Graph Neural Ordinary Differential Equations

Michael Poli*, Stefano Massaroli®*, Junyoung Park'*
Atsushi Yamashita?, Hajime Asama?, Jinkyoo Park!

1Korea Advanced Institute of Technology (KAIST),
2The University of Tokyo,
*Equal contribution authors

The First International Workshop on Deep Learning on Graphs:
Methodologies and Applications (DLGMA’20)
2020-02-08

KAIST o 51K ¥

5
¥ TrUvmsYor Tovo

Michael Poli (KAIST) Graph Neural Ordinary Differential Equations| DLGMA’20 2020-02-08 1/18



Continuous—depth Learning

Standard DL Settings DL on Graphs
he 1 = hs + f(hs,0;) | Heyy = H, + o(D2AD 2H,0,)
residual layer graph convolution layer

Objective: develop the continuous—depth paradigm for deep learning.
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Continuous—depth Learning

Standard DL Settings DL on Graphs
he 1 = hs + f(hs,0;) | Heyy = H, + o(D2AD 2H,0,)
residual layer graph convolution layer

Objective: develop the continuous—depth paradigm for deep learning.

_ Neural ODEs _Graph Neural ODEs
h(s) =f(s.h(s),0) | H(s) = Fg(s,H(s), ®)
[R. T. Chen et al., 2018] proposed approach

Graph Neural Ordinary Differential Equations (GDEs) blend discrete
topological structures and differential equations. J
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GDEs blend discrete topological structures and differential equations.
Advantages:

@ Static settings: computational advantages by incorporation of numerical
methods in the forward pass.

@ Dynamic settings: exploitation of the geometry of the underlying
dynamics and flexibility with respect to irregular observations.

Notation:

set of nodes | setofedges | graph | features
V ((V=n) | Ec{(u)},er | §:=(0.8) | XeR™I
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|
Graph Neural ODEs (GDEs)

Graph Neural Networks

{Hs+1 = Hs + Fg (57 H57 65)

H, = X. seN

where F is a matrix—valued nonlinear function conditioned on graph G and ©; is
the tensor of trainable parameters of the s-th layer.

Graph Neural ODEs (GDEs) [Proposed]

{Hs = F¢ (s,H;, ®)

Ho = X. , SESCR (1)

where F : S x R™9 x RP — R"* is a depth-varying vector field defined on G.
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What do GDEs learn?

They learn a graph—conditioned vector field Fg (parametrized by a GNN) such
that:

Y —H(s) = X, +/ Fo(r, H(r), ©)dr
input embedding
with
Xe = XW, O =argminL
@ W
Remark:

The depth variable s assuming real values brings, in the limit, the map
X—=H(s)=Y

to resemble a network with infinitely dense layers
= i.e., GDEs are the deep limit of GNNs.
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N
Static Models

Graph Convolution Neural Differential Equations (proposed)
By choosing Fg as a simple GCN, we obtain the GCDE:

%H(s) — (D }AD}H(5)0)

Alternative convolution filters can be employed instead.

Note:

@ With different priors on Fg we can build other types of GDEs: GAT,
diffusive, message passing, etc.

@ Moreover, we can ipclude additional biases in the model structure, e.g.
second-order: | H(s) = Fg(s,H(s), ®)
stochastic: | dH(s) = Fg(s,H(s), Or)ds + Gg(s, H(s), ©®,)dW
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Semi—supervised Node Classification

Evaluation on Cora, Citeseer, Pubmed

Ablation study: same architecture, different numerical solvers J
Model (NFE) Cora Citeseer Pubmed
GCN 81.44+05% 70.9+05% 79.0+0.3%
GCN* 82.84+0.3% 71.2+0.4% 795+0.4%

GCDE-rk2 (2)  83.0+0.6% 72.3+0.5% 79.9+0.3%
GCDE-rk4 (4)  83.8+0.5% 72.5+05% 79.5+0.4%
GCDE—dpr5 (158) 81.8+1.2% 68.3+1.2% 78.5+0.7%

Results across 100 runs.
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Semi—supervised Node Classification

Cora Test Accuracy
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Higher order solvers: generally more performant, provided graph is dense enough
to benefit from additional computation.

No direct advantage of solving the ODE accurately with adaptive solvers. J
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Visualizing Node Feature Trajectories

GCDE: Training Set — Node Embedding Trajectories (first two )
Cora Citeseer Pubmed
4 /
.| /| 'r”/ TN =
//% 02 \ W { i oy
- 2\ % - /4 s
ER 4N Eo | = -l
2 ~02 / L
—0.4
71‘,5 7‘1 7(‘].5 0 0.5 1 1.5 —0.6 7(‘].4 7(‘),2 6 012 014 0‘.6 ~1 0 1 2 3
HO HO HO

Trajectories defined by a forward pass of GCDE on Cora, Citeseer and Pubmed.
Color differentiates between node classes. J

The trajectories are divergent, suggesting a non—decreasing classification
performance for GCDE models trained with longer integration intervals.
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-
Spatio—Temporal GDEs as Hybrid Systems

In dynamic settings, i.e. direct modeling of dynamical systems, the depth variable
s assumes the meaning of time: s := t and can be modified depending on the
requirements.

For example, given a time window At, the prediction performed by a GDE
assumes the form:

H(t + At) = H(t) + /t+At F(r,H(7),®)dr, J

We can extend the GDE framework to settings with sequences of graphs: {G} by
leveraging hybrid dynamical system machinery. J
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Spatio—Temporal GDEs as Hybrid Systems

H; =F(t,H;, ©)

® T :={tx}kex, K CN\{0}: set of time instants }

@ {(X¢,G¢)},cr: state-graph data stream:

GDEs models vector fields defined on graphs. Autoregressive GDEs can handle
dynamic topologies (jumps).
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General Autoregressive GDE

The solution of a general autoregressive GDE model (one timestamp):

H(s) =Fg, (H(s),0) se€[ti1,t]
H*(s) =Gg, (H(s),Xs,) s=t kelk, (2)
Y = K(H(s)) s =t

@ F,G,K are GNN-like operators or general neural network layers

@ HT represent the value of H after the discrete transition.

Idea

GDEs smoothly steer latent node features between two time instants and then

apply some discrete operator, resulting in a “jump” of H which is then processed
by an output layer.
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Figure: Schematic of autoregressive GDEs as hybrid automata.

Continuous—depth version of GCGRUs, GCDE-GRU:

H S) = FGCN(H(S), @) sc [tk_]_, tk]
H*(s) = GCGRU(H(s),X:) s=tx k €K,
Y = K(H(s)) s =ty

GCDE-RNNs or GCDE-LSTMs can be obtained in a similar fashion.
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Traffic Forecasting

Evaluation on an undersampled PeMS(M) traffic dataset: 228 sensor stations
To measure robustness to unevenly sampled datasets we turn regular
observations (5 minute intervals) into irregular:

@ 70% probability of removal per point

@ offline undersampling of training and test data

Model (depth) MAPE NRMSE
GRU 27.52+£0.00 1.47 +0.00
GCGRU 24.80+0.12 1.44+0.00

GCDE-GRU  23.08 £0.11 1.40+0.01

Table: Forecasting test results across 5 runs (mean and standard deviation).
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Future extensions

Unknown topology:

@ Compatibility with GDEs due to the algebraic nature of the relation
between the attention operator and the node features

@ If an optimal adaptive graph representation S(s, H) is obtained via some

attentive mechanism: .
H =0 (SHO).

Control terms:

{H(S):Fg (s H(s).©) +U(s) s

H(0) = X. ’

This approach encompasses a variety of previously proposed approaches, e.g.
special residual connections. In particular, a choice is U (s) := Ug (s, X).

And naturally, other classes of differential equations.
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Thank you
Q&A
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Appendix
Cora train accuracy Cora test accuracy
1 _
0.8
0.8+
>, i
5 0.6 0.6
g
= 04 —acpEs=1 [ — GCDE S=1
0.9 —GCDE S=5 —GCDE S=5
' —GCDE S=10 0.2 —GCDE S=10
0 100 200 300 400 0 100 200 300 400
epochs epochs

Cora accuracy of GCDE models with different integration times s. Higher
values of S do not affect performance negatively but require a higher number of
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Sensor Data

Sensor Data

Sensor Data
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