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Abstract

Graph Convolutional Network (GCN) has attracted intensive
interests recently, with a major limitation that it often can-
not benefit from using a deep architecture, while traditional
CNN and an alternative Graph Neural Network architecture,
namely GraphCNN, generally achieve better quality with a
deeper neural architecture. How can we explain this phe-

nomenon? In this paper, we take the first step towards an-
swering this question. We first conduct a systematic empirical
study on the accuracy of GCN, GraphCNN, and ResNet-18
on 2D images and identified relative importance of different
factors in the architectural design. This inspired a novel theo-
retical analysis on the mutual information between the input
and the output after l GCN/ GraphCNN layers. We identified
regimes in which GCN suffers exponentially fast “informa-
tion lose”, and GraphCNN has a better capability of preserv-
ing sufficient information at the output layer.

Introduction
Extending convolutional neural networks (CNN) over im-
ages to graphs has attracted intense interest recently. One
early attempt is the GCN model proposed by Kipf and
Welling (2016a). When applying GCN to many practical
applications, however, one discrepancy lingers — although
traditional CNN usually gets higher accuracy when it goes
deeper, GCN, as a natural extension of CNN, does not seem
to benefit much from going deeper by stacking multiple lay-
ers together.

This phenomenon has been the focus of multiple recent
papers (Li, Han, and Wu, 2018; Li et al., 2019; Oono and
Suzuki, 2019). On the theoretical side, Li, Han, and Wu
(2018) and Oono and Suzuki (2019) identified the problem
as oversmoothing — under certain conditions, when multi-
ple GCN layers are stacked together, the output will con-
verge to a region that is independent of weights and inputs.
On the empirical side, Li et al. (2019) showed that many
techniques that were designed to train a deep CNN, e.g., the
skip connections in ResNet (He et al., 2016a), can make it
easier for GCN to go deeper. Yet two questions remain: Does

there exist a set of techniques that make GCN at least as

powerful (in terms of accuracy) as state-of-the-art CNN? If
so, can we prove that the oversmoothing problem of GCN

will cease to exist after these techniques are implemented?

In this paper, we conduct a systematic empirical study
and a novel theoretical analysis as the first step to answer-
ing these questions, by putting GCN and CNNs on the same
ground.
Pillar 1. Empirical Study Our work builds upon
GraphCNN Such et al. (2017). Let A be adjacency matrix
of a graph, and W be learned weight matrix. For an input
X, the GCN layer response has the form AXW, whereas
in GraphCNN, the adjacency matrix A is decomposed into
additive matrices: A =

P
i Ai and the layer response is of

the form
P

i AiXWi.
Under one decomposition strategy, a GraphCNN layer re-

covers a CNN layer (We refer to Section A in the supplemen-
tary material for more details). Although it is not surprising
that GraphCNN can match the accuracy of CNN under a
certain decomposition strategy, we ask: How fundamental is

this decomposition step? Can GCN match the accuracy of

ResNet empirically if we integrate all standard techniques

and tricks, such as stride, skip connection, and average pool-

ing?

In our empirical study, we convert CIFAR-10 images
into an equivalent graph representation, and compare GCN,
GraphCNN, and ResNet with the same depths. For each
model, we study the impact of (1) stride, (2) skip connec-
tion, and (3) pooling.

Although stride, skipped connection and pooling signif-
icantly improve the accuracy of GCN as formerly noted
by Li et al. (2019), we observe that the decomposition step

in GraphCNN is fundamental and sufficient for GCN to
achieve state-of-the-art accuracy of ResNet.
Pillar 2. Theoretical Analysis Motivated by this empir-
ical result, we then focus on understanding the theoretical
property of the decomposition step in GraphCNN. Specif-
ically, we ask: Can we precisely analyze the benefits in-

troduced by graph decomposition in GraphCNN, compared

with GCN?

This question poses three challenges that existing analy-
ses on GCN oversmoothing (Li, Han, and Wu, 2018; Oono
and Suzuki, 2019) cannot handle: (1) While both frame-
works reason about how closely the GCN output after l lay-
ers will approach a region that is independent of weights and
inputs, to answer our question we need to reason not only



geometrically but also more direct notion of utility — be-
ing close to a bad region geometrically is definitely bad, but
being far away from it does not necessarily mean it is bet-

ter (See Section 4). (2) While both theoretical frameworks
provide an upper bound of the distance, however, the upper
bound itself is not enough to answer our question. (3) None
of the existing analysis on GCN considered the impact of
graph decomposition in GraphCNN.

In this paper, we conduct a theoretical analysis that di-
rectly reasons about the mutual information between the out-
put after l layers and the input. We show that under certain
conditions, (1) the MI (Mutual Information) after l GCN
layers with (parametric) ReLUs (1.a) converges to 0 expo-
nentially fast, (1.b) perfectly preserves all information in the
input, (2) the MI after l GraphCNN layers with (parametric)
ReLUs perfectly preserves all information in the input. More

importantly, compared with GCN, GraphCNN perfectly pre-

serves information at its output in a much larger regime of

weights, largely because of the decomposition structure in-

troduced in GraphCNN.

Putting these results together, we provide a precise theo-
retical description of the power of graph decomposition in-
troduced in GraphCNN. To the best of our knowledge, this
is one of the first results of its form.
Moving Forward. Our analysis brings up a natural ques-
tion: “How can we choose the decomposition strategy in

GraphCNN? Moreover, can we learn it automatically?” We
believe that this offers an interesting direction for further
work and hope that this paper can help to facilitate future
endeavours in this direction.

Related Work
Deep neural networks on graphs has attracted intense inter-
est in recent years. Motivated by the success of (Krizhevsky,
Sutskever, and Hinton, 2012), (Bruna et al., 2013) mod-
els the filters as learnable parameters based on the spec-
trum of the graph Laplacian. ChebNet (Defferrard, Bres-
son, and Vandergheynst, 2016) reduces computation com-
plexity by approximating the filter with Chebyshev polyno-
mials of the diagonal matrix of eigenvalues; Graph Convo-
lutional Network (GCN) (Kipf and Welling, 2016b) goes
further, introducing a first-order approximation of Cheb-
Net and making several simplifications. GCN and its vari-
ants have been widely applied in various graph-related ap-
plications, including semantic relationship recognition (Xu
et al., 2017), graph-to-sequence learning (Beck, Haffari,
and Cohn, 2018), traffic forecasting (Li et al., 2017) and
molecule classification (Such et al., 2017). Although GCN
and its variants have achieved promising results on vari-
ous graph applications, it cannot obtain better performance
with the increase of network depths. For instance, Kipf and
Welling (2016a) show that a two-layer GCN would achieve
peak performance, and stacking more layers cannot bring
any improvement. Rahimi, Cohn, and Baldwin (2018) de-
velop a highway GCN for user geolocation in social me-
dia graphs, in which highway gates were added between
layers to facilitate gradient flow. Even with these gates,
the authors demonstrate performance degradation after six
layers of depth. This phenomena is counter-intuitive and

blocks GCN-style models from making further improve-
ments. There are plenty of results (Zhou et al., 2018; Wu
et al., 2019b) trying to figure out the reasons and provide
workarounds. Wu et al. (2019a) hypothesize that nonlinear-
ity between GCN layers is not critical, which essentially
implies that the deep GCN model lacks sufficient expres-
sive ability because it is a linear model. In addition, Li et
al. (2019) show that the techniques such as skip connection
in ResNet can help GCN to train deeper; however, they do
not provide an empirical study of whether this modification
is enough for GCN to match the quality of state-of-the-art
CNNs (e.g., ResNet) on images.

Li, Han, and Wu (2018) show that GCN is a special form
of Laplacian smoothing, and under certain conditions, the
features of vertices within each connected component of
the graph will converge to the same values by repeatedly
applying Laplacian smoothing. Therefore, the oversmooth-
ing property of GCN will make the features indistinguish-
able and thus hurt the classification accuracy. Oono and
Suzuki (2019) also conduct more engaged theoretical anal-
ysis. In this paper, however, we directly reason about mu-
tual information and we are more interested in understand-
ing the decomposition structure in GraphCNN instead of the
oversmoothing property of GCN. Our work also builds on
Such et al. (2017), which proposes GraphCNN that con-
sists of multiple adjacency matrices. As shown by Such et
al. (2017), this formulation is more expressive than CNN.
Here we use the same framework but focus on providing a
novel empirical study and theoretical analysis to understand
the behavior of GCN and the power of graph decomposition
in GraphCNN.

Preliminaries

Hereafter, scalars will be written in italics, and matrices in
bold upper-case letters.

Let G = (V,E) be an undirected graph with a vertex set
vi 2 V and set of edges ei,j 2 E. We refer to individual
elements of vi as nodes, and xi 2 Rd associated with each
vi as features. We denote the node feature attributes by X 2
Rn⇥d whose rows are given by xi. The adjacency matrix
A (weighted or binary) is derived as an n ⇥ n matrix with
(A)i,j = ei,j if ei,j 2 E, and (A)i,j = 0 elsewhere.

We define the following operator f : Rn ! Rn that is
composed of (1) a linear function parameterized by the ad-
jacency matrix A and a weight matrix at layer i+1 W(i+1),
and (2) an activation function as parametric ReLU such that
� : x ! max(x, ax) with a 2 (0, 1) that applies follow-
ing the linear transformation of previous layer element-wise.
Given the input matrix X, let Y(0) = X. Each layer of
the network maps it to an output vector of the same shape:
Y(i+1) = fA,W(i+1)(Y(i)) = �(AY(i)W(i+1)).

Let now A 2 Rn⇥n be decomposed into K additive
n ⇥ n matrices such that A =

PK
k=1 Ak. The layer-

wise propagation rule becomes Y(i+1) = g
Ak,W

(i+1)
k

(X) =

�
�PK

k=1 AkXW(i+1)
k

�
.



Empirical Study
In this section, we conduct a systematic empirical study to
understand the impact of different types of layers and dif-
ferent techniques/tricks. We observe that (1) the techniques
designed for CNN can also improve the accuracy of GCN
significantly, which is consistent with previous work (Li et
al., 2019); however, (2) the graph decomposition step intro-
duced in GraphCNN is a fundamental step whose impact
cannot be offset, even if we apply all techniques. This moti-
vates our theoretical study in the next section which tries to
theoretically describe the impact of graph decomposition.
Experimental Setup
We constructed an equivalent graphical representation of the
CIFAR-10 images treating each pixel as a node in the graph,
and the surrounding pixels in 9 directions (including itself)
as neighboring nodes in order to mimic the behavior of a 3⇥
3 convolution. Consisting of 60000 images of 32⇥32 pixels
with RGB channels: each CIFAR-10 image corresponds to a
graph with 1024 (32⇥ 32) vertices, each of which connects
to the 8 neighbors plus a self-connection.

Noting that (1) a deep CNN achieves state-of-the-art qual-
ity for image classification, whereas a deep GCN cannot
benefit from deep architectures; (2) a deep GraphCNN, with
all optimization tricks and the right graph decomposition
strategy, also matches the accuracy of state-of-the-art CNNs
as it has an equivalent expressive power as that of CNN, The

goal of our study is then to understand the relative impact of

graph decomposition and useful tricks designed for CNNs.

Model Architectures. We compare three model architec-
tures: CNN, GCN, and GraphCNN:

1. CNN (Krizhevsky, Sutskever, and Hinton, 2012) The
architecture is stacked by 3⇥3 convolution layers. The input
channel of the first CNN layer is 3 (including RGB) and
the output channel is set as 128. All the input and output
channels of the succeeding convolution layers are 128.

2. GCN (Kipf and Welling, 2016b) We treat all edges in
the graph equally and leverage a similar network architec-
ture as CNN. The only difference is that we replace each
3⇥ 3 convolution layer with a GCN layer.

3. GraphCNN (Such et al., 2017) We replace each con-
volution layer with a GraphCNN layer. Specifically, we
decompose the adjancency matrix A into 9 submatrices
A1,A2, . . . ,A9. For two arbitrary pixels (i, j) and (m,n),
we set the edges e(i, j,m, n) = 1 of each submatrix Ai

when the following equation holds; otherwise the corre-
sponding edges are set as zero in that matrix. An illustration
and further details are provided in Figure 4 and Section A in
the supplementary material.

For each of these three architectures, we focus on the fol-
lowing techniques:

1. Original. Applying (graph) convolution operations in
each layer with stride = 1 and with no skip of connections,
we reshape the 2D image to a 1D embedding vector and add
a fully connected layer with Softmax activation on the top
to generate classification results at the last layer, where all
hidden size is set to 128.

2. Stride. The stride of each layer is aligned with ResNet-
18. Specifically for the 9th, 13th, and 17th layer, we apply

stride = 2, and both the length and width of the original
image will be halved. We follow a common strategy with
the hidden size is doubled upon a stride operation (original
hidden size = 128). To imitate the stride behavior for GCN
and GraphCNN, we perform convolution first, then choose
the nodes that will be reserved by the strides to construct a
new grid graph corresponding to the smaller image.

3. Stride+Skip. We add skip connections between the
corresponding layers following the standard architecture of
ResNet-18 (See XXX for more details). Other configura-
tions are kept the same with the Stride setting.

4. Stride+Skip+AP. The network architecture of the 17-
layer CNN looks similar to ResNet-18 except that it does not
adopt average pooling before the final fully connected layer.
To align with ResNet-18, we also compare the models in the
architectures with average pooling on the top such that the
17-layer CNN exactly matches the network architecture of a
standard ResNet-18.

We used the standard data argument method in all experi-
ments, including random cropping and random flipping (Si-
monyan and Zisserman, 2014). All experiments were trained
using SGD with Momentum (Ruder, 2016), where the mo-
mentum ratio was set as 0.9 and weight decay factor as
1 ⇥ 10�5. We chose the best learning rate via grid search
and initialized the network parameters using Xavier (Glorot
and Bengio, 2010). Similar to a standard ResNet (He et al.,
2016b), we did not use dropout in the experiments. All ex-
periments were conducted on a Tesla P100 with 16GB GPU
memory.

Results and Discussions
We observe from the results demonstrated in Figure 1 and
Figure 2 that GraphCNN is as powerful as CNN, even with-
out pooling layers. For architecture depth being 1, CNN
and GraphCNN significantly outperform GCN. As the depth
increases, GCN still underperforms GraphCNN. However,
without any tricks designed for CNN (Figure 1.a&2.a), when
the depth becomes greater than 9 layers, GCN gets no bet-
ter, while the CNN and GraphCNN counterparts still bene-
fit from deeper architectures. GCN can seemingly go deep
to some extent, but the optimal depth and accuracy being
smaller.Stride is then set to 2 for some layers following
ResNet (Figure 1.b&2.b), and the performance of all mod-
els has been improved. Particularly for GCN, the test perfor-
mance has been improved from 57.1% to 60.2%. Moreover,
models exhibit similar relative trends as before. We further
add skip connections (Figure 1.c&2.c) and observe that the
residual connections do have a positive effect for training a
deep GCN network, improving the test score from 60.2% to
64.4%. However, it is still well behind the state-of-the-art
results from CNN and GraphCNN. Finally, we add an aver-
age pooling layer at the end to fully match the architecture
of a state-of-the-art ResNet (Figure 1.d&2.d). The average
pooling layer provides improvement on GCN. Yet, a signifi-
cant gap between GCN and GraphCNNs/CNNs exists — the
GCN model suffers from severe overfitting, obtaining only
72.8% accuracy with a 17-layer architecture, even though
the training accuracy achieved 94.0%.

We conclude that the graph decomposition introduced in
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Figure 1: Testing Accuracy on CIFAR-10.
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Figure 2: Training Accuracy on CIFAR-10.
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Figure 3: (a) The neural network architecture that illustrates
the mutual information decay after three GCN layers or three
GraphCNN layers. Intuitively, the decoder estimates the MI
in a similar way as MINE. (b/c) Reconstructions of test im-
ages from the output after 3 GCN/GraphCNN layers. The
first row is the input images and the second row is the output
images of the decoder.

GraphCNN is fundamental: despite the desirable tricks of-
ten used for a deep ResNet architecture. GCN still has an
almost 20 percent point gap compared with CNN, whereas a
decomposition strategy lifts the accuracy to that of CNN.

Empirical Information Loss
To compare mutual information between the input and out-
put layers of GCN as well as GraphCNN, we adapt a
methodology similar to Belghazi et al. (2018) and the ar-
chitecture illustrated in Figure 7(a) as the proxy of the MI
after l layers. In order to measure the MI after l layers, we
take the first l GCN/GraphCNN layers and add a fully con-
nected layer that shrinks the hidden unit size, followed by
a decoder, a single fully connected layer, that reconstructs
the hidden unit size to the input. We measure the reconstruc-
tion error modeled by l1 loss (Janocha and Czarnecki, 2017),
and train the network end-to-end and optimize the hyper-
parameters by Random Search (Bergstra and Bengio, 2012).

Figure 7(b, c) illustrates the reconstruction results after
l = 3 layers. The overall reconstruction error of GraphCNN
(0.781) outperforms that of GCN (0.818) significantly. The
GCN reconstruction results clearly show the over-smoothing
phenomenon, previously introduced by (Li, Han, and Wu,
2018; Oono and Suzuki, 2019). GraphCNN is, on the other
hand, able to preserve significantly more information (if the
training objective is to maintain as much information as pos-
sible).

Decomposition Strategy Matters
Although fully answering the question How does a differ-

ent decomposition strategy impact the accuracy? in a single
paper would be a forlorn hope, we note the fascinating re-
sult from a simple experiment. We tested GraphCNN with
three random decomposition strategies, and observed that
the accuracy with a 17-layer GraphCNN drops significantly.
Specifically, in the Stride+Skip+AP setting, the accuracy
drops from 93.2% to 83.8% (the average performance of
three randomly decomposed GraphCNN), which indicates
that the decomposition strategy does have a significant im-
pact to the final performance. However, interestingly, the
randomly decomposed GCN still outperforms the vanilla
GCN layers (72.8% accuracy).
Moving Forward. We believe that the analysis on
GraphCNN with a random graph decomposition, and its
connection to random features are immediate future direc-
tions. Another interesting future direction would be to de-
sign a system abstraction to allow users to specify graph de-
compositions or even use some automatic approaches simi-
lar to NAS (Zoph and Le, 2016) to automatically search for
the optimal graph decomposition strategies for GraphCNN.

Theoretical Analysis
The dramatic difference between GCN and GraphCNN can
look quite counter-intuitive at the first glance. Why can a

simple decomposition of the adjacency matrix A have such a

significant impact on both the accuracy and the preservation

property of mutual information? In this section, we provide
a theoretical analysis of the mutual information between the
lth layer of either network and the input.

Our theoretical analysis suggests that GraphCNN has a
better data processing capability than that of GCN under the
same characteristics of layer-wise weight matrices, justify-
ing the observation that GraphCNN overcomes the overcom-

pression introduced by GCN as we pile up more layers.
GCN
Here we investigate the regimes where GCN (1) does not
benefit from going deeper, or (2) is guaranteed to preserve
all information at its output, by analyzing the behaviour of
mutual information between input and output layer of the



network at different depths. We relegate all the proofs to the
Section B in the supplementary material.

Throughout the paper, we denote the vectorized input
X and lth layer output Y(l) by x and y(l), respectively.
For some n-dimensional real random vectors x and y de-
fined over finite alphabets Xn and ⌦n, we denote entropy
of x by H(x) and mutual information between x and y by
I(x;y). Moreover, information loss is defined by L(y(l)) =
H(x|y(l)), i.e., relative entropy of x with respect to y(l). The
characteristics of the layer-wise propagation rule of GCN
lead us to the following result:
Lemma 1 For GCNs with parametric ReLU activations
� : x ! max(x, ax) with a 2 (0, 1), let P(i+1) be a
diagonal matrix whose nonzero entries are in {a, 1} such
that (P(i+1))j,j = 1 if

�
(W(i+1) ⌦ A)y(i)

�
j
� 0, and

(P(i+1))j,j = a elsewhere. y(l) can be written as

y(l) = P(l)(W(l) ⌦A) · · ·P(2)(W(2) ⌦A)P(1)(W(1) ⌦A)x.

Further, our theory predicts the information transferred
across the network exponentially decays to zero as follows.
Theorem 1 Let GCN follows the propagation rule intro-
duced earlier. Suppose �A = maxj �j(A) and �W =
supi2N+ maxj �j(W(i)). If �A�W < 1, then I(x;y(l)) =
O
�
(�A�W)l

�
, and hence liml!1 I(x;y(l)) = 0. In par-

ticular Theorem 1 also holds for traditional ReLU with
f : x ! x+ = max(0, x).

There are also regimes in which GCN will perfectly pre-
serve the information, stated as follows:
Theorem 2 Following Theorem 1, let now �A =
minj �j(A) and �W = infi2N+ minj �j(W(i)). If
a�A�W � 1, then 8l 2 N+ L(y(l)) = 0.
Effect of Normalized Laplacian: The results obtained
above holds for any adjacency matrix A 2 Rn⇥n. The un-
normalized A, however, comes with a major drawback as
changing the scaling of feature vectors. To overcome this
problem, A is often normalized such that its rows sum to
one. We then adopt our results to GCN with normalized
Laplacian whose largest singular value is one. We have the
following result:
Corollary 1 Let D denote the degree matrix such that
(D)j,j =

P
m(A)j,m, and L be the associated normalized

Laplacian L = D�1/2AD�1/2. Suppose GCN uses the fol-
lowing mapping Y(i+1) = �(LY(i)W(i)). Let also �W =
supi maxj �j(W(i+1)). If �W < 1, then I(x;y(l)) =
O
�
�l
W

�
, and hence liml!1 I(x;y(l)) = 0.

GraphCNN
Similarly as in Lemma 1, y(l) can be reduced to y(l) =

P(l)
PK

kl=1(W
(l)
kl
⌦Akl) · · · (W

(2)
k2

⌦Ak2)(W
(1)
k1

⌦Ak1)x

for a diagonal matrix P(i+1) such that (P(i+1))j,j = 1 ifPK
ki+1=1(W

(i+1)
ki+1

⌦ Aki+1)y
(i) � 0, and (P(i+1))j,j = a

otherwise. We obtain the following result for GraphCNN:
Theorem 3 Let �(i) denotes the maximum sin-
gular value of P(i)

PK
ki=1(W

(i)
ki

⌦ Aki) such
that �(i) = maxj �j

�
P(i)

P
ki
(W(i)

ki
⌦ Aki)

�
. If

supi2N+ �(i) < 1, then I(x;y(l)) = O
�
(supi2N+ �(i))l

�
,

and hence liml!1 I(x;y(l)) = 0. Theorem 3 describes
the condition on the layer-wise weight matrices Wk where
GraphCNN fails in capturing the feature characteristics
at its output in the asymptotic regime. We then state the
second result for GraphCNN which ensures the information
loss L(y(l)) = 0 as follows.
Theorem 4 Consider the propagation rule of
GraphCNN. Let �(i) denotes the minimum singu-
lar value of P(i)

PK
ki=1(W

(i)
ki

⌦ Aki) such that
�(i) = minj �j

�
P(i)

PK
ki=1(W

(i)
ki

⌦Aki)
�
. If infi �(i) � 1,

then 8l 2 N+ we have L(y(l)) = 0.
In order to understand the role of decomposition in

GraphCNN, we revisit the conditions on full information
loss (I(x;y(l)) = 0) and full information preservation
(L(y(l)) = 0) for a specific choice of decomposition, which
will later be used to demonstrate the information processing
capability of GraphCNN.
Corollary 2 Suppose the singular value decomposition
of A is given by A = UASVT

A, and each Ak is
set to Ak = UASkVT

A where (Sk)m,m = �m(A)
if k = m and (Sk)m,m = 0 elsewhere. We then
have the following results: For �Ak = �k(A) and
�Wk = supi2N+ maxj �j(W

(i)
k ), i.e., if �Ak�Wk < 1

8k = {1, 2, . . . , n}, then liml!1 I(x;y(l)) = 0.

Corollary 3 Let �Wk = infi2N+ minj �j(W
(i)
k ). If

a�Ak�Wk � 1, 8k 2 {1, 2, . . . , n}, then L(y(l)) = 0 8l 2
N+. While the universally optimal decomposition strategy is
unknown and its existence is debatable, the choice of decom-
position introduced above will later highlight the dramatic
difference between the capabilities of GCN and GraphCNN.

Discussion: GCN vs. GraphCNN
Consider the setting where A is fixed and same for both
GCN and GraphCNN. The discussions below will revolve
around the regime of singular values of layer-wise weight
matrices, W(i)

GCN and W(i)
GraphCNN where the information loss

L(y(l)) = 0, for the specific decomposition strategy used in

Corollary 3. Recall from Theorem 2 and Corollary 2 that
while GCN requires singular values of all weight matri-
ces W(i)

GCN to compensate for the minimum singular value
of A such that minj �j(W

(i)
GCN) � 1

amink �k(A) to ensure
L(y(l)) = 0, GraphCNN relaxes this condition by intro-
ducing a milder constraint. That is, the singular values of
its weight matrices W(i)

k, GraphCNN need to compensate only
for the singular value of their respective component Ak,
that is, minj �j(W

(i)
k, GraphCNN) � 1

a�k(A) guarantees that
L(y(l) = 0. In other words, singular values of weight matri-
ces of GraphCNN are lower bounded by much smaller val-
ues than that of GCN such that information can be fully
recovered at the output layer, hence L(y(l)) = 0 yields
for GraphCNN in a much larger regime of weights, hence
GraphCNN is better capable of going deeper than GCN by
preserving more information about the node features at its
output.
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Supplementary Material
A. Detailed Model Architectures
We compare three model architectures: CNN, GCN, and GraphCNN:

1. CNN (Krizhevsky, Sutskever, and Hinton, 2012) The architecture is stacked by 3 ⇥ 3 convolution layers. The input
channel of the first CNN layer is 3 (including RGB) and the output channel is set as 128. All the input and output channels of
the succeeding convolution layers are 128.

2. GCN (Kipf and Welling, 2016b) We treat all edges in the graph equally and leverage a similar network architecture as
CNN. The only difference is that we replace each 3⇥ 3 convolution layer with a GCN layer.

3. GraphCNN (Such et al., 2017) We replace each convolution layer with a GraphCNN layer, which is decomposed as
illustrated in Figure 4. Specifically, we decompose the adjancency matrix A into 9 submatrices A1,A2, . . . ,A9. For two
arbitrary pixels (i, j) and (m,n), we set the edges e(i, j,m, n) = 1 of each submatrix Ai when the following equation holds;
otherwise the corresponding edges are set as zero in that matrix: (1) i = j and m = n; (2) i+ 1 = j and m = n; (3) i = j + 1
and m = n; (4) i = j and m+1 = n; (5) i = j and m = n+1; (6) i+1 = j and m+1 = n; (7) i+1 = and m = n+1; (8)
i = j + 1 and m+ 1 = n; (9) i = j + 1 and m = n+ 1.

For each of these three architectures, we focus on the following techniques:
1. Original. Applying (graph) convolution operations in each layer with stride = 1 and with no skip of connections, we

reshape the 2D image to a 1D embedding vector and add a fully connected layer with Softmax activation on the top to generate
classification results at the last layer, where all hidden size is set to 128.

2. Stride. The stride of each layer is aligned with ResNet-18. Specifically for the 9th, 13th, and 17th layer, we apply stride =
2, and both the length and width of the original image will be halved. We follow a common strategy with the hidden size is
doubled upon a stride operation (original hidden size = 128). To imitate the stride behavior for GCN and GraphCNN, we
perform convolution first, then choose the nodes that will be reserved by the strides to construct a new grid graph corresponding
to the smaller image.

3. Stride+Skip. We add skip connections between the corresponding layers (i.e., 1st ! 3rd, 3rd ! 5th, 5th ! 7th,
7rd ! 9th, 9rd ! 11th, 11st ! 13rd, 13rd ! 15th, 15rd ! 17th) following the standard architecture of ResNet-18 (See
XXX for more details). Other configurations are kept the same with the Stride setting.

4. Stride+Skip+AP. The network architecture of the 17-layer CNN looks similar to ResNet-18 except that it does not adopt
average pooling before the final fully connected layer. To align with ResNet-18, we also compare the models in the architectures
with average pooling on the top such that the 17-layer CNN exactly matches the network architecture of a standard ResNet-18.
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Figure 4: Illustration of one layer in GCN and one layer under one decomposition strategy in GraphCNN. A is the adjacency
matrix, X is the input, and W (Wi) are learnable weights. In GraphCNN, A =

P
i Ai and Ai \ Aj = ; for i 6= j. In our

experiments and analysis, we follow the original paper and normalize A in GCN.



B. Proofs
We begin by introducing our notation. Hereafter, scalars will be written in italics, vectors in bold lower-case and matrices in
bold upper-case letters. For an m⇥ n real matrix A, the matrix element in the ith row and jth column is denoted as (A)ij , and
ith entry of a vector a 2 Rm by (a)i. Also, jth column of A is denoted by (A)j , or (A)[i=1,2,...,m],j . Similarly, we denote ith
row by (A)i,[j=1,2,...,n]. The inner product between two vectors (A)i and (A)i0 is denoted by h(A)i, (A)i0i.

In the next section, we will first introduce the outline of proofs.

Outline of the Proof: Following Lemma 1, the next key step in proving above results is as follows.

Lemma 2 Consider the singular value decomposition U⇤VT = P(l)(W(l) ⌦ A)...P(2)(W(2) ⌦ A)P(1)(W(1) ⌦ A) such
that (⇤)j,j = �j(P

(l)(W(l) ⌦A)...P(2)(W(2) ⌦A)P(1)(W(1) ⌦A)), and let x̃ = VTx. We have

I(x;y(l))
(1)
= I(x̃;⇤x̃)

(2)
 H(x̃)

(3)
= H(x) (1)

where (1, 3) results from that U and V are invertible, and equality holds in (2) iff ⇤ is invertible, i.e., singular values of
P(l)(W(l) ⌦A)...P(2)(W(2) ⌦A)P(1)(W(1) ⌦A) are nonzero.

Theorem 1, 2, 3 and 4 can easily be inferred from Lemma 2. That is, I(x;y(l)) = 0 iff maxj(⇤l)j,j = 0 in the asymptotic
regime. Similarly, iff minj(⇤l)j,j > 0, I(x;y(l)) is maximized and given by H(x), hence L(y(l)) = 0 .

Our results presented so far focus on covering the edge cases: I(x;y(l)) = 0 or L(y(l)) = 0. While our primary goal is to
understand why GraphCNN has a better capability of going deep than that of GCN, we note several points about Lemma 2 in a
viewpoint of entropy or uncertainty:

1. Rigorous theoretical guarantees quantifying the amount of information preserved across the network is not straightforward,
and further requires the knowledge on the statistical properties of node features. Despite its simplicity, Lemma 2 forms a
direct link from the information processing capability of the network to the characteristics of the weights and entropy of the
nodes, xi,

2. Whereas the compression and generalization capability of the network are closely related, we emphasize here that our analysis
here is to understand why and when GraphCNN overcome the overcompression introduced by GCN. In future, we plan to
investigate this via the information bottleneck principle,

3. In our formulation, we omit the effect of perturbation in the input nodes considering our discussion will remain valid under
the same perturbation characteristics,

4. If all node features xi, for instance, have similar entropy, I(x;y(l)) roughly linearly scales with the rank of P(l)(W(l) ⌦
A)...P(2)(W(2) ⌦A)P(1)(W(1) ⌦A),

5. Lifting up singular values of layer-wise weight matrices are beneficial for better data processing in a viewpoint of information
theory. In the next section, we will demonstrate through edge cases how GraphCNN can overcome overcompression of GCN
by achieving singular value lifting.

Proofs: We vectorize a matrix A by concatenating its columns such that

vec(A) =

2

664

(A)1
(A)2

...
(A)n

3

775

and denote it by vec(A). For matrices A 2 Rm⇥n and B 2 Rk⇥l, we denote the kronecker product of A and B by A ⌦ B
such that

A⌦B =

2

64
(A)11B . . . (A)1nB

...
. . .

...
(A)m1B . . . (A)mnB

3

75 .

Note that A⌦B is of size mk ⇥ nl.
We moreover denote the floor function and modulo operation by b cand mod , respectively. Finally, we denote the jth

largest singular value of a matrix A by �j(A).
Next, we list some existing results which we require repeatedly throughout this section.



Preliminaries.
1. Suppose A 2 Rm⇥n, B 2 Rn⇥k and C 2 Rk⇥p. We have

vec(ABC) = (CT ⌦A) vec(B). (2)

2. Let A 2 Rm⇥n, B 2 Rn⇥k and C 2 Rm0⇥n0
, D 2 Rn0⇥k0

(AB⌦CD) = (A⌦C)(B⌦D). (3)

3. For A 2 Rm⇥m and B 2 Rn⇥n, singular values of A⌦B is given by �i(A)�j(B), i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
4. Let x and y be an n-dimensional random vector defined over finite alphabets Xn and ⌦n, respectively. We denote entropy

of x by H(x) and mutual information between x and y by I(x;y). We list the followings:

H(f(x))
(a)
 H(x)

I(x; f(y))
(b)
 I(x;y)

(4)

such that f : R ! R is some deterministic function, and equality holds for both inequalities iff f is bijective.

Proofs. The proofs are listed below in order.

Proof of Lemma 1. Applying vectorization to the GCN layer-wise propagation rule introduced earlier, we have

y(i+1)=vec
�
�(AY(i)W(i+1))

�

y(i+1) (a)
= �

�
vec(AY(i)W(i+1))

�

y(i+1) (b)
= �

�
((W(i+1))T ⌦A)y(i)

�

y(i+1) (c)
= P(i+1)((W(i+1))T ⌦A)y(i)

(5)

where (a) follows from the element-wise application of �, (b) follows from (2), and (c) results from introducing a diagonal
matrix P(i+1) with diagonal entries in {a, 1} such that (P(i+1))j,j = 1 if

�
(W(i+1) ⌦ A)y(i)

�
j
� 0, and (P(i+1))j,j = a

elsewhere.
By a recursive application of (5c), we have

y(l) = P(l)(W(l) ⌦A) . . .P(2)(W(2) ⌦A)P(1)(W(1) ⌦A)x.

We drop the transpose from W(i+1) in order to avoid cumbersome notation. The singular values of W(i+1) are our primary
interest thereof our results still hold.

Proof of Lemma 2. Let ⌃ be a n ⇥ n matrix with singular value decomposition ⌃ = U⇤VT . Inspired by the derivation for
the capacity of deterministic channels introduced by Telatar (1999), we derive the following

I(x;⌃x) = I(x;U⇤VTx)
(a)
= I(x;⇤VTx)

I(x;⌃x)
(b)
= I(VTx;⇤VTx)

(c)
= I(x̃;⇤x̃).

(6)

(a) and (b) are a result of (4b) and that U and V are unitary hence invertible (bijective) transformations. (c) follows from the
change of variables x̃ = VTx.

Note that I(x̃;⇤x̃)  H(⇤x̃). Using (4a), we further have H(⇤ỹ)  H(x̃) = H(x) which completes the proof.

We recall that we are interested in regimes where I(x;y(l)) = 0 and L(y(l)) = 0. In Lemma 2, we show that I(x;y(l)) = 0 if
maxj �j(P(l)(W(l)⌦A) · · ·P(2)(W(2)⌦A)P(1)(W(1)⌦A)) = 0, and maximized (and given by H(x)) when P(l)(W(l)⌦
A) · · ·P(2)(W(2) ⌦ A)P(1)(W(1) ⌦ A) is invertible. Therefore, maximum and minimum singular values of P(l)(W(l) ⌦
A) · · ·P(2)(W(2) ⌦A)P(1)(W(1) ⌦A) are of our interest.

Proof of Theorem 1. Let �A = maxj �j(A) and �W = supi maxj �j(W(i)). That is, given singular values of P(i) is in {a, 1},
supi maxj �j(P(i)(W(i) ⌦A)) = �A�W. We, moreover, have maxj �j(P(l)(W(l) ⌦A) · · ·P(2)(W(2) ⌦A)P(1)(W(1) ⌦
A))  (�A�W)l. Therefore, if �A�W < 1, by Lemma 2 we have I(x;y(l)) = O((�A�W)l), and liml!1 I(x;y(l)) = 0.



Proof of Theorem 2. We now denote �A = minj �j(A) and �W = infi minj �j(W(i)). Hence infi minj �j(P(i)(W(i) ⌦
A)) = a�A�W. Moreover, minj �j(P(l)(W(l) ⌦A) · · ·P(2)(W(2) ⌦A)P(1)(W(1) ⌦A)) � (a�A�W)l. If a�A�W � 1,
minj �j(Pl(W(l) ⌦A) · · ·P2(W(2) ⌦A)P1(W(1) ⌦A)) � 1 8l 2 N+, hence I(x;y(l)) = H(x) and L(y(l)) = 0 results
by Lemma 2.

Proof of Corollary 1. Let D denote the degree matrix such that (D)j,j =
P

m(A)j,m, and L be the associated normalized
Laplacian L = D�1/2AD�1/2. Due to the property of normalized Laplacian such that maxj �j(L) = 1, we have �A = 1.
Inserting this into Theorem 1, the corollary results.

Similarly as in (5), y(i+1) can be derived from the single layer response of GraphCNN as follows:

y(i+1)=vec
�
�(
X

k

AkY
(i)W(i+1)

k )
� (a)
= �(

X

k

vec(AkY
(i)W(i+1)

k )
�

y(i+1) (b)
= �(

X

k

(W(i+1)
k ⌦Ak)y

(i)�)
(c)
= P(i+1)

X

k

(W(i+1)
k ⌦Ak)y

(i)
(7)

where P(i+1) is a diagonal matrix with diagonal entries in {a, 1} with a 2 (0, 1) such that (P(i))j,j = 1 if
�P

k(W
(i+1)
k ⌦

A)y(i)
�
j
� 0, and (P(i))j,j = a otherwise.

Therefore, y(l) is given by

y(l) = P(l)
X

kl

(W(l)
kl

⌦Akl) · · ·P
(2)

X

k2

(W(2)
k2

⌦Ak2)P
(1)

X

k1

(W(1)
k1

⌦Ak1)x.

Consider (6) where ⌃ is replaced with P(l)
P

kl
(W(l)

kl
⌦Akl) · · ·P(2)

P
k2
(W(2)

k2
⌦Ak2)P

(1)
P

k1
(W(1)

k1
⌦Ak1).

We deduce the followings:

Proof of Theorem 3. Suppose �(i) denotes the largest singular value of P(i)
PK

ki=1(W
(i)
ki

⌦ Aki) such that �(i) =

maxj �j

�
P(i)

P
ki
(W(i)

ki
⌦ Aki)

�
. Following the same argument as in the proofs of Theorem 1 and 2, Lemma 2 implies

that if supi �(i) < 1, then I(x;y(l)) = O
�
(supi �

(i))l
�
, and hence liml!1 I(x;y(l)) = 0 results.

Proof of Theorem 4. We now �(i) denote the minimum singular value of P(i)
PK

ki=1(W
(i)
ki

⌦ Aki) such that �(i) =

minj �j

�
P(i)

PK
ki=1(W

(i)
ki

⌦ Aki)
�
. By Lemma 2, it immediately follows that if infi �(i) � 1, then 8l 2 N+ we have

L(y(l)) = 0.

Before we move on to the proofs of Corollary 2 and 3, we state the following lemma.

Lemma 3 Let the singular value decomposition of A 2 Rn⇥n is given by A = UASVT
A and we set each Ak to

Ak = UASkVT
A with (Sk)m,m = �m(A) if k = m and (Sk)m,m = 0 elsewhere. For such specific composition, we argue

that singular values of
P

k Wk ⌦Ak for Wk 2 Rd⇥d is given by �k(A)�j(Wk) for k = 1, 2, . . . , n and j = 1, 2, . . . , d.

Proof of Lemma 3. Let the singular value decomposition of Wk be Wk = UWkSWkV
T
Wk

. By the property of kronecker
product, we have X

k

Wk ⌦Ak =
X

k

(UWk ⌦UA)(SWk ⌦ Sk)(V
T
Wk

⌦VT
A).

Next, we define a set of nd ⇥ nd mask matrices Mk such that (Mk)i,i0 = 1 if i = i0 and i (hence i0) is of the form
i = k + (j � 1)n for j = 1, 2, . . . , d, and (Mk)i,i0 = 0 otherwise. Reminding that (Sk)m,m = �m(A) if k = m and
(Sk)m,m = 0 elsewhere, above equation can be rewritten as

X

k

Wk ⌦Ak =
X

k

(UWk ⌦UA)Mk(SWk ⌦ Sk)Mk(V
T
Wk

⌦VT
A).

In other words, the mask matrix Mk applies on the columns (rows) of UWk ⌦UA (VT
Wk

⌦VT
A) where the respective diagonal

entries of (SWk ⌦ Sk) are nonzero.
Next, we note that if k = k0, MkMk0 = Mk, and Mk and Mk0 are orthogonal for k 6= k0. This leads us to

(UWk ⌦UA)Mk(SWk ⌦ Sk)Mk(V
T
Wk

⌦VT
A) =

X

k0

(UWk0 ⌦UA)Mk0(SWk ⌦ Sk)
X

k00

(VT
Wk00 ⌦VT

A)Mk00 .



By defining Ũ =
P

k(UWk ⌦UA)Mk and Ṽ =
P

k Mk(VT
Wk

⌦VT
A) and using the above equation, we resume

P
k Wk ⌦

Ak as X

k

Wk ⌦Ak = Ũ
X

k

(SWk ⌦ Sk)Ṽ
T . (8)

Next, we will show that Ũ and Ṽ are unitary matrices through proving that ŨŨT = ŨT Ũ = I and ṼT Ṽ = ṼṼT = I. To
avoid repeating the same procedure, we will only show it for Ũ, but the same result also holds for Ṽ.

First, we show that (A.1) ŨŨT = I, and then (A.2) ŨT Ũ = I to argue that Ũ (and Ṽ) is unitary.
(A.1) We can simplify ŨŨT as

ŨŨT =
X

k

�
(UWk ⌦UA)Mk

�X

k0

�
(UWk0 ⌦UA)Mk0

�T

ŨŨT=
X

k,k0

�
(UWk ⌦UA)Mk

��
(UWk0 ⌦UA)Mk0

�T

ŨŨT (a)
=

X

k

�
(UWk ⌦UA)Mk

��
(UWk ⌦UA)Mk

�T

(9)

where (a) follows from the orthogonality of Mk and Mk0 for k 6= k0.
We will now take a closer look at

P
k

�
(UWk ⌦ UA)Mk

��
(UWk ⌦ UA)Mk

�T . The entries of summands,
�
(UWk ⌦

UA)Mk

��
(UWk ⌦UA)Mk

�T , are equivalent to inner product between the rows of (UWk ⌦UA)Mk for a fixed k. Recall
that for a fixed k, the mask matrix satisfies (Mk)i,i = 1 if k is of the form i = k + (j � 1)n for j = 1, 2, · · · , d, and
(Mk)i,i = 0 elsewhere. We now define i! and i↵ as indices such that i! = bi/nc + 1 and i↵ = mod (i, bi/nc). Similarly,
let i0! = bi0/nc+ 1 and i0↵ = mod (i0, bi0/nc).

Following above definitions, a moment of thought reveals that the nonzero entries of ith row of
�
(UWk ⌦ UA)Mk

�
is

given by (UWk)i!,[m=1,2,...,d](UA)i↵,k. We therefore investigate (ŨŨT )i,i0 i.e., the inner product between ith and i0th rows
of

�
(UWk ⌦ UA)Mk

�
summed over all k = 1, 2, . . . , n. To start, the inner product between ith and i0th rows of

�
(UWk ⌦

UA)Mk

�
is as follows

h[(UWk )i!,[m=1,2,...,d](UA)i↵,k], [(UWk )i0!,[m=1,2,...,d](UA)i0↵,k]i =
X

m

(UWk )i!,m(UA)i↵,k(UWk )i0!,m(UA)i0↵,k

=
X

m

(UWk )i!,m(UWk )i0!,m(UA)i↵,k(UA)i0↵,k = (UA)i↵,k(UA)i0↵,k

X

m

(UWk )i!,m(UWk )i0!,m.
(10)

Let now analyze the cases when (1) i 6= i0, and (2) i = i0.
Assume (1). If further i! 6= i0! , it is immediate that

P
m(UWk)i!,m(UWk)i0!,m = 0 by the fact that UWk is unitary, hence

h[(UWk )i!,[m=1,2,...,d](UA)i↵,k], [(UWk )i0!,[m=1,2,...,d](UA)i0↵,k]i = 0

For (1), if i! = i0! , we have i↵ 6= i0↵. Further,
P

m(UWk)i!,m(UWk)i0!,m = 1 and hence

h[(UWk )i!,[m=1,2,...,d](UA)i↵,k], [(UWk )i0!,[m=1,2,...,d](UA)i0↵,k]i = (UA)i↵,k(UA)i0↵,k

X

m

(UWk )i!,m(UWk )i0!,m

= (UA)i↵,k(UA)i0↵,k.

(11)

Hence, the inner product between ith and i0th rows of
�
(UWk ⌦UA)Mk

�
is given by (UA)i↵,k(UA)i0↵,k. Recalling (9), we

have (ŨŨT )i,i0 =
P

k(UA)i↵,k(UA)i0↵,k. As previously mentioned we have i↵ 6= i0↵. By the unitary property of UA, we
further have (ŨŨT )i,i0 =

P
k(UA)i↵,k(UA)i0↵,k = 0.

So far we have shown that (ŨŨT )i,i0 = 0 when i 6= i0. Let now i = i0, i.e., (2). IT follows from (10) that

(ŨŨT )i,i
(a)
=

X

k

(UA)2i↵,k

X

m

(UWk )
2
i!,m(ŨŨT )i,i

(b)
=

X

k

(UA)2i↵,k1(ŨŨT )i,i
(c)
= 1 (12)

where (a) results from that UWk is unitary, and (b) follows from that UA is unitary. Combining above arguments and (12), we
have ŨŨT = I.

(A.2) Next, we show that ŨT Ũ = I. We begin with

ŨT Ũ =
X

k

�
(UWk ⌦UA)Mk

�T �X

k0

(UWk0 ⌦UA)Mk0
�
ŨT Ũ =

X

k,k0

�
(UWk ⌦UA)Mk

�T �
(UWk0 ⌦UA)Mk0

�
. (13)



For k 6= k0,
⇣�

(UWk ⌦UA)Mk

�T �
(UWk0 ⌦UA)Mk0

�⌘

i,i0
= h

�
(UWk ⌦UA)Mk

�
i
,
�
(UWk0 ⌦UA)Mk0

�
i0
i. (14)

Note that, due to the orthogonality of Mk and Mk for k 6= k0, we further have h
�
(UWk ⌦ UA)Mk

�
i
,
�
(UWk0 ⌦

UA)Mk0
�
i0
i = 0 for i 6= i0. When i = i0, on the other hand, we have

⇣�
(UWk ⌦UA)Mk

�T �
(UWk0 ⌦UA)Mk0

�⌘

i,i0
= h

�
(UWk ⌦UA)Mk

�
i
,
�
(UWk0 ⌦UA)Mk0

�
i
i

(a)
= h(UWk )[z=1,··· ,d],i! (UA)[w=1,··· ,n],k, (UWk0 )[z=1,··· ,d],i! (UA)[w=1,··· ,n],k0i

=
X

w

X

d

(UWk )z,i! (UA)w,k(UWk0 )z,i! (UA)w,k0

(b)
=

X

d

(UWk )z,i! (UWk0 )z,i!
X

w

(UA)w,k(UA)w,k0

= 0
(15)

where (a) follows from that
�
(UWk ⌦ UA)Mk

�
i

= (UWk)[z=1,··· ,d],i! (UA)[w=1,··· ,n],k and (b) results from thatP
w(UA)w,k(UA)w,k0 = 0 for k 6= k0 as UA is unitary.
Therefore, (13) can be resumed as

ŨT Ũ =
X

k

�
(UWk ⌦UA)Mk

�T �
(UWk ⌦UA)Mk

�

ŨT Ũ =
X

k

Mk(UWk ⌦UA)T (UWk ⌦UA)Mk

ŨT Ũ
(a)
=

X

k

MkIMk =
X

k

Mk
(b)
= I

where (a) follows from that the kronecker product of unitary matrices is also unitary, hence (UWk ⌦UA) is unitary, and (b)
follows from the definition of Mk.

As the last step, recall from (8) that
P

k Wk ⌦Ak = Ũ
P

k(SWk ⌦ Sk)ṼT , and note by the definition of Sk that (SWk ⌦
Sk)i,i0 = �k(A)�j(SWk) if i = i0 and i, hence i0, of the form i = k + (j � 1)n for j = 1, 2, · · · , d, and (SWk ⌦ Sk)i,i0 = 0
elsewhere. Therefore, by the fact that (SWk ⌦ Sk)(SWk0 ⌦ Sk0) = 0 for k 6= k0, it follows that

P
k(SWk ⌦ Sk) is a diagonal

matrix with diagonal entries �k(A)�j(SWk) where j = 1, 2, · · · , d and k = 1, 2, · · · , n, which completes the proof.

For the decomposition of A such that Ak = UASkVT
A where the singular value decomposition of A is given by A =

UASVT
A, we recall Theorem 3 and 4 to conclude Corollary 2 and 3 as follows.

Proof of Corollary 2. Let �Ak = �k(A) and �Wk = supi maxj �j(W
(i)
k ). By Lemma 3, we have maxj �j(

P
k(W

(i)
k ⌦

Ak))  maxk �Ak�Wk . Noting that P(i) is diagonal with entries at most 1, we have maxj �j

�
P(l)

P
kl
(W(l)

kl
⌦

Akl) · · ·P(2)
P

k2
(W(2)

k2
⌦Ak2)P

(1)
P

k1
(W(1)

k1
⌦Ak1)

�
 (maxk �Ak�Wk)

l. Therefore, if 8k = {1, 2, . . . , n} �Ak�Wk <

1, then liml!1 maxj �j

�P
k(W

(i)
k ⌦Ak)

�
= 0. Hence liml!1 I(x;y(l)) = 0 results by Lemma 2.

Proof of Corollary 3. Let �Wk = infi minj �j(W
(i)
k ). Note that minj �j

�
P(i)

P
k W

(i)
k ⌦ Ak

�
� amink �k(A)�Wk by

Lemma 3 and that minj �j(Pi) = a. Moreover, minj �j

�
P(l)

P
kl
(W(l)

kl
⌦Akl) · · ·P(2)

P
k2
(W(2)

k2
⌦Ak2)P

(1)
P

k1
(W(1)

k1
⌦

Ak1)
�
� (amink �k(A)�Wk)

l. Therefore, if a�Ak�Wk � 1, 8k 2 {1, 2, . . . , n}, then I(x;y(l)) = H(x) 8l 2 N+ by
Lemma 2, hence L(y(l)) = 0.



(a) 1-Layer (b) 2-Layers (c) 18-Layers

Figure 5: Architecture illustration of different layers

Setting GCN GraphCNN GraphCNN-random1 GraphCNN-random2 GraphCNN-random3
(Train, Test Acc) (Train, Test Acc) (Train, Test Acc) (Train, Test Acc) (Train, Test Acc)

Original 56.8%, 56.2% 99.1%, 88.6% 69.3%, 67.7% 67.5%, 67.1% 68.3%, 68.0%
Stride 88.9%, 53.1% 99.9%, 93.1% 96.1%, 74.9% 96.8%, 76.3% 97.2%, 75.0%
Stride+Skip 80.0%, 63.5% 100%, 94.5% 98.5%, 83.9% 99.0%, 84.8% 98.8%, 84.1%
Stride+Skip+AP 94.0%, 72.8 % 99.9%, 93.2 % 97.1%, 83.6% 97.4%, 84.4% 96.9%, 83.5%

Table 1: Comparison with randomly decomposed GraphCNN using 17-layer architectures

C. Details of Experiments
The network architectures of GCN/CNN/GraphCNN with different layers are shown in Figure 5; and the decomposition strategy
of GraphCNN is illustrated in Figure 6. As introduced previously, we have 9 sub-matrix, each represents the corresponding
decomposition in one direction. A1 shows the sub-matrix of the upper-left direction. In addition, the network architecture of
Auto-Encoder used in the reconstruction experiments are visualized in Figure 7.

The evaluation results of GCN, CNN and GraphCNN are summarized in Figure 2, 3, 4 and 5 for Original, Stride,
Stride+Skip and Stride+Skip+AP settings respectively. Moreover, we evaluate the performances of randomly decomposed
GraphCNNs and compare them with GCN and the GraphCNN decomposed by human prior. All the experiments are conducted
on the network architectures of 17-layers in different settings (see Table 1).



Figure 6: The left is a image with 3 ⇥ 3 ⇥ 3 shape. 9 arrows in the image represent 9 edge type between nodes. A1 matrix in
the right represents the adjacency matrix composed of the direction with red arrow.

Figure 7: The network architecture of Auto-Encoder



Models GCN GraphCNN CNN LSGCN
(Train, Test Acc) (Train, Test Acc) (Train, Test Acc) (Train, Test Acc)

1 Layer 46.4%, 48.8% 69.4%, 66.1 % 66.7%, 68.3% 46.1%, 49.5%
2 Layer 47.1%, 49.8% 81.1%, 80.6% 81.7%, 82.7% 49.1%, 52.3%
5 Layer 56.9%, 57.0% 97.2%, 89,9% 93.7%, 86.6% 61.0%, 58.6%
9 Layer 56.7%, 57.1% 99.0%, 90.3% 99.7%, 89.7% 70.2%, 59.8%
13 Layer 56.8%, 56.9% 99.6%, 90.0% 99.04%, 87.8% 77.0%, 58.9%
17 Layer 56.8%, 56.2% 99.1%, 88.6% 99.6%, 88.6% 79.1%, 59.3%

Table 2: Comparisons of different models on various depths (Original Setting)

Models GCN GraphCNN CNN LSGCN
(Train, Test Acc) (Train, Test Acc) (Train, Test Acc) (Train, Test Acc)

5 Layer 54.9%, 56.0% 97.3%, 89.0% 99.4%, 89.0% 61.2%, 59.5%
9 Layer 63.8%, 60.2% 99.8%, 91.9% 99.6%, 91.4% 78.1%, 61.4%
13 Layer 82.1%, 57.8% 99.9%, 92.9% 100%, 93.1% 96.4%, 59.0%
17 Layer 88.9%, 53.1% 99.9%, 93.1% 100%, 93.1% 98.5%, 54.0%

Table 3: Comparisons of different models on various depths (Stride Setting)

Models GCN GraphCNN CNN LSGCN
(Train, Test Acc) (Train, Test Acc) (Train, Test Acc) (Train, Test Acc)

5 Layer 59.1%, 58.8% 99.8%, 89.9% 99.5%, 88.7% 67.6%, 63.9%
9 Layer 65.8%, 63.0% 100%, 93.2% 99.9%, 91.0% 84.5%, 67.1%
13 Layer 73.5%, 64.4% 100%, 94.3% 100%, 93.0% 98.0%, 67.3%
17 Layer 80.0%, 63.5% 100%, 94.5% 100%, 93.2% 99.5%, 65.6%

Table 4: Comparisons of different models on various depths (Stride+Skip Setting)

Models GCN GraphCNN CNN LSGCN
(Train, Test Acc) (Train, Test Acc) (Train, Test Acc) (Train, Test Acc)

5 Layer 64.7%, 63.7% 97.2%, 89.2% 99.5%, 88.7% 67.4%, 65.5%
9 Layer 81.4%, 72.0% 99.8%, 92.1% 99.9%, 91.9% 89.1%, 73.8%
13 Layer 90.5%, 74.7% 99.9%, 93.1% 100%, 92.9% 98.5%, 78.6%
17 Layer 94.0%, 72.8% 99.9%, 93.2% 100%, 93.2% 97.2%, 75.4%

Table 5: Comparisons of different models on various depths (Stride+Skip+AP Setting)

GCN GraphCNN CNN
0.818 0.781 0.774

Table 6: Reconstruction error of different models
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