
Adversarial Attacks on Graphs by Adding Fake Nodes

Yu Chen, Zhiling Luo, Sha Zhao, Ying Li*, Jianwei Yin
College of Computer Science and Technology, Zhejiang University, Hangzhou, China

{cheny 17, luozhiling, szhao, cnliying, zjuyjw}@zju.edu.cn

Abstract

Deep neural network models for graph structures have
achieved great performance on many tasks, e.g. node clas-
sification and link prediction. Despite the success on per-
formance, deep neural network models’ robustness has at-
tracted much attention in recent years. Previous researches
have shown that these models can be attacked by manipu-
lating existing edges and features. Changing the edges and
features, however, is hard in practice due to the restrict se-
curity policies. We witness that adding fake nodes is a more
accessible way to attack the models. In this work, we study
the adversarial attacks on graph structures by adding fake
nodes to change the classification result on the target node.
We propose a reinforcement learning method, g-Faker, for
black-box attack, and a gradient-based greedy method, Gra-
dAtt, for white-box attack, both of which are designed to add
fake nodes to graphs. The experimental results on multiple
datasets demonstrate the effectiveness and the transferability
of our methods.

Introduction
As an important and widely used data representation, graph
has been used in a wide range of real-world application sce-
narios, e.g. diffusion graph in social networks (Faliszewski
et al. 2018), user preference graph in e-commerce (LE,
Lauw, and Fang 2017), and proteins structure graph in bi-
ology (LI and Yu 2016). Modeling the data as a graph struc-
ture, a series of graph analyzing techniques are leveraged,
e.g. graph clustering, and node embedding (Perozzi, Al-
Rfou, and Skiena 2014; Dai, Dai, and Song 2016). Among
them, node classification is one of the most important tasks
on graphs — given a large (attributed) graph with partially
labeled nodes, the goal is to predict the labels of the rest
nodes (Bhagat, Cormode, and Muthukrishnan 2011). For ex-
ample, by taking a person’s interests in movies as the labels,
one can infer the interests of the target people in social net-
works, and recommend relevant movies to them accordingly
(Zhao et al. 2018). Like most classification problems, graph
node classification can be solved by various deep neural net-
work models. In particular, Graph Convolutional Networks

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(GCNs) have achieved a state-of-the-art performance (Kipf
and Welling 2016).

However, many deep neural network models have been
proved to be vulnerable — with unnoticeable perturbations
of an instance, the predictions can be misguided, which
is known as adversarial attack (Goodfellow, Shlens, and
Szegedy). Recently adversarial attacks on graph structure
data have drawn more and more attention. The work (Dai
et al. 2018; Zügner, Akbarnejad, and Günnemann 2018;
Zügner and Günnemann 2019) show that changing a small
number of edges and features can make deep neural network
models easily fooled/attacked. In many real-world problems,
however, it may be difficult to alter the edges and features
in a graph. For example, in a graph structure for an online
social network, in order to maliciously change the edges,
an attacker needs to hack different accounts in the network
websites to tamper with the content. It is difficult to obtain
the login access to so many different accounts. Compared
with changing edges in a graph structure, adding fake nodes
is more easily in practice, which just needs to create new
accounts and take them to build connections in the graph.

One key challenge to attack the deep neural networks by
adding fake nodes to the graph is that, it is hard to evalu-
ate the effectiveness. The added fake nodes are required to
connect to the nodes in the original graph and it will lead
to cascading effects, which makes results unpredictable. In
order to overcome this challenge, we propose a reinforce-
ment learning approach, which contains a value function to
evaluate the effectiveness of adding a fake node.

In this paper, we propose a reinforcement learning based
model named g-Faker for black-box attack and a white-
box attack method GradAtt, respectively, to attack the state-
of-the-art deep learning models for graphs by adding fake
nodes. Specifically, we focus on the models based on graph
convolutions, such as GCN (Kipf and Welling 2016). We as-
sume attackers have full knowledge of the graph structure.
Moreover, our experiments conducted in terms of transfer-
ability show that our attack policies can generalize to other
models as well. Over all, our contributions are summarized
below:

• We propose a reinforcement learning based method
named g-Faker for black-box attack and a gradient based

greedy method GradAtt for white-box attack, respec-
tively, to design fake nodes for adversarial attacks on node
classification.

• The experimental results show that our methods effec-
tively misguide the prediction of the target nodes to the
target label with only few changes to the graph. The at-
tack policy learned on one deep neural network model can
work well on others.

Related Work
In this section, we briefly review the literature about adver-
sarial attacks on graphs.

Several studies have performed an adversarial attack on
graph neural networks. (Dai et al. 2018) attacks graph neu-
ral networks (GNNs) by altering a few edges in the graph
in a reinforcement learning way. They also employ genetic
algorithm and gradient-based methods. (Zügner, Akbarne-
jad, and Günnemann 2018) scores the perturbations based
on the surrogate model classification margin and select the
top one. Different from the adversarial attack on images, the
unnoticeable manipulation can be hard to define, since the
graph structure has been modified. Both (Dai et al. 2018)
and (Zügner, Akbarnejad, and Günnemann 2018) limit the
cost of changing graphs, while Zugner further tries to pre-
serve the distribution of degrees and the co-occurrence of
features to make the perturbations unnoticeable. In (Zügner
and Günnemann 2019), they use meta-learning to solve the
bilevel optimization problem in the discrete graph data and
perform training-time attack. What’s more, adversarial at-
tacks on node embeddings are investigated by (Bojchevski
and Günnemann 2019). However, all these work focus on
perturbing existing nodes and their relations.

In this work, we propose a reinforcement learning based
algorithm and a gradient based method to perform the at-
tacks on GCN by adding fake nodes. We focus on targeted
attacks, which is more difficult than the non-targeted attacks.

Preliminary
We consider the task of node classification in a large (at-
tributed) graph in this work. Formally, the graph is denoted
by G = (A,X), where A ∈ {0, 1}N×N is the adjacency
matrix of the graph and X ∈ {0, 1}N×D is the features for
each node, where D is the dimension of features. Each node
vi ∈ V with feature xi ∈ {0, 1}D is associated with a label
yi ∈ Y , where Y is the label set.

Given a subset of nodes VT ⊆ V and corresponding labels
from Y , the goal of node classification is to train a classifier
f(·;G) : V 7−→ Y that maps each node v ∈ V to a class in
Y and minimizes the following loss

L =
1

N

N∑
i=1

L(f(vi;G), yi)

where L is the distance defined in Y , like l2 norm.
In this work, we set the method GCN with two convolu-

tional layers proposed by (Kipf and Welling 2016) as our
attack target, which is formulated as:

Z = fΘ(A,X) = softmax(Âσ(ÂXW 0)W 1)

where Â = D̃−
1
2 (IN +A)D̃−

1
2 , D̃ii =

∑
j Aij + 1, σ(·) is

an activation function and Θ = {W 0,W 1} is the parameter
set of the classifier. Each row of output Z ∈ RN×|Y| repre-
sents the classification probabilities of the node over labels.

Attack Model
Given the GCN model, our goal is to insert m fake nodes on
the graph G = (A,X), leading to the graph G′ = (A′, X ′),

where A′ =

[
A BT

B C

]
and X ′ =

[
X
P

]
, such that the node

classification performance drops. More specifically, we aim
to change the prediction label of a correctly classified target
node v∗. It calls targeted attacks if the target label is speci-
fied, non-targeted attacks otherwise. And we focus on tar-
geted attacks only in this work. In our settings, attackers are
allowed to create new fake nodes connecting to the target
node v∗ and design the features and neighbors of the fake
nodes, in order to affect the classification of the target node.

To make sure the fake nodes are not too obvious and
change the whole graph structure, we further limit the num-
ber of modifications by a budget ∆. Given above settings,
we can formalize this as follows:

arg max
B,P

Zv∗,y∗ −maxy 6=y∗Z
v∗,y

s.t.
∑
i

∑
j

|Bij |+
∑
i

∑
d

|Pid| ≤ ∆
(1)

where Z = fΘ(A′, X ′) and Zv,y is the v-th row and y-th
column of Z.

We setm = 1 by default, C and P are initialized to zeros.
The degree of the fake node is up to k + 1, which means we
only add one fake node and perform the structural attack. It
is noteworthy that the method can extend the methods to add
more than one fake node and design features, but it is not the
main point in this paper.

Attack as Reinforcement Learning
Given a target classifier f , a graph G and a target node
v∗ with a target label y∗, we define the attack proce-
dure as a Markov Decision Process (MDP (Howard 1960))
M(f,G, v∗, y∗):

• State The state st at time step t is a tuple (G′t, v
∗, y∗),

where G′t is a partially modified graph.
• Action The action at at time step t is to select a node and

establish a link with the node we add. So the action set
|A| = |V |.

• Reward Our goal is to change the classification result of
the target node v∗. So the reward is defined as:

R(G′, v∗) =

{
1 f(G′, v∗) 6= y∗

−1 f(G′, v∗) = y∗
(2)

Note that non-zero reward is received when the process
reaches the terminal state. If the classification probabili-
ties Z over labels is available, the reward can be defined
as R(G′t, v

∗) = Zv∗,y∗

t − Zv∗,y∗

t−1 as well, where Zv,y de-
notes the v-th row and y-th column of Z.

target node

fake node

add fake node embedding evaluate Q
greedy
add edge

misclassified

Q-NetworkClean graph

Figure 1: Illustration of the framework of g-Faker by adding a fake node to influence the classification of the target. Different
colors of the nodes represent the predicted labels of the nodes. For a clean graph, a fake node is first added and create a link
with the target node. At each time step, the Q-values of each actions is evaluated by a Q-network and then we greedily select
the action with highest Q-value to get the next graph structure.

• Terminal Once the k edges have been modified or the
label of target has been changed successfully, the process
terminates.

In this work, we adopt Q-learning to solve the MDP, since
the action space is discrete and varies at different steps to
avoid duplicate actions. We will introduce the setting of our
Q-learning below.

Deep Q-Network (DQN) uses a deep neural network as
a Q-function approximator with parameter θ. It iteratively
improves the estimate Q(st, at|θ) of expected greedy return
which is achieved after taking action at at state st. The fol-
lowing mean squared loss is minimized in DQN:

L(θ) = Es,a,r,s′ [(r + γ max
a′∈A

Q(s′, a′|θ−)−Q(s, a|θ))2]

(3)
where parameters θ− are a stale copy of θ that helps prevent
oscillations or divergence of Q.

In our settings, at each time step t is defined as st =
(G′t, v

∗, y∗), which means we expect that function Q can
take the current graph structure, target node, and target label
into account. Intuitively, Q should summarize the state of
each node and figure out a value for candidate nodes. In or-
der to represent the state of nodes, we leverage a deep learn-
ing architecture over graph, named structure2vec (Dai, Dai,
and Song 2016) to obtain the latent representation of each
node, which updates the embedding of node v at each itera-
tion as:

µ(k)
v = relu(W 1

Qx(v) +W 2
Q

∑
vj∈N (v)

µ(k−1)
vj) (4)

where x(v) is the feature of node v,N (v) denotes the neigh-
bors of node v.

Once the embeddings for each node is computed, we can
figure out the value for each candidate node. Specifically,
set st = (G′t, v

∗, y∗), we use the embeddings µ(T)
v∗ for the

target node v∗ and the embeddings µ(T)
a for each action a,

respectively, after T iteration, since each action denotes a
candidate node. Then the Q function can be formalized as:

Q(st, at|θ) = MLP ([µ(T)
at
, µ

(T)
v∗ , y

∗]) (5)

where y∗ is the one-hot label vector. The parameters θ of
Q function includes {W 1

Q,W
2
Q} and parameters in multi-

layer perceptron(MLP). Further, the deterministic policy
π(st|θ) = arg maxa∈AQ(st, at|θ) is employed. We denote
this method as g-Faker. Figure. 1 illustrates the process and
the pseudocode is shown in supplement Algorithm.1.

Other methods
The RL based attack algorithm is suitable for black-box at-
tack, where parameters of the targeted model are unknown.
However, in other settings, e.g. white-box attack, in which
attacker have the complete knowledge of the targeted model,
other algorithms are preferred. Here we are going to intro-
duce Random Attack which requires the least information
and Gradient based Attack GradAtt in the white-box setting.

Random Attack The random attack is the simplest
method that randomly chooses a node and establishes a link
with the fake node at each step. It may be hard to change
the classification result by randomly choosing nodes from
all nodes. One simpler way is to select the nodes with target
label, assuming the nodes with target label have a stronger
positive influence than others. Though it requires the least
information, it performs well.

GradAtt In white-box settings, the gradient-based attack
has achieved great performance in continuous data. How-
ever, the methods cannot be directly applied in our cases due
to the discreteness of data. To cope with the issue of the dis-
creteness, we use a greedy algorithm to perform the attack.
The loss function is defined as:

L(A′, X ′) = L(f(v∗;G′), y∗) (6)

Where f and L are the given classifier and its loss function,
respectively. At each step, we calculate the gradient infor-
mation ∇BL(A′, X ′) with respect to the edges of the fake
nodes and choose the maximum element as the new edge to
be added. In other words, we select the edge that most likely
to affect the classification result at each step. Note that the
fake node will firstly add an edge with the target node, other-
wise there will be no gradients on the fake node. The process
is illustrated in supplement Figure. 1 and the pseudocode is
shown in supplement Algorithm. 2.

Table 1: The attack success rate of different methods with
maximum step k = 10. The higher, the better.

Polblogs Cora Citeseer
#Test target 115 708 535
Random-A 9.20% 0.51% 1.98%
Random-T 13.71% 7.34% 7.51%

GradAtt 40% 30.08% 36.45%
g-Faker 41.74% 32.77% 30.65%

Experiment
We use three well-known real-world datasets to evaluate our
methods, namely Polblogs (Adamic and Glance 2005), Cora
and Citeseer (Yang, Cohen, and Salakhutdinov 2016). The
statistics of datasets are shown in supplement Table. 1.

In our experiments, we set the number of fake nodes
m = 1, the features P and edges C remain zeros. And the
maximum steps k = {1, ..., 10}. Note that the edge con-
nected to the target node is not counted. For g-Faker, the
probability change reward function is employed and itera-
tions T of structure2vec is set to 2. For Random Attack, we
test it in two settings: one randomly samples from all the
nodes, denoted by Random-A, and the other one selects from
the nodes with target label denoted by Random-T. The result
is averaged over 5 individual runs.

Targeted attack
In this experiment, we select the nodes classified correctly
in the validation and test set as our attack target nodes. For
each target node, we take the other labels in the dataset as the
target label. So the total number of attack targets are |Y|− 1
times of the number of target nodes. The training set and
testing set are divided in the ratio of 9: 1, and all methods
are tested on the same test set.

Here, we do not run the brute force algorithm to get the
upper bound of the practice, since the computational com-
plexity is |V |k. The attack success rate is reported in Table 1
when the maximum step k = 10. As is expected, Random-
T leads to better performance compared to Random-A. It
can be seen that for Polblogs and Cora, g-Faker achieves
the highest performance with 41.74% and 32.77% success
rate, respectively, even higher than white-box attack Gra-
dAtt. While for Citeseer, g-Faker is 5.8% lower than Gra-
dAtt. See supplement for further detailed experiments on tar-
get nodes with different degree and adding different number
of edges (Section A in supplement material).

Further, we investigate the influence of the number of
fake nodes with a fixed budget, which means you can in-
sert one fake nodes with k neighbors or multiple nodes with
less edges. The process can be complicated, since with more
nodes, the influence of each node will be reduced, while it
will also reduce the impact of original neighbors of the tar-
get node. We test m = 1, 2, 3, 4, k = 10 and the maximum
number of perturbation become k−m+1, respectively, since
each fake node will connect with the target node. We use the
classification margin S = Zv∗,y∗ −maxy 6=y∗Z

v∗,y to eval-
uate the effectiveness of attacks. Figure. 2 report the result

Table 2: Attack success rate of two attack types on Cora for
GCN and GraphSage

GCN GraphSage
Evasion Poison Evasion Poison

Random 7.34% 1.13% 1.97% 2.15%
GradAtt 30.08% 22.26% 7.63% 12.54%
g-Faker 32.77% 29.92% 13.28% 22.29%

using GradAtt. Each dot in Figure. 2 represents one attack
target. We can see, fromm = 1 tom = 3, the attack success
rate is increasing while it fails when m = 4. As discussed
before, when m = 4, each node will have only an average
of 2 additional edges which makes it hard to affect the target
node. Intuitively, it’s better to add as many as possible fake
nodes while ensuring the influence of the fake node, e.g. 3
to 5 neighbors in Cora according to supplement Figure. 2.

Transferability of attacks
After exploring the effects of our attacks on fixed GCN
model, now we examine its transferability to other deep
learning models. Here we use another graph convolutional
method named GraphSage (Yang, Cohen, and Salakhutdi-
nov 2016), which generates embeddings by sampling and
aggregating features from neighborhoods. Different from
spectral-based GCN, GraphSage is a spatial-based algo-
rithm. We use the default settings for the hyper-parameters
in the code provided by the paper.

We evaluate the transferability of our attacks in two at-
tack types: evasion and poison attack. For evasion attack,
the parameters of the model are kept fixed, while the model
is retrained on the modified data for poison attack, which is
a more challenging task theoretically. The result of poison
attack is averaged over 5 runs in our experiments.

Figure. 3 shows the results of both evasion and poison at-
tack of GCN and GraphSage, respectively. Table. 2 reports
the corresponding attack success rate. It is worth noting that
the attack target is generated according to the result of GCN,
so there are some nodes incorrectly classified in GraphSage.
As we can see, although the adversarial examples are gener-
ated based on GCN, the evasion attack still works on Graph-
Sage. For GCN, the performance of attacks drops slightly for
poisoning compared to evasion. Yet, for GraphSage, the poi-
soning outperforms the evasion. Furthermore, g-Faker out-
performs GradAtt and suffers fewer drops in attack success
rate for poisoning for GCN. We argue that this comes from
that the adversarial examples of GradAtt are generated based
on the gradients of the fixed model, so some actions may
only work for this model and its transferability is relatively
weak.

Analysis of perturbations
Actions. Figure. 4 plots the top-10 selected actions(nodes)
for each target label and its distribution for Cora dataset.
The x-axis is the classification probabilities of the node
in the clean graph and the y-axis denotes its average re-
ward gain when the node is selected as the first action.
The size of the dot represents its frequency, the larger,

(a) m=1 (b) m=2 (c) m=3 (d) m=4

Cl
as
si
fic
at
io
n

m
ar
gi
n

Figure 2: Margin distribution for different number of fake nodes with a fixed budget using GradAtt (the higher, the better).

Cl
as

si
fic

at
io

n
m

ar
gi

n

(a) Evasion of GCN (b) Evasion of GraphSage (c) Poisoning of GCN (d) Poisoning of GraphSage

Figure 3: Results of two attack types on Cora using different algorithms.

Figure 4: The top-10 actions for each target label and its
average reward gain as the first action. Each dot represents a
action and the size of it denotes its frequency, the larger, the
more frequent.

the more frequent. Obviously, in line with our intuition,
the nodes with higher classification certainty are preferred,
since they contain more features about the target label.
Moreover, the actions for target label ’Genetic Algorithms’
get a relatively higher average reward, while the target la-
bel ’Rule Learning’ and ’Probabilistic Methods’ receive a
lower value. This indicates that it is easier to misguide the
nodes to the class Genetic Algorithms. Intuitively, there ex-
ists some typical words/features for the specific class, e.g.
mutation and crossover for Genetic Algorithms.

Degree distribution. We limit the number of the fake
nodes and the degrees of the fake nodes in our experiment.
However, it is still hard to say that the changes are unnotice-
able. Here we use the test statistic proposed by (Zügner, Ak-
barnejad, and Günnemann 2018), Λ(G,G′), which estimates
whether the degree distribution of two graph is stemmed

from the same pow-law distribution. If Λ(G,G′) < τ ≈
0.004, the perturbations are regarded as unnoticeable.

Figure 5: Λ(G,G′)
distribution of all
adversarial examples
for Cora.

Figure. 5 shows the distri-
bution test statistic Λ(G,G′)
of all adversarial examples. As
seen, only a partial example,
less than 10%, is over 0.004,
and most of them are close to
0.001. Therefore, the pertur-
bations generated by adding
fake nodes are still accepted.

Conclusion
For the task of node classifica-
tion, we demonstrate that the
graph convolutional networks
are vulnerable to adversarial attacks by adding fake nodes
for a targeted attack, instead of changing existing edges and
features. Nodes with significant effect towards the target la-
bel can be effectively selected by our methods. It is possible
to successfully attack the GCN model with few perturba-
tions. Furthermore, based on our extensive experiment, our
attacks still work even for challenging poisoning attack. The
attack policies learned on one deep learning model can also
be generalized to others.

Acknowledgment
This work is supported by the National Key Re-
search and Development Program of China under grant
No.2017YFC1001703 and National Natural Science Foun-
dation of China under grant No. 61802340.

References
Adamic, L. A., and Glance, N. 2005. The political blo-
gosphere and the 2004 us election: divided they blog. In
Proceedings of the 3rd international workshop on Link dis-
covery, 36–43. ACM.
Bhagat, S.; Cormode, G.; and Muthukrishnan, S. 2011.
Node classification in social networks. In Social network
data analytics. Springer. 115–148.
Bojchevski, A., and Günnemann, S. 2019. Adversarial at-
tacks on node embeddings via graph poisoning. In Interna-
tional Conference on Machine Learning, 695–704.
Dai, H.; Li, H.; Tian, T.; Huang, X.; Wang, L.; Zhu, J.; and
Song, L. 2018. Adversarial attack on graph structured data.
arXiv preprint arXiv:1806.02371.
Dai, H.; Dai, B.; and Song, L. 2016. Discriminative embed-
dings of latent variable models for structured data. In Inter-
national Conference on Machine Learning, 2702–2711.
Faliszewski, P.; Gonen, R.; Kouteckỳ, M.; and Talmon, N.
2018. Opinion diffusion and campaigning on society graphs.
In IJCAI, 219–225.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. Explaining
and harnessing adversarial examples (2014). arXiv preprint
arXiv:1412.6572.
Howard, R. A. 1960. Dynamic programming and markov
processes.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
LE, D. T.; Lauw, H. W.; and Fang, Y. 2017. Basket-sensitive
personalized item recommendation. IJCAI.
LI, Z., and Yu, Y. 2016. Protein secondary structure pre-
diction using cascaded convolutional and recurrent neural
networks. IJCAI.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710. ACM.
Yang, Z.; Cohen, W. W.; and Salakhutdinov, R. 2016. Re-
visiting semi-supervised learning with graph embeddings.
arXiv preprint arXiv:1603.08861.
Zhao, Z.; Yang, Q.; Lu, H.; Weninger, T.; Cai, D.; He, X.;
and Zhuang, Y. 2018. Social-aware movie recommenda-
tion via multimodal network learning. IEEE Transactions
on Multimedia 20(2):430–440.
Zügner, D.; Akbarnejad, A.; and Günnemann, S. 2018. Ad-
versarial attacks on neural networks for graph data. In Pro-
ceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, 2847–2856.
ACM.
Zügner, D., and Günnemann, S. 2019. Adversarial attacks
on graph neural networks via meta learning. arXiv preprint
arXiv:1902.08412.

