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Structures and Dynamics of Complex Systems

Brain and Bioelectrical flow

Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow
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Problem: Learning Dynamics of complex systems

Brain and Bioelectrical flow

Transportation and Traffic flow
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Problem: Math Formulation

JLearning Dynamics on Graph
oDynamics of nodes: X(t) € R™4 at t, where n is number of
nodes, d is number of features, X (t) changes over continuous
time t.

oGraph: ¢ = (V,E), V are nodes, E are edges.

oHow dynamics % = f(X(t), G, 0,t) change on graph?
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Problem: Prediction Tasks

J Continuous-time network dynamics prediction:
olnput: G, {X(t,), X(£2), .., X(tr)|[0 <t < -+ < tr}, &y <+ <t are arbitrary time

moments
o?A model of dynamics on graphs C% = f(X(t),G,0,t)
oQutput: to predict X(t) at an arbitrary time moment
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Problem: Prediction Tasks

[ Continuous-time network dynamics prediction:
olnput: G, {X(ty), X(t;), ., X(tr)|0 < t; < -+ < t7}, t; < -+ <ty are arbitrary time

moments
o?A model of dynamics on graphs —== f(X(t),G,0,t)

oQOutput: to predict X(t) at an arbltrary time moment

(Special case) Structured sequence prediction
olnput: G, {X[1],X[2], ..., X[T]|0 < 1 < --- < T}, ordered sequence

o? A model of dynamlcs on graphs dit) = f(X(t),G,0,t)
oOutput: to predict next k steps X[T + k]

(Special case) Node (semi-supervised) regression/classification
olnput: G, X = [X,Mask O Y] features and node labels, only one snapshot
o? A model of dynamics on graphs = f(X(t),G,0,t)
oQOutput: to predict [X, Y]

X(t)
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Challenges: Dynamics of Complex Systems

JComplex systems:
oHigh-dimensionality and
Complex interactions
0= 100 nodes, = 1000 interactions

JDynamics:
oContinuous-time, Nonlinear

JStructural-dynamic
dependencies:

oDifficult to be modeled by simple
mechanistic models
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Challenges: Dynamics of Complex Systems

eat Diffusion Dynamics

JExamples of dynamics on graphs

4+ Linear Dynamics 9

N
X
/\/ 2 < <4 Linear Dynamics 9 - f(X(1),6,0,t)
7
/> , 4+ Non-Linear Dynamlcsé
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Related Works 1: Learning Continuous Time
Dynamics

JData-driven dlscovery of ODEs/ PDEs

Osparse RegreSSIOn I True Lorenz System FE I L BT T T
& = o(y—a) :: (s :Ei [m EZi E-z i
oResidual Network i = sl _ B
oEtc. S
1Small systems! )

0<10 nodes & interactions
oCombinatorial complexity
oNot for complex systems

I Sparse Regression to Solve for Active Terms in the Dynamics

Image from: Brunton et al. 2016. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. PNAS
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https://www.pnas.org/content/113/15/3932.short

Related Works 2: Structured Sequence Learning

IDefined characteristics

oDynamics on graphs are regularly-sampled with same time
intervals

JTemporal Graph Neural Networks
oRNN + CNN

oRNN + GNN
& X[t+1]=LSTM(GCN([t], G))

JLimitations:
oOnly ordered sequence instead of continuous physical time

Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks
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https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf

Related Works 3: Node (Semi-supervised)
Classification/Regression

Defined characteristics
oOne-snapshot features and some labels on graphs
oGoal: to assign labels to each node

JGraph Neural Networks

oGAN| ,etC Z=f(X,A)= softmax(AA ReL.U ( A X'I-V(”)) IV(I))
) . ) ’

_.I. =0 —1_ S (},i\'. k _;J
JLimitations K (1\ éjg W )

o1 or 2 layers
oLacking a continuous-time dynamics view

*»To spread features or labels on graphs
“*Continuous-time: more fine-grained control on diffusion

Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks

Velickovic et al. 2017. Graph Attention Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903

Neural Dynamics on Complex Networks (NDCN)

] Differential Deep Learning
oDifferential Equation systems: xO fX(L),GW,t)
is a graph neural network like sttlicture.
oDjfferential Deep model: X(¢) = X(0) +
Jo F(X(®), G, W,t)dr for arbitrary time ¢
oLearned as following optimization problem:

T A
argmin L= / | X (t) — X(t)| dt
Wi, bx 0

subject to X}, (t) = tanh (X(t)We n be) Wo + bo

dXp ()
dt
X(t) = Xh(t)Wd + by

— ReLU (chh(t)W n b) . X5 (0)

1 1
b =D 2 (D — A)D— 2 ¢ RnXn DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 12



Exp1: Learning Continuous-time Network Dynamics

J1The Problem:
olnput: {X(t1), X(t), ., X(tP)|0 < t; < - < tph ty < - < tp are
arbitrary time moments with different time intervals
oOutput: X(t),t is an arbitrary time moment
“*interpolation prediction: t < t; and # {t; < - < ty}
»extrapolation prediction: t > t;

JSetups:

0120 irregularly sampled snapshots of network dynamics
oFirst 100: 80 for train 20 for testing interpolation
oLast 20: testing for extrapolation
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Canonical Dynamics on Graphs in Physics

and Biologx

1 Real-world Dynamics on Graph (adjacency matrix A)

oHeat diffusion: ZY) — —kﬁ A (0) — x5 (D)
B byt (0 (1- D) (A9 1) 4
0 OETO) AN

J=1470) d;+e;x; (t)+h]x t
dxy(t) yO"
oGene regulatory: — == —b, X (O + Xy Ay =L O

J Graphs

oGrid, Random, power-law, small-world, community, etc.

dVisualizing dynamics on graph
oNodes are numbered by community labels

oMapped into a N? grid
oX()™!: N* > R 0 d—
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Exp1: Learning Continuous-time Network Dynamics

1Baselines: ablation models

oDifferential-GNN

“*No encoding layer

oNeural ODE Network

“*No graph diffusion

oNDCN without control parameter W
*»*Determined dynamics

Chen et al. 2019. Neural Ordinary Differential Equations. NeurlPS.
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X Xp(t)

1

dX,(t)
dt

t+
X({t+8) =X+ f fX,G,W,1)dt Xp(t+8) = Xp(t) + f fXn, G,W,7)dt

Differential NDCN
T .
aVI;/%I,Ill;ln L= /0 | X (t) — X ()| dt
subject to X (t) = tanh (X(t)W,5 + be) Wo + bo
dtht(t) = ReLU (@Xh(t)W + b) , X1 (0)

X(t) = Xp(t)Wa + bg
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http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
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Exp1: Heat Diffusion on Different Graphs
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Exp1: Mutualistic Dynamics on Different Graphs
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Exp1: Gene Dynamics on Different Graphs
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Exp1: Results for Continuous-time Extrapolation

JMean Absolute Percentage Error
J20 runs for 3 dynamics on 5 graphs
JOur model achieves lowest error

Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics ac-
curately. Each result is the normalized /; error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5

networks by each method.

Grid Random Power Law Small World Community
No-Encode 29.9 £ 7.3 27.8 £ 5.1 24.9 £5.2 24.8 £ 3.2 30.2+ 4.4
Heat No-Graph 30.5 + 1.7 5.8+ 1.3 6.8+ 0.5 10.7 £ 0.6 24.3 £+ 3.0
Diffusion No-Control 73.4+14.4 28.2 +4.0 25.2+4.3 30.8 + 4.7 37.1 £ 3.7
(NDCN 4.1+1.2 4.3+ 1.6 491+ 0.5 2.5+0.4 4.8+ 1.0 |
No-Encode 45.3 = 3.7 9.1x2.9 29.9 = 8.8 54.5 = 3.6 14.5 = 5.0
Mutualistic No-Graph 56.4 + 1.1 6.7 £ 2.8 14.8 £ 6.3 54.5 + 1.0 9.5+ 1.5
Interaction No-Control 140.7 4+ 13.0 10.8 + 4.3 106.2 4 42.6 115.8 +12.9 16.9 + 3.1
[NDCN 26.7 £ 4.7 3.8+ 1.8 7.4+ 2.6 14.4 + 3.3 3.6 +1.5
No-Encode 31.7x 14.1 17.5 = 13.0 33.7x 9.9 25.5x 7.0 26.3 = 10.
Gene No-Graph 13.3+ 0.9 12.2 + 0.2 43.7 £ 0.3 15.4 4+ 0.3 19.6 £ 0.5
Regulation No-Control 65.2 + 14.2 68.2 + 6.6 70.3 + 7.7 58.6 £ 17.4 64.2 + 7.0
[NDCN 16.0 + 7.2 1.8+ 0.5 3.6 £ 0.9 4.31+0.9 2.5+ 0.6 |
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Exp1: Results for Continuous-time Interpolation

Jdinterpolation is easier than extrapolation
JOur model achieves lowest error

Table 2: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accu-
rately. Each result is the normalized ¢, error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community
No-Encode  32.0 £ 12.7  26.7 £ 4.4 25.7 £ 3.8 279+ 7.3 35.0%6.3
Heat No-Graph 419+ 1.8 9.4+ 0.6 18.2+ 1.5 25.0+2.1 25.0+1.4
Diffusion No-Control __ 56.8 4 2.8 322+ 7.0 33.5+5.7 404+34 391+45
NDCN 3.2+0.6 3.2+0.4 5.6 + 0.6 34+04 43405 |
No-Encode  28.9 £ 2.0 199 £6.5 345+ 13.4 27.6 £ 2.6 25.5 L 8.7
Mutualistic  No-Graph 28.7 + 4.5 7.8 4+ 2.4 23.2 + 4.2 26.9+3.8 14.1+2.4
Interaction No-Control 7224+ 41 225+ 102 638+ 39 6794+ 29 339+ 123
NDCN 7.6 +1.1 6.6 +2.4 6.5+ 1.3 47+07 79+29 |
No-Encode  39.2 + 13.0 14.5 + 12.4 33.6 = 10.1  27.7 +9.4 21.2 + 10.4
Gene No-Graph 25.2 + 2.3 11.9 + 0.2 39.4+1.3 15.7+ 0.7 18.9+0.3
chulation No-Cantrol 66 90 + 8 R 31 7+52 4034+ 66 49 0+ R0 35 54+53
NDCN 5.8+ 1.0 1.5 + 0.6 2.9+ 0.5 42+09 23+0.6 |
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Exp2: Structured Sequence Prediction

1The Problem (Structured sequence prediction):
olnput: {X1],X[2], ..., X[T]|0 < 1 < - < T}, 1,..T are regularly-
sampled with same time intervals
*»with an emphasis on ordered sequence rather than time
oOutput: X(t+ + M), next M steps

“»extrapolation prediction
JSetups:

0100 regularly sampled snapshots of network dynamics
oFirst 80 for training, last 20 for testing
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Exp2: Structured Sequence Prediction

Baselines: temporal-GNN models
oLSTM-GNN
@ X[t+1]=LSTM(GCN([t], G))
oGRU-GNN
“X[t+1]1=GRU(GCN([t], G))
oRNN-GNN
<+ X[t+1]=RNN(GCN([t], G))

Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Exp2: Structured Sequence Prediction

1Results:
oOur model achieves lowest error with much less parameters

JThe learnable parameters:
oLSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530
oNDCN: 901

Table 3: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each
result is the normalized ¢, error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each
method.

Grid Random Power Law Small World Community
LSTM-GNN 12.8 = 2.1 21.6 £ 7.7 12.4 + 5.1 11.6 £ 2.2 13.5 4.2
Heat GRU-GNN 11.2 4+ 2.2 9.1 £2.3 8.8+ 1.3 9.3 £1.7 7.9+0.8
Diffusion 59 250 L 586 189 L G5 21 8L 38 161 00
| NDCN 4.3 +0.7 4.7 £ 1.7 54+0.4 2.7+ 0.4 5.3 +0.7
LSTM-GNN ol.4 1+ 3.3 24.2 1+ 24.2 27.0x 7.1 08.2 = 2.4 25.0 = 22.3
Mutualistic GRU-GNN 49.8 = 4.1 1.0t 3.6 12.2 + 0.8 51.1 £ 4.7 3.7+4.0
Interaction RNN-GNN 566 + 0.1 84+ 11.3 120+ 0.4 7.4+ 1.9 82+ 6.4
NDCN 29.81+ 1.6 4.7+1.1 11.2 £ 5.0 15.9 + 2.2 3.8+ 0.9
LSTM-GNN 27.7 £ 3.2 67.3 £ 14.2 38.8 £ 12.7 13.1 £ 2.0 53.1 £ 16.4
Gene GRU-GNN 24.2+2.8 50.9 £ 6.4 35.1 £15.1 11.1 + 1.8 46.2 = 7.6
Regulation RNN.GNN 28 0L B8 565 L 57 420128 140513 465135
NDCN 18.6 + 9.9 2.4+ 0.9 4.1+ 1.4 5.5+ 0.8 2.9+ 0.5




Exp3. Node Semi-suprvised Classification

JThe Problem:

oOne-snapshot case

olnput: G, X, part of labels Y (X)
oOutput: To Complete Y (X)

JDatasets:

5 Table 11: Statistics for three real-world citation network

datasets. N, E, D, C represent number of nodes, edges, fea-
tures, classes respectively.

Dataset N E D C  Train/Valid/Test

Cora 2,708 5,429 1,433 7  140/500/1,000
Citeseer 3,327 4,732 3,703 6 120/500/1, 000
Pubmed 19,717 44,338 500 3 60/500/1, 000
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Exp3. Node Semi-suprvised Classification

_1Baselines
oGraph Convolution Network (GCN) 2= (X, 4) = softmax(4 ReLU (AxW©) w)
oAttention-based GNN (AGNN) |
oGraph Attention Networks (GAT) hi=o (,i Z > ui-‘;-w"ﬁj>

k=1jeN;

Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks

Velickovic et al. 2017. Graph Attention Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 25
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Exp3. Node Semi-suprvised Classification

Jdinterpretation of model
olnput: G, [X, Mask®Y], features and some node labels

oOutput: To Complete Y

oModel: A graph dynamics to spread features and labels over time
T
& dIxyY]
dt

>

— f(G X7 X7 YATN T " c )
argmin L= / R(t)dt —> > Vi k(T)log Vi k(T)
0

We7be,Wd,bd =1 k=1
subjectto X (0) = tanh (X(O)We + be)

dXyp (t)
dt
Y (T) = softmax (X, (T)Wg4 + ba)

— ReLU ((I)Xh(t))
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Exp3. Node Semi-suprvised Classification

i Table 4: Test mean accuracy with standard deviation in per-
DMetrICS centage (%) over 100 runs. Our NDCN model gives very

O ACCU racy over 100 runs competitive results compared with many GNN models.

0.80

Model Cora Citeseer Pubmed
GCN 81.5 70.3 79.0
DReSUItS AGNN 83.1+0.1 71.7 £ 0.1 79.9+0.1
OCOntanOUS-tlme GAT 83.0+0.7 7254+0.7 79.04+0.3
' NDCN 83.3 £ 0.6 73.1 1+ 0.6 79.8+ 0.4
dynam ICS On g raphs (a) Cora (b) Citeseer (c) Pubmed

0.8 0.7

oBest results at time T=1.2 =
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Figure 5: Our NDCN model captures continuous-time dynam-
ics. Mean classification accuracy of 100 runs over terminal
time when given a specific «. Insets are the accuracy over the
two-dimensional space of terminal time and «

0.6

256§

Zos
e
304
g

<
0.3

0.2

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 27



Summary

(JOur NDCN, a unified framework to solve
oContinuous-time network dynamics prediction:
oStructured sequence prediction
oNode regression/classification at final state
good performance with less parameters.

Differential Deep Learning on Graphs

oA potential data-driven method to model structure and dynamics
of complex systems in a unified framework
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