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Abstract

Many real-world problems can be reduced to combinatorial
optimization on a graph. While such tasks are often NP-hard
and analytically intractable, reinforcement learning (RL) has
shown promise as a framework with which efficient heuristics
methods to tackle these problems can be learned. Previous
works construct the solution incrementally, adding one ele-
ment at a time, however, this precludes the agent from revis-
ing its earlier decisions, which may be necessary for complex
optimization tasks. We instead propose that the agent should
seek to continuously improve the solution by learning to ex-
plore at test time. Our approach of exploratory combinatorial
optimization (ECO-DQN) is, in principle, applicable to any
combinatorial problem defined on a graph. Experimentally,
our method produces state-of-the-art RL performance for the
Maximum Cut problem. Moreover, because ECO-DQN can
start from any arbitrary configuration, it can be combined
with other search methods to further improve performance,
which we demonstrate using a simple random search.

Introduction
NP-hard combinatorial optimization (CO) problems – such
as Travelling Salesman (Papadimitriou 1977), Minimum
Vertex Cover (Dinur and Safra 2005) and Maximum
Cut (Goemans and Williamson 1995) – are canonical chal-
lenges in computer science. With practical applications
ranging from fundamental science to industry, efficient ap-
proaches to CO are of great interest. However, as no known
algorithms are able to solve NP-hard problems in polyno-
mial time, exact methods rapidly become intractable. In-
stead, heuristics are often deployed that, despite offering no
theoretical guarantees, can be chosen for high performance.

There are numerous heuristic methods – from search-
based (Banks, Vincent, and Anyakoha 2008; Benlic and
Hao 2013) to both simulated (Clements et al. 2017; Tiunov,
Ulanov, and Lvovsky 2019) and physically-implemented an-
nealing (Johnson et al. 2011; Yamamoto et al. 2017) – how-
ever, their effectiveness is dependent on the problem be-
ing considered, and high levels of performance often re-
quire extensive tailoring and domain-specific knowledge.
Machine learning offers a route to addressing these chal-
lenges, which led to the demonstration of a meta-algorithm,
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S2V-DQN (Khalil et al. 2017), that utilises reinforcement
learning (RL) and a deep graph network to automatically
learn good heuristics for various combinatorial problems.

A solution to a combinatorial problem defined on a graph
consists of a subset of vertices that satisfies the desired op-
timality criteria. Approaches following S2V-DQN’s frame-
work incrementally construct solutions one element at a time
– reducing the problem to predicting the value of adding any
vertex not currently in the solution to this subset. However,
due to the inherent complexity of combinatorial problems,
learning a policy that directly produces a single, optimal so-
lution is often impractical. Instead, we propose that the agent
should explore the solution space at test time, rather than
producing only a single “best-guess”. Concretely, this means
the agent can add or remove vertices from the solution sub-
set and is tasked with searching for ever-improving solutions
at test time. In this work we present ECO-DQN (Exploratory
Combinatorial Optimization DQN), a framework combining
RL and deep graph networks to realise this approach.

By comparing ECO-DQN to S2V-DQN as a baseline, we
demonstrate that our approach improves on the state-of-the-
art for applying RL to the Maximum Cut (Max-Cut) prob-
lem. Suitable ablations show that this performance gap is
dependent on both allowing the agent to reverse its earlier
decisions and providing suitable information and rewards to
exploit this freedom. Moreover, as ECO-DQN can be ini-
tialised in any state (i.e. will look to improve on any pro-
posed solution) it can, in principle, be combined with other
search heuristics. For example, we achieve significant per-
formance improvements by simply taking the best solution
found across multiple randomly initialised episodes. ECO-
DQN also generalises well to unseen graphs. We obtain very
strong performance on known benchmarks of up to 2000
vertices, even when the agent is trained on graphs an order
of magnitude smaller and with a different structure.

Background. The Max-Cut problem is to find a subset of
vertices on a graph that maximises the total weight of edges
connecting vertices within this subset to vertices not in this
subset (the cut-value). Formally, for a graph, G(V,W ), with
vertices V connected by edges W , this is to find the sub-
set S⊂V that maximises C(S,G)=

∑
i⊂S,j⊂V \S wij where

wij∈W is the weighted edge connecting vertices i and j.
We consider the optimization task as a Markov deci-



sion process defined by the 5-tuple (S,A, T ,R, γ). Here,
S denotes the set of states, A is the set of actions, T :
S×A×S → [0, 1] is the transition function,R : S → R the
reward function and γ ∈ [0, 1] is the discount factor. A pol-
icy, π : S → [0, 1], maps a state to a probability distribution
over actions. The Q-value of a given state-action pair is then
Qπ(s, a) = E

[∑∞
t=0 γ

tR(st)
]
, where s0=s∈S and a∈A is

the first action taken with future actions chosen according to
the policy, π. A deep Q-network (Mnih et al. 2015), with pa-
rameters θ, provides a functionQ(s, a; θ) which is trained to
approximate Q∗(s, a) ≡ maxπQ

π(s, a), the Q-values when
following the optimal policy. Once trained, an approxima-
tion of the optimal policy can be obtained simply by acting
greedily with respect to the predicted Q-values.

Our choice of deep Q-network is a message passing neu-
ral network (MPNN) (Gilmer et al. 2017). Each vertex in
the graph, v∈V , is represented with an embedding, µkv∈Rn,
where k labels the current iteration (network layer). These
are initialised, by some function I , from an input vector
of observations, xv , as µ0

v = I(xv). During the message-
passing phase, the embeddings are repeatedly updated with
information from neighbouring vertices, N(v), according to

mk+1
v =Mk

(
µkv , {µku}u∈N(v), {wuv}u∈N(v)

)
, (1)

µk+1
v = Uk

(
µkv ,m

k+1
v

)
, (2)

whereMk andUk are message and update functions, respec-
tively. After K rounds of message passing, a prediction is
produced by some readout function, R. In our case this pre-
diction is the set of Q-values of the actions corresponding to
“flipping” each vertex, i.e. adding or removing it from the
solution subset S, {Qv}v∈V = R({µKu }u∈V ).

ECO-DQN
A straightforward application of Q-learning to graph-based
CO is to attempt to directly learn the value of adding any
given vertex to the solution subset. This formalism, which
is followed by S2V-DQN and related works, incrementally
constructs a solution by adding one vertex at a time. How-
ever, the complexity of NP-hard combinatorial problems
means it is challenging to learn a single function approx-
imation of Q∗(s, a) that generalises well across the many
possible graphs, ultimately resulting in sub-optimal polices.
Here, we present an alternative approach where the agent is
trained to explore the solution space at test time. The fun-
damental change distinguishing our approach, ECO-DQN,
from previous works can then be summarised as: instead of
learning to construct a single good solution, learn to explore
for improving solutions. ECO-DQN requires several novel
features to explore effectively, which we now discuss.

(i) Reversible actions: ECO-DQN allows for any vertex
in the graph to be added or removed from the solution set
at every time-step. The objective of an exploring agent – to
find the best solution (highest cut-value) at any point within
an episode – is reflected in the reward structure given by
R(st) = max(C(st)− C(s∗), 0)/|V |, where s∗∈S is the
state corresponding to the highest cut-value previously seen
within the episode (note that we implicitly assume the graph,
G, and solution subset, S, to be included in the state). The

normalisation by the total number of vertices, |V |, mitigates
the impact of different reward scales across different graph
sizes. We use a discount factor of γ = 0.95 to ensure the
agent actively pursues rewards within a finite time horizon.

However, simply allowing for revisiting the previously
“flipped” vertices does not automatically improve perfor-
mance. The agent is not able to make more informed de-
cisions, nor can it reach previously unobtainable solutions.
Instead, further modifications are required to fully leverage
this freedom for improved performance.

(ii) Intermediate rewards: As our environment only pro-
vides a reward when a new best solution is found, after
an initial period of exploration, these extrinsic rewards can
be sparse, or absent, for the remainder of the episode. We
therefore also provide a small intermediate reward of 1/|V |
whenever the agent reaches a locally optimal state (one
where no action will immediately increase the cut-value)
previously unseen within the episode. In addition to miti-
gating the effects of sparse extrinsic rewards, these intrinsic
rewards also shape the exploratory behaviour at test time.
There are far more states than could be visited within our
finite episodes, most of which are significantly sub-optimal,
and so it is useful to focus on a subset of states known to
include the global optimum. As local optima are typically
close to each other, the agent learns to “hop” between nearby
local optima, thereby performing an in-depth search of the
most promising subspace of the state space (see figure 2c).

(iii) Observation tuning: A Q-value for flipping each ver-
tex is calculated using seven observations derived from the
current state (xv∈R7). Three of these are local, which is to
say they can be different for each vertex considered: (1) ver-
tex state, i.e. if v is currently in the solution set, S; (2) imme-
diate cut change if vertex is “flipped”; (3) steps since vertex
was last “flipped”. The remaining global observations de-
scribe the state of the graph and the context of the episode:
(4) difference of current cut-value from the best observed;
(5) distance of current solution set from the best observed;
(6) number of available actions that immediately increase
the cut-value; (7) steps remaining in the episode. The gen-
eral purposes of each of the observations are: (1-2) provide
useful information for determining the value of selecting an
action; (3) provides a simple history to prevent short looping
trajectories; (4-6) ensure the extrinsic and intrinsic rewards
are Markovian; (7) accounts for the finite episode duration.

Experiments
We train and test agents on Erdős-Rényi (Erdős and Rényi
1960) (ER) graphs with a connection probability of 0.15
and wij∈{0,±1}. Equivalent experiments on Barabasi-
Albert (Albert and Barabási 2002) (BA) graphs are detailed
in the Supplemental Material, with the results in both cases
being qualitatively similar and supporting the same conclu-
sions. Training is performed on random graphs with each
episode considering a freshly generated instance. The per-
formance over training (i.e. learning curves) is evaluated on
a fixed set of 50 held-out graphs. Once trained, the agents are
tested on a separate set of 100 held-out validation graphs.

Within an episode every action taken demarks a time-
step and the best solution obtained at any time within the
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Figure 1: Performance comparison of ECO-DQN and base-
lines. (a) Learning curves, averaged over 5 seeds, when
training on 40-vertex graphs. (b) Approximation ratios for
graphs with different numbers of vertices, |V |. We report the
mean score for each agent over the 100 validation graphs,
along with the distance to the upper and lower quartiles.

episode is taken as the final result. Agents that are allowed
to take the same action multiple times (reversible agents, e.g.
ECO-DQN) have episode lengths set to twice the number of
vertices in the graph, 2|V |, and each episode is initialised
with a random subset of vertices in the solution set. By con-
trast, agents that can only add vertices to the solution set
(irreversible agents, e.g. S2V-DQN) are initialised with an
empty solution subset. These agents greedily select actions
until no more are available as this will result in an equal
or better policy than terminating the episode when all re-
maining actions are predicted to have negative Q-values. To
facilitate direct comparison, ECO-DQN and S2V-DQN are
implemented with the same MPNN architecture. Details are
provided in the Supplemental Material, however, many dif-
ferent MPNN implementations capture relevant information
about the local neighbourhood of a vertex and can be used
with good success.

We compare ECO-DQN to S2V-DQN and individually
ablate the novel features of ECO-DQN – reversible ac-
tions (RevAct), observation tuning (ObsTun) and interme-
diate rewards (IntRew) – which together fully account for
the differences between these approaches (ECO-DQN ≡
S2V-DQN + RevAct + ObsTun + IntRew). Irreversible
agents follow S2V-DQN and use γ=1. In the absence of
observation tuning (i.e. observations (2-7)), we modify the
rewards to be R(st)=(C(st)−C(st−1))/|V |, which is nec-
essary as without observations (4-6) the ECO-DQN reward
structure is non-Markovian. As additional benchmarks we
also implement the MaxCutApprox algorithm in both the re-
versible and irreversible frameworks (MCA-rev and MCA-
irrev, respectively). This is a greedy algorithm, choosing the
action (vertex) that provides the greatest immediate increase
in cut-value until no further improvements can be made.

We use the approximation ratio – C(s∗)/C(sopt), where
C(sopt) is the cut-value of the true optimum solution – of
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Figure 2: Intra-episode behaviour on 200-vertex graphs.
(a) Mean (dashed) and range (shaded) of all trajectories,
with three examples (solid) shown for reference. (b) The
probability that the chosen action has already been taken
within the episode (Repeats), does not provide the greatest
immediate reward (Non-Greedy) or reduces the cut-value
(Negative). (c) The probability that the current state is lo-
cally optimal (Locally Optimal), has already been visited
within the episode (Revisited), and that the best solution
that will be found within the episode has already been seen
(MC found). The agent’s behaviour is shown at three points
during training: when performance is equivalent to that of
MCA-irrev (dotted) or S2V-DQN (dashed), and when fully
trained (solid). (b-c) use a 10-step moving average over all
100 graphs (trajectories) in the validation set.

each approach as a metric of solution quality. Exact meth-
ods are intractable for many of the graphs we use, therefore
we apply a battery of optimization approaches to each graph
and take the best solution found by any of them as the “op-
timum” (see Supplemental Material for details).

Single-episode optimization. Figure 1a shows learning
curves of agents trained on ER graphs of size |V |=40, where
it can be seen that ECO-DQN reaches a significantly higher
average cut than S2V-DQN. Removing either reversible ac-
tions (RevAct) or the additional observations (ObsTun) re-
duces the performance below that of S2V-DQN, underlin-
ing that state-of-the-art performance requires an agent to not
only be able to reverse previous actions, but also to be suit-
ably informed and rewarded to do so effectively. Interme-
diate rewards (IntRew) are seen to speed up and stabilise
training. They also result in a small performance improve-
ment, however this effect becomes clearer when consider-
ing how agents generalise to larger graphs (figure 3a). Fig-
ure 1b shows the performance of agents trained and tested
on graphs with up to 200 vertices. We see that ECO-DQN
has superior performance in all cases.

We now consider how this strong performance is achieved
by examining the intra-episode behaviour of an agent trained
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(b) Dataset (|V |) ECO S2V MCA-(rev, irrev)
Physics (125) 1.000 0.928 0.879, 0.855
G1-G10 (800) 0.996 0.950 0.947, 0.913
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Figure 3: (a) The performance of agents trained on graphs
with |V |=40 tested on graphs of up to |V |=500. Reversible
agents use 50 randomly initialised episodes for each of the
100 validation graphs of a given size. The first marking
on each bar is the average across every episode (the ex-
pected ‘single-try’ performance). The upper limit extends to
the average performance across different graphs with error
bars denoting the 68% confidence interval. Irreversible ap-
proaches are initialised with empty solution sets, and so only
use 1 episode per graph. (b) Average performance on known
benchmarks of agents trained on ER graphs with |V |=200.

and tested on 200-vertex ER graphs. Figure 2a highlights
trajectories taken by the trained agent on graphs from the
validation set. Whilst the overall trend is towards higher
cut-values, the fluctuations show that the agent has learnt
to search for improving solutions even when this requires
sacrificing cut-value in the short-term. From figure 2b, we
see that the fully trained agent regularly chooses actions that
do not correspond to the greatest immediate increase in the
cut-value (Non-Greedy), or even that decrease the cut-value
(Negative). Moreover, vertices are moved in or out of the so-
lution set multiple times within an episode (Repeats), which
suggests the agent has learnt to explore multiple possible
solutions that may differ from those obtained initially. This
is further emphasised in figure 2c where we see that, after
an initial period of exploration, the agent searches through
the solution space, repeatedly moving in and out of locally
optimal (Locally Optimal) solutions whilst minimising the
probability that it revisits states (Revisited). We see that
this behaviour is learnt by comparing the agent’s behaviour
at three points during training. Weaker agents from earlier
in training revisit states far more often, yet find fewer lo-
cally optimal states. The probability that the fully-trained
agent has already found the best solution it will see in the
episode (MC found) grows monotonically, implying that the
agent finds ever better solutions while exploring. Indeed,
simply increasing the number of time-steps in an episode
from 2|V |=400 to 4|V | increase the average approximation
ratio from 0.98+0.01

−0.01 to 0.99+0.01
−0.01.

Leveraging variance. Changing the initial subset of ver-
tices selected to be in the solution set can result in very dif-
ferent trajectories over the course of an episode. An imme-

diate result of this stochasticity is that performance can be
further improved by running multiple episodes with differ-
ent initialisations, and selecting the best result from across
this set. As such, we now optimize every graph using 50 ran-
domly initialised episodes. We also make the task more chal-
lenging by testing on graphs that are larger, or that have a dif-
ferent structure, from those on which the agent was trained.

Figure 3a show the generalisation of agents trained
on 40 vertices to graphs with up to 500 vertices. ECO-
DQN is compared to multiple benchmarks, however there
are three important observations to emphasise. Firstly, re-
versible agents outperform the irreversible benchmarks on
all tests, with the performance gap increasing with graph
size. Secondly, using multiple randomly initialised episodes
provides a significant advantage. Indeed, even the simple
MCA-rev algorithm, using only of 50 random initialisations,
outperforms a highly trained irreversible heuristic (S2V-
DQN). This further emphasises how stochasticity – which
here is provided by the random episode initialisations and
ensures many regions of the solution space are considered
– is a powerful attribute when combined with local opti-
mization. Thirdly, we see that the small intermediate rewards
(IntRew) provided during training improve performance, al-
though, due to the near optimal performance on small graphs
within a single optimisation episode, this only becomes no-
ticeable when generalising to large graphs at test time.

Finally, we test ECO-DQN, trained on ER graphs with
|V |=200, on publicly available datasets. The “Physics”
dataset consists of ten graphs – with |V |=125, exactly
6 connections per vertex and wij∈{0,±1} – correspond-
ing to Ising models of physical systems. The GSet is a
well-investigated benchmark collection of graphs (Benlic
and Hao 2013). We separately consider ten graphs, G1-
G10, with |V |=800, and ten larger graphs, G22-G32, with
|V |=2000. For G1-G10 we utilise 50 randomly initialised
episodes per graph, however for G22-G32 we use only a
single episode per graph, due to the increased computational
cost. The results in figure 3b show that ECO-DQN signifi-
cantly outperforms other approaches, even when restricted
to use only a single episode per graph.

Despite the structure of graphs in the “Physics” dataset
being distinct from the graphs on which the agent is trained,
every instance in optimally solved. Averaged across all
graphs, 37.6% of episodes find an optimal solution and
90.4% of these solutions are unique, demonstrating that, in
conjunction with random initialisations, the agent is capable
of finding many different optimal trajectories. Importantly,
the structure of the GSet is distinct from that of the training
data, with the first five instances in each tested set have only
positive edges, wij∈{0, 1}.

Summary
We introduce ECO-DQN, a new state-of-the-art RL-based
algorithm for the Max-Cut problem, that is, in principle, ap-
plicable to any combinatorial problem defined on a graph.
We show that treating CO as an ongoing exploratory exer-
cise in surpassing the best observed solution is a powerful
approach to such NP-hard problems that generalises well to
unseen graph sizes and structures.
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