exhibit
good generalization power comparing to the naive approach.

Bioinformatics Datasets For bioinformatics datasets that
contain diverse node labels, we also report the P values in
Table 3. The results reveal the existence (P ≥ 29.3%) of the
cases in those datasets that can fool the Original model, thus
the discriminative power of the Original model is theoreti-
cally constrained.

To empirically validate this, we compare the training ac-
curacies of GAT-GC variants, since the discriminative power
can be directly indicated by the accuracies on training sets.
Higher training accuracy indicates a better fitting ability to
distinguish different graphs. The training curves of GAT-GC
variants are shown in Figure 2. From these curves, we can
see even though the Original model has overfitted different
datasets, the fitting accuracies that it converges to can never
be higher than those of our CPA models. Compared to the
WL kernel, CPA models can get training accuracies close to
100% on several datasets, which reach those obtained from
the WL kernel (equal to 100% as shown in (Xu et al. 2019)).
These findings validate that the discriminative power of the
Original model is constrained while our CPA models can ap-
proach the upper bound of discriminative power with certain
learned weights.

In Table 3 we report the testing accuracies of GAT-GC
variants on bioinformatics datasets. The Original model can
get meaningful results. However, we find our proposed CPA
models further improve the testing accuracies of the Origi-
nal model on all datasets. This indicates that the preserva-
tion of cardinality can also benefit the generalization power
of the model besides the discriminative power.

From previous results in Table 2 and 3, we find the f-
Scaled model performs the best with an average ranking
measure (Taheri, Gimpel, and Berger-Wolf 2018). The good
performance of the fixed-weight models (f-Additive and f-
Scaled) comparing to the full models (Additive and Scaled)
demonstrates that the improvements achieved by CPA mod-
els are not simply due to the increased capacities given by
the additional vectors embedded.

Comparison to Baselines We further compare the best-
performed GAT-GC variant (f-Scaled) with other baselines
(WL kernel (WL) (Shervashidze et al. 2011), PATCHY-SAN
(PSCN) (Niepert, Ahmed, and Kutzkov 2016), Deep Graph
CNN (DGCNN) (Zhang et al. 2018), Graph Isomorphism
Network (GIN) (Xu et al. 2019) and Capsule Graph Neu-
ral Network (CapsGNN) (Xinyi and Chen 2019)). In Ta-
ble 4, we report the results. Our GAT-GC (f-Scaled) model
achieves 4 top 1 and 2 top 2 on all 6 datasets. It is expected
that even better performance can be achieved with certain
choices of attention mechanism besides the GAT one.

Conclusion
In this paper, we theoretically analyze the representational
power of GNNs with attention-based aggregators: We de-
termine all cases when those GNNs always fail to distin-
guish distinct structures. The finding shows that the miss-
ing cardinality information in aggregation is the only rea-
son to cause those failures. To improve, we propose cardi-
nality preserved attention (CPA) models to solve this issue.
In our experiments, we validate our theoretical analysis that
the performances of the original attention-based GNNs are
limited. With our models, the original models can be im-
proved. Compared to other baselines, our best-performed
model achieves competitive performance. In future work, a
challenging problem is to better learn the attention weights
so as to guarantee the injectivity of our cardinality preserved
attention models after the training. Besides, it would be in-
teresting to analyze the effects of different attention mecha-
nisms.
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Proof for Lemma 1
Proof. Local-level: For the aggregator in the first layer, it
will map different 1-height subtree structures to different
embeddings from the distinct input multisets of neighbor-
hood node features, since it’s injective. Iteratively, the ag-
gregator in the l-th layer can distinguish different l-height
subtree structures by mapping them to different embeddings
from the distinct input multisets of l-1-height subtree fea-
tures, since it’s injective.

Global level: From Lemma 2 and Theorem 3 in (Xu et
al. 2019), we know: When all functions in A are injec-
tive, A can reach its upper bound of discriminative power,
which is the same as the Weisfeiler-Lehman (WL) test (We-
isfeiler and Leman 1968) when deciding the graph isomor-
phism.

Proof for Theorem 1
Proof. To prove Theorem 1, we have consider both two di-
rections in the iff statement:

(1) If given c1 = c2 = c,X1 = (S, µ) andX2 = (S, k ·µ),
as h(c,X) =

∑
x∈X αcxf(x), we have:

h(ci, Xi) =
∑
x∈Xi

αcxif(x), i ∈ {1, 2},

where αcxi is the attention weight belongs to Xi, and be-
tween f(c) and f(x), x ∈ Xi, i ∈ {1, 2}.

We can rewrite the equations using S and µ:

h(c1, X1) = h(c, S, µ) =
∑
s∈S

µ(s)αcs1f(s),

h(c2, X2) = h(c, S, k · µ) =
∑
s∈S

k · µ(s)αcs2f(s),

where µ(s) is the multiplicity function, and αcsi is the at-
tention weight belongs to Xi, and between f(c) and f(s),
s ∈ S, i ∈ {1, 2}.

Considering the softmax function in Equation 2 of our pa-
per, we can use attention coefficient e to rewrite the equa-
tions:∑

s∈S
µ(s)αcs1f(s) =

∑
s∈S

µ(s)
exp(ecs1)∑

x∈X1
exp(ecx1)

f(s)

=

∑
s∈S µ(s) exp(ecs1)∑
x∈X1

exp(ecx1)
f(s),

∑
s∈S

k · µ(s)αcs2f(s) = k ·
∑
s∈S

µ(s)
exp(ecs2)∑

x∈X2
exp(ecx2)

f(s)

= k ·
∑

s∈S µ(s) exp(ecs2)∑
x∈X2

exp(ecx2)
f(s),

where ecsi is the attention coefficient belongs to Xi, and be-
tween f(c) and f(s), s ∈ S, i ∈ {1, 2}. Moreover, ecxi is
the attention coefficient belongs to Xi, and between f(c)
and f(x), x ∈ Xi, i ∈ {1, 2}.

As attention coefficient e is computed by function Att,
which is regardless of X , thus ecs1 = ecs2, ∀s ∈ S and

ecx1 = ecx2, ∀x ∈ X1, X2. We denote ecx = ecx1 = ecx2,
ecs = ecs1 = ecs2. Remind that X2 has k copies of the
elements in X1, so that∑

x∈X1

exp(ecx) =
1

k

∑
x∈X2

exp(ecx).

Using this equation, we can get∑
s∈S µ(s) exp(ecs1)∑
x∈X1

exp(ecx1)
f(s) =

∑
s∈S µ(s) exp(ecs)

1
k

∑
x∈X2

exp(ecx)
f(s)

= k ·
∑

s∈S µ(s) exp(ecs2)∑
x∈X2

exp(ecx2)
f(s).

From all equations above, we finally have

h(c1, X1) =

∑
s∈S µ(s) exp(ecs1)∑
x∈X1

exp(ecx1)
f(s)

= k ·
∑

s∈S µ(s) exp(ecs2)∑
x∈X2

exp(ecx2)
f(s)

= h(c2, X2).

(2) If given h(c1, X1) = h(c2, X2) for all f , Att, we have∑
x∈X1

αcx1f(x) =
∑
x∈X2

αcx2f(x), ∀f,Att,

where αcxi is the attention weight belongs to Xi, and be-
tween f(ci) and f(x), x ∈ Xi, i ∈ {1, 2}.

We denote X1 = (S1, µ1) and X2 = (S2, µ2) and rewrite
the equation:∑

s∈S1

µ1(s)αcs1f(s) =
∑
s∈S2

µ2(s)αcs2f(s), ∀f,Att,

where µi(s) is the multiplicity function of Xi, i ∈ {1, 2}.
Moreover, αcsi is the attention weight belongs to Xi, and
between f(ci) and f(s), s ∈ Si, i ∈ {1, 2}.

When considering the relations between S1 and S2, we
have:∑
s∈S1∩S2

(
µ1(s)αcs1 − µ2(s)αcs2

)
f(s)+

∑
s∈S1\S2

µ1(s)αcs1f(s)−
∑

s∈S2\S1

µ2(s)αcs2f(s) = 0. (8)

If we assume the equality of Equation 8 is true for all f
and S1 6= S2, we can define such two functions f1 and f2:

f1(s) = f2(s), ∀s ∈ S1 ∩ S2,

f1(s) = f2(s)− 1, ∀s ∈ S1 \ S2,

f1(s) = f2(s) + 1, ∀s ∈ S2 \ S1.

If given the equality of Equation 8 is true for f1, we have:∑
s∈S1∩S2

(
µ1(s)αcs1 − µ2(s)αcs2

)
f1(s)+∑

s∈S1\S2

µ1(s)αcs1f1(s)−
∑

s∈S2\S1

µ2(s)αcs2f1(s) = 0.

(9)



We can rewrite Equation 9 using f2:∑
s∈S1∩S2

(
µ1(s)αcs1 − µ2(s)αcs2

)
f2(s)+∑

s∈S1\S2

µ1(s)αcs1(f2(s)− 1)−

∑
s∈S2\S1

µ2(s)αcs2(f2(s) + 1) = 0.

Thus we know∑
s∈S1∩S2

(
µ1(s)αcs1 − µ2(s)αcs2

)
f2(s)+∑

s∈S1\S2

µ1(s)αcs1f2(s)−
∑

s∈S2\S1

µ2(s)αcs2f2(s) =

∑
s∈S1\S2

µ1(s)αcs1 +
∑

s∈S2\S1

µ2(s)αcs2 (10)

Note that the LHS of Equation 10 is just the LHS of Equa-
tion 8 when f = f2. As µi(s) ≥ 1 due to the definition of
multiplicity, αcsi > 0 due to the softmax function, we have
µi(s)αcsi > 0,∀s ∈ Si, i ∈ {1, 2}. Thus the RHS of Equa-
tion 10 > 0 and we now know the equality in Equation 8 is
not true for f2. So the assumption of S1 6= S2 is false.

We denote S = S1 = S2. To let the remaining summation
term always equal to 0, we have

µ1(s)αcs1 − µ2(s)αcs2 = 0, ∀Att.
Considering Equation 2 in our paper, we can rewrite the

equation above:

µ1(s)

µ2(s)
=

exp(ecs2)

exp(ecs1)

∑
x∈X1

exp(ecx1)∑
x∈X2

exp(ecx2)
, ∀Att, (11)

where ecsi is the attention coefficient belongs to Xi, and
between f(ci) and f(s), s ∈ S. And ecxi is the atten-
tion coefficient belongs to Xi, and between f(ci) and f(x),
x ∈ Xi, i ∈ {1, 2}.

The LHS of Equation 11 is a rational number. However
if c1 6= c2, the RHS of Equation 11 can be irrational: We
assume S contains at least two elements s0 and s 6= s0. If
not, we can directly get c1 = c2. We consider any attention
mechanism that results in:

ecs1 = 1, ∀s ∈ S,

ecs2 =

{
1, fors = s0,
2, ∀s 6= s0 ∈ S.

Thus when s = s0, the RHS of the equation become:

e

e

∣∣X1

∣∣e
(
∣∣X2

∣∣− n)e2 + ne
=

∣∣X1

∣∣
(
∣∣X2

∣∣− n)e+ n
,

where n is the multiplicity of s0 in X2. It is obvious that the
value of RHS is irrational. So we have c1 = c2 to always
hold the equality.

With c1 = c2, we know ecs1 = ecs2, ∀s ∈ S and ecx1 =
ecx2, ∀x ∈ X1, X2. We denote ecx = ecx1 = ecx2, Equation
11 becomes

µ1(s)

µ2(s)
=

∑
x∈X1

exp(ecx)∑
x∈X2

exp(ecx)
= const., ∀Att.

We further denote k = µ1(s)/µ2(s),∀s ∈ S. So that
µ2 = k · µ1. Finally by denoting µ = µ1, we have X1 =
(S, µ), X2 = (S, k · µ) and c1 = c2.

Proof for Corollary 1
Proof. For subtrees, if S1 and S2 are 1-height subtrees that
have the same root node feature and the same distribution of
node features, A will get the same embeddings for S1 and
S2 according to Theorem 1.

For graphs, let G1 be a fully connect graph with n nodes
and G2 be a ring-like graph with n nodes. All nodes in
G1 and G2 have the same feature x. It is clear that the
Weisfeiler-Lehman test of isomorphism decides G1 and G2

as non-isomorphic.
We denote {Xi}, i ∈ G1 as the set of multisets for aggre-

gation in G1, and {Xj}, j ∈ G2 as the set of multisets for
aggregation in G2. As G1 is a fully connect graph, all mul-
tisets in G1 contain 1 central node and n − 1 neighbors. As
G2 is a ring-like graph, all multisets in G2 contain 1 central
node and 2 neighbors. Thus we have

Xi = ({x}, {µ1(x) = n}), ∀i ∈ G1,

Xj = ({x}, {µ2(x) = 3}), ∀j ∈ G2,

where µi(x) is the multiplicity function of the node with
feature x in Gi, i ∈ {1, 2}.

From Theorem 1, we know that h(c,Xi) =
h(c,Xj),∀i ∈ G1,∀j ∈ G2. Considering the Equa-
tion 3 of our paper, we have hli = hlj ,∀i ∈ G1,∀j ∈ G2 in
each iteration l. Besides, as the number of node in G1 and
G2 are equals to n, A will always map G1 and G2 to the
same set of multisets of node features {hl} in each iteration
l and finally get the same embedding for each graph.

Proof for Corollary 2
Proof. Given two distinct multiset of node features X1 and
X2 that have the same central node feature and the same
distribution of node features: c1 = c2, X1 = (S, µ) and
X2 = (S, k · µ) for k ∈ N∗, we know the cardinality of X2

is k times of the cardinality of X1. Thus X1 and X2 can be
distinguished by their cardinality.

However, the weighted summation function h in
attention-based aggregatorAwill map them to the same em-
bedding: h(c1, X1) = h(c2, X2) according to Theorem 1.
Thus we cannot distinguish X1 and X2 via A. To conclude,
A lost the cardinality information after aggregation.

Proof for Corollary 3
Proof. For any two distinct multisets X1 and X2 that T
previously always fail to distinguish according to Theorem
1, we denote X1 = (S, µ) and X2 = (S, k · µ) ⊂ X
for some k ∈ N∗ and c ∈ S. Thus

∑
x∈X1

αcx1f(x) =∑
x∈X2

αcx2f(x), where αcxi is the attention weight be-
longs toXi, and between f(c) and f(x), x ∈ Xi, i ∈ {1, 2}.
We denote H =

∑
x∈X1

αcx1f(x) =
∑

x∈X2
αcx2f(x).

When applying CPA models, the aggregation functions in T



can be rewritten as:

h1(c,Xi) = H + w �
∑

x∈Xi

f(x), i ∈ {1, 2},

h2(c,Xi) = ψ(
∣∣Xi

∣∣)�H, i ∈ {1, 2}.
We consider the following example: All elements in w

equal to 1. Function ψ maps
∣∣X∣∣ to a n-dimensional vector

which all elements in it equal to
∣∣X∣∣. And f(x) = N−Z(x),

where Z : X → N and N >
∣∣X∣∣. So that the aggregation

functions become:

h1(c,Xi) = H +
∑

x∈Xi

f(x), i ∈ {1, 2},

h2(c,Xi) =
∣∣Xi

∣∣ ·H, i ∈ {1, 2}.
For h1, we have h1(c,X1)−h1(c,X2) =

∑
x∈X1

f(x)−∑
x∈X2

f(x). According to Lemma 5 of (Xu et al. 2019),
when X1 6= X2,

∑
x∈X1

f(x) 6=
∑

x∈X2
f(x). So

h1(c,X1) 6= h1(c,X2).
For h2, we have h2(c,X1)−h2(c,X2) = (

∣∣X1

∣∣− ∣∣X2

∣∣) ·
H . As αcx > 0 due to the softmax function, and f(x) > 0 in
our example, we know H > 0. Moreover as

∣∣X1

∣∣− ∣∣X2

∣∣ 6=
0, we can get h2(c,X1) 6= h2(c,X2).

Details of Datasets
For the node classification task, we generate a graph with
4800 nodes and 32400 edges. 40.58% of the nodes are in-
cluded in triangles as vertices while 59.42% are not. There
are 4000 nodes assigned with feature ’0’, 400 with feature
’1’ and 400 with feature ’2’. The label of each node for pre-
diction is whether or not it’s included in a triangle.

For the graph classification task, detailed statistics of the
bioinformatics and social network datasets are listed in Table
5. All of the datasets are available at https://ls11-www.cs.tu-
dortmund.de/staff/morris/graphkerneldatasets.

In all datasets, if the original node features are provided,
we use the one-hot encodings of them as input.

Table 5: Dataset Description

Datasets Graphs Classes Features Node Avg. Edge Avg.

MUTAG 188 2 7 17.93 19.79
PROTEINS 1113 2 4 39.06 72.81
ENZYMES 600 6 6 32.63 62.14
NCI1 4110 2 23 29.87 32.30
RE-B 2000 2 - 429.63 995.51
RE-M5K 4999 5 - 508.52 1189.75

Details of Experiment Settings
For all experiments, we perform 10-fold cross-validation
and repeat the experiments 10 times for each dataset and
each model. To get a final accuracy for each run, we select
the epoch with the best cross-validation accuracy averaged
over all 10 folds. The average accuracies and their standard
deviations are reported based on the results across the folds
in all runs.

In our Additive and Scaled models, all MLPs have 2 layers
with ReLU activation.

In the GAT variants, we use 2 GNN layers and a hid-
den dimensionality of 32. The negative input slope of
LeakyReLU in the GAT attention mechanism is 0.2. The
number of heads in multi-head attention is 1.

In the GAT-GC variants, we use 4 GNN layers. For the
Readout function in all models, we use sum for bioinfor-
matics datasets and mean for social network datasets. We ap-
ply Batch normalization (Ioffe and Szegedy 2015) after ev-
ery hidden layers. The hidden dimensionality is set as 32 for
bioinformatics datasets and 64 for social network datasets.
The negative input slope of LeakyReLU in the GAT atten-
tion mechanism is 0.2. We use a single head in the multi-
head attention in all models.

All models are trained using the Adam optimizer (Kingma
and Ba 2018) and the learning rate is dropped by a factor
of 0.5 every 400 epochs in the node classification task and
every 50 epochs in the graph classification task. We use an
initial learning rate of 0.01 for the TRIANGLE-NODE and
bioinformatics datasets and 0.0025 for the social network
datasets. For the GAT variants, we use a dropout ratio of 0
and a weight decay value of 0. For the GAT-GC variants on
each dataset, the following hyper-parameters are tuned: (1)
Batch size in {32, 128}; (2) Dropout ratio in {0, 0.5} after
dense layer; (3) L2 regularization from 0 to 0.001. On each
dataset, we use the same hyper-parameter configurations in
all model variants for a fair comparison.

For the results of the baselines for comparison, we use the
results reported in their original works by default. If results
are not available, we use the best testing results reported
in (Xinyi and Chen 2019; Ivanov and Burnaev 2018).


