

1

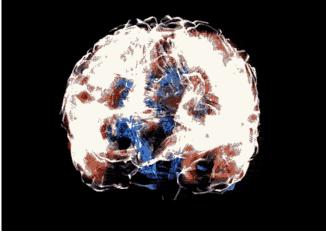
Neural Dynamics on Complex Networks

Chengxi Zang and Fei Wang Weill Cornell Medicine

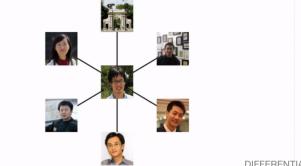
www.calvinzang.com

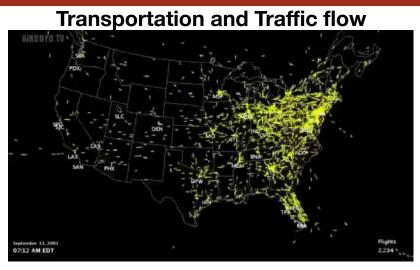
Structures and Dynamics of Complex Systems

Brain and Bioelectrical flow

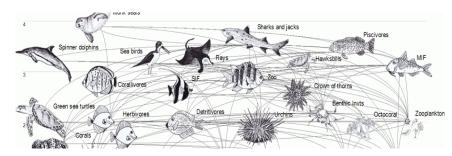


Social Networks and Information flow



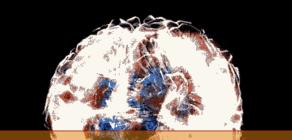


Ecological Systems and Energy flow



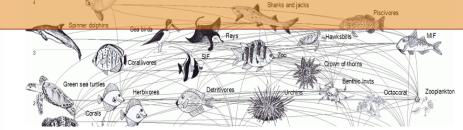
Problem: Learning Dynamics of complex systems

Brain and Bioelectrical flow



Dynamics? How to predict the temporal

Social Networks and Ir formation flow Change Of these Complex Systems and Energy flow



Problem: Math Formulation

Learning Dynamics on Graph

- •Dynamics of nodes: $X(t) \in \mathbb{R}^{n*d}$ at t, where n is number of nodes, d is number of features, X(t) changes over continuous time t.
- Graph: G = (V, E), V are nodes, E are edges.
- •How dynamics $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$ change on graph?

Problem: Prediction Tasks

Continuous-time network dynamics prediction:

o Input: G, $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are arbitrary time moments

•? A model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$

Output: to predict X(t) at an arbitrary time moment

Problem: Prediction Tasks

Continuous-time network dynamics prediction:

o Input: G, $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are arbitrary time moments

•? A model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$

Output: to predict X(t) at an arbitrary time moment

□ (Special case) Structured sequence prediction

olnput: G, $\{\widehat{X[1]}, \widehat{X[2]}, ..., \widehat{X[T]} | 0 \le 1 < \cdots < T\}$, ordered sequence o? A model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$ oOutput: to predict next k steps X[T + k]

Construction (Special case) Node (semi-supervised) regression/classification

oInput: G, $\hat{X} = [\hat{X}, Mask \odot \hat{Y}]$ features and node labels, only one snapshot o? A model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$ oOutput: to predict [X, Y]

Challenges: Dynamics of Complex Systems

Complex systems:

 High-dimensionality and Complex interactions

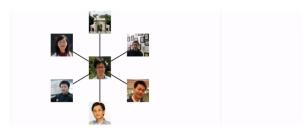
 $0 \ge 100$ nodes, ≥ 1000 interactions

Dynamics:

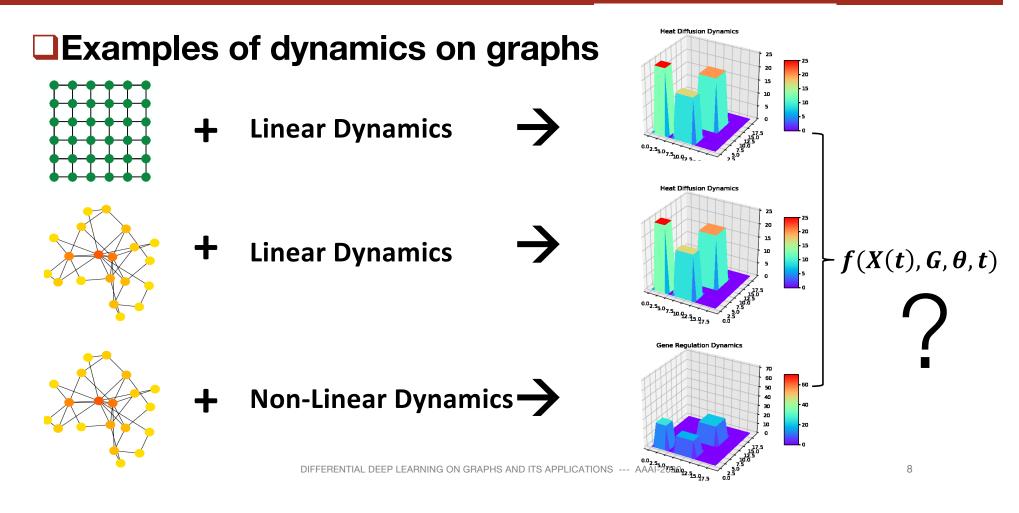
oContinuous-time, Nonlinear

Structural-dynamic dependencies:

Difficult to be modeled by simple mechanistic models



Challenges: Dynamics of Complex Systems



Related Works 1: Learning Continuous Time Dynamics

Data-driven discovery of ODEs/ PDEs

OSparse Regression

Residual NetworkEtc.

Small systems!

<10 nodes & interactions
Combinatorial complexity
Not for complex systems

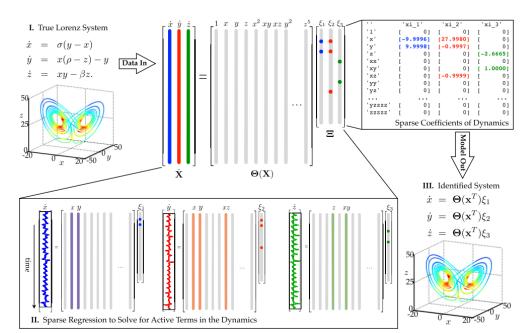


Image from: Brunton et al. 2016. <u>Discovering governing equations from data by</u> <u>sparse identification of nonlinear dynamical systems.</u> PNAS

Related Works 2: Structured Sequence Learning

Defined characteristics

 Dynamics on graphs are regularly-sampled with same time intervals

Temporal Graph Neural Networks

oRNN + CNN oRNN + GNN

✤X[t+1]=LSTM(GCN([t], G))

Limitations:

oOnly ordered sequence instead of continuous physical time

Seo et al. 2016. <u>Structured Sequence Modeling with Graph Convolutional Recurrent Networks</u>. Wu et al. 2019. <u>A Comprehensive Survey on Graph Neural Networks</u> DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

Related Works 3: Node (Semi-supervised) Classification/Regression

Defined characteristics

One-snapshot features and some labels on graphs
 Goal: to assign labels to each node

Graph Neural Networks

oGCN, oGAT, etc.

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$
$$\vec{h}'_i = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha^k_{ij} \mathbf{W}^k \vec{h}_j \right)$$

o1 or 2 layers

Limitations

- Lacking a continuous-time dynamics view
 - To spread features or labels on graphs
 - Continuous-time: more fine-grained control on diffusion

Kipf et al. 2016. <u>Semi-Supervised Classification with Graph Convolutional Networks</u> Velickovic et al. 2017. <u>Graph Attention Networks</u>

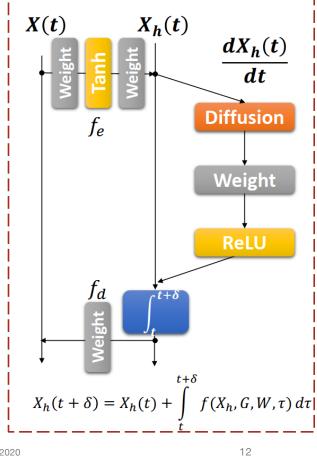
Neural Dynamics on Complex Networks (NDCN)

 $\mathcal{L} = \int_{-\infty}^{T} |X(t) - \hat{X(t)}| dt$

 $\operatorname*{argmin}_{W_*,b_*}$

subject to

$$J_0 = \tanh \left(X(t)W_e + b_e \right) W_0 + b_0$$
$$\frac{dX_h(t)}{dt} = \operatorname{ReLU} \left(\Phi X_h(t)W + b \right), X_h(0)$$
$$X(t) = X_h(t)W_d + b_d$$



 $\Phi = D^{-\frac{1}{2}}(D-A)D^{-\frac{1}{2}} \in \mathbb{R}^{n \times n}$

Exp1: Learning Continuous-time Network Dynamics

The Problem:

olnput: $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are arbitrary time moments with different time intervals

Output: X(t), t is an arbitrary time moment

♦ interpolation prediction: $t < t_T$ and $\neq \{t_1 < \cdots < t_T\}$

\diamondextrapolation prediction: t > t_T

Setups:

120 irregularly sampled snapshots of network dynamics
First 100: 80 for train 20 for testing interpolation
Last 20: testing for extrapolation

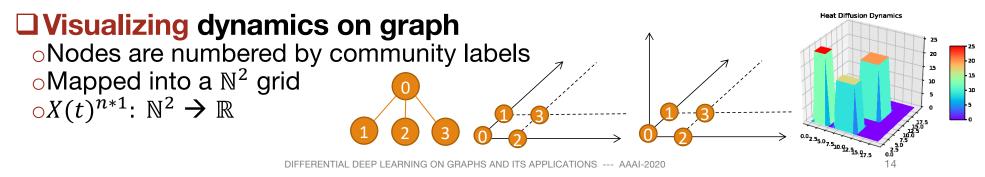
Canonical Dynamics on Graphs in Physics and Biology

Real-world Dynamics on Graph (adjacency matrix A)

•Heat diffusion: $\frac{dx_i(t)}{dt} = -k_{i,j} \sum_{j=1}^n A_{i,j} (\overrightarrow{x_i(t)} - \overrightarrow{x_j(t)})$ •Mutualistic interaction: $\frac{dx_i(t)}{dt} = b_i + \overrightarrow{x_i(t)} \left(1 - \frac{\overrightarrow{x_i(t)}}{k_i}\right) \left(\frac{\overrightarrow{x_i(t)}}{c_i} - 1\right) + \sum_{j=1}^n A_{i,j} \frac{\overrightarrow{x_i(t)} + h_j \overrightarrow{x_j(t)}}{dt}$ •Gene regulatory: $\frac{dx_i(t)}{dt} = -b_i \overrightarrow{x_i(t)}^f + \sum_{j=1}^n A_{i,j} \frac{\overrightarrow{x_j(t)}^h}{x_i(t)^{h+1}}$

Graphs

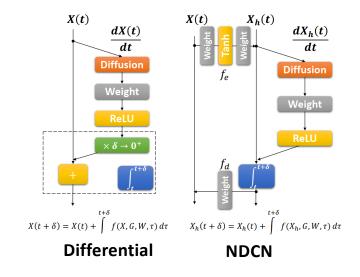
oGrid, Random, power-law, small-world, community, etc.



Exp1: Learning Continuous-time Network Dynamics

Baselines: ablation models

Differential-GNN
No encoding layer
Neural ODE Network
No graph diffusion
NDCN without control parameter W
Determined dynamics



argmin

$$W_{*,b*}$$

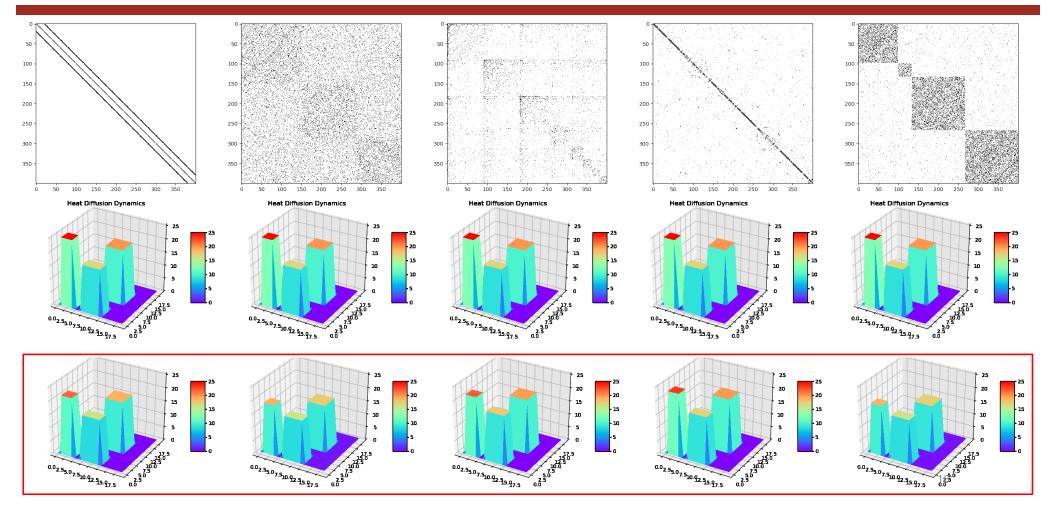
$$\mathcal{L} = \int_{0}^{T} |X(t) - \hat{X(t)}| dt$$
subject to
$$X_{h}(t) = \tanh\left(X(t)W_{e} + b_{e}\right)W_{0} + b_{0}$$

$$\frac{dX_{h}(t)}{dt} = \operatorname{ReLU}\left(\Phi X_{h}(t)W + b\right), X_{h}(0)$$

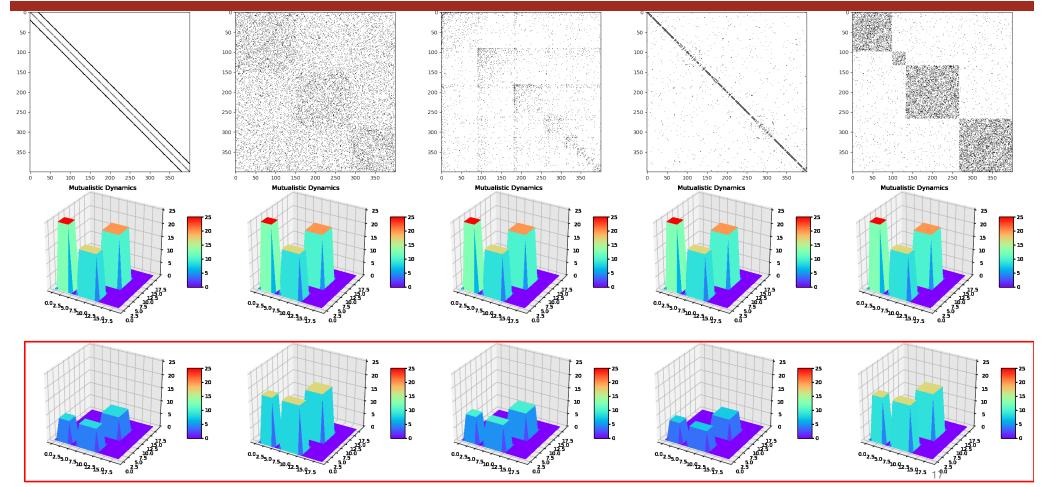
$$X(t) = X_{h}(t)W_{d} + b_{d}$$

Chen et al. 2019. Neural Ordinary Differential Equations. NeurIPS.

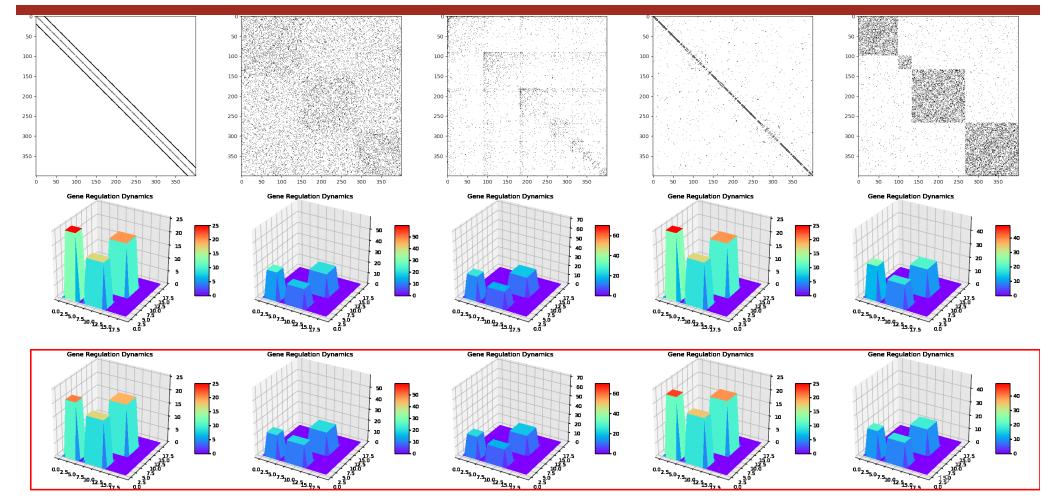
Exp1: Heat Diffusion on Different Graphs



Exp1: Mutualistic Dynamics on Different Graphs



Exp1: Gene Dynamics on Different Graphs



Exp1: Results for Continuous-time Extrapolation

Mean Absolute Percentage Error 20 runs for 3 dynamics on 5 graphs Our model achieves lowest error

Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics accurately. Each result is the normalized ℓ_1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each method.

		Grid	Random	Power Law	Small World	Community
Heat Diffusion	No-Encode	29.9 ± 7.3	27.8 ± 5.1	24.9 ± 5.2	24.8 ± 3.2	30.2 ± 4.4
	No-Graph	30.5 ± 1.7	5.8 ± 1.3	6.8 ± 0.5	10.7 ± 0.6	24.3 ± 3.0
	No-Control	73.4 ± 14.4	28.2 ± 4.0	25.2 ± 4.3	30.8 ± 4.7	37.1 ± 3.7
	NDCN	4.1 ± 1.2	4.3 ± 1.6	$\bf 4.9 \pm 0.5$	2.5 ± 0.4	4.8 ± 1.0
	No-Encode	45.3 ± 3.7	9.1 ± 2.9	29.9 ± 8.8	54.5 ± 3.6	14.5 ± 5.0
Mutualistic Interaction	No-Graph	56.4 ± 1.1	6.7 ± 2.8	14.8 ± 6.3	54.5 ± 1.0	9.5 ± 1.5
	No-Control	140.7 ± 13.0	10.8 ± 4.3	106.2 ± 42.6	115.8 ± 12.9	16.9 ± 3.1
	NDCN	26.7 ± 4.7	3.8 ± 1.8	7.4 ± 2.6	$\bf 14.4 \pm 3.3$	3.6 ± 1.5
	No-Encode	31.7 ± 14.1	17.5 ± 13.0	33.7 ± 9.9	25.5 ± 7.0	26.3 ± 10.4
Gene Regulation	No-Graph	13.3 ± 0.9	12.2 ± 0.2	43.7 ± 0.3	15.4 ± 0.3	19.6 ± 0.5
	No-Control	65.2 ± 14.2	68.2 ± 6.6	70.3 ± 7.7	58.6 ± 17.4	64.2 ± 7.0
	NDCN	16.0 ± 7.2	1.8 ± 0.5	3.6 ± 0.9	$\bf 4.3 \pm 0.9$	2.5 ± 0.6

Exp1: Results for Continuous-time Interpolation

Interpolation is easier than extrapolationOur model achieves lowest error

Table 2: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accurately. Each result is the normalized ℓ_1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each method.

		Grid	Random	Power Law	Small World	Community
Heat Diffusion	No-Encode	32.0 ± 12.7	26.7 ± 4.4	25.7 ± 3.8	27.9 ± 7.3	35.0 ± 6.3
	No-Graph	41.9 ± 1.8	9.4 ± 0.6	18.2 ± 1.5	25.0 ± 2.1	25.0 ± 1.4
	No-Control	56.8 ± 2.8	32.2 ± 7.0	33.5 ± 5.7	40.4 ± 3.4	39.1 ± 4.5
	NDCN	3.2 ± 0.6	3.2 ± 0.4	5.6 ± 0.6	3.4 ± 0.4	$\bf 4.3 \pm 0.5$
	No-Encode	28.9 ± 2.0	19.9 ± 6.5	34.5 ± 13.4	27.6 ± 2.6	25.5 ± 8.7
Mutualistic	No-Graph	28.7 ± 4.5	7.8 ± 2.4	23.2 ± 4.2	26.9 ± 3.8	14.1 ± 2.4
Interaction	No-Control	72.2 ± 4.1	22.5 ± 10.2	63.8 ± 3.9	67.9 ± 2.9	33.9 ± 12.3
L	NDCN	7.6 ± 1.1	6.6 ± 2.4	6.5 ± 1.3	4.7 ± 0.7	7.9 ± 2.9
	No-Encode	39.2 ± 13.0	14.5 ± 12.4	33.6 ± 10.1	27.7 ± 9.4	21.2 ± 10.4
Gene	No-Graph	25.2 ± 2.3	11.9 ± 0.2	39.4 ± 1.3	15.7 ± 0.7	18.9 ± 0.3
Regulation	No-Control	66.9 ± 8.8	31.7 ± 5.2	40.3 ± 6.6	49.0 ± 8.0	35.5 ± 5.3
Ū.	NDCN	5.8 ± 1.0	$\bf 1.5 \pm 0.6$	2.9 ± 0.5	4.2 ± 0.9	2.3 ± 0.6

Exp2: Structured Sequence Prediction

The Problem (Structured sequence prediction):

oInput: $\{\widehat{X[1]}, \widehat{X[2]}, \dots, \widehat{X[T]} | 0 \le 1 < \dots < T\}, 1, \dots, T$ are regularly-

sampled with same time intervals

with an emphasis on ordered sequence rather than time

Output: $X(t_T + M)$, next M steps

*extrapolation prediction

Setups:

100 regularly sampled snapshots of network dynamics
 First 80 for training, last 20 for testing

Exp2: Structured Sequence Prediction

Baselines: temporal-GNN models

- oLSTM-GNN
- ✤X[t+1]=LSTM(GCN([t], G))
- oGRU-GNN
- ✤X[t+1]=GRU(GCN([t], G))
- **oRNN-GNN**
 - ✤X[t+1]=RNN(GCN([t], G))

Seo et al. 2016. <u>Structured Sequence Modeling with Graph Convolutional Recurrent Networks.</u> Wu et al. 2019. <u>A Comprehensive Survey on Graph Neural Networks</u> DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

Exp2: Structured Sequence Prediction

Results:

oOur model achieves lowest error with much less parameters

The learnable parameters:

LSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530
NDCN: 901

Table 3: **Regularly-sampled Extrapolation Prediction.** Our NDCN predicts different structured sequences accurately. Each result is the normalized ℓ_1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each method.

		Grid	Random	Power Law	Small World	Community
Heat Diffusion	LSTM-GNN	12.8 ± 2.1	21.6 ± 7.7	12.4 ± 5.1	11.6 ± 2.2	13.5 ± 4.2
	GRU-GNN	11.2 ± 2.2	9.1 ± 2.3	8.8 ± 1.3	9.3 ± 1.7	7.9 ± 0.8
	RNN-GNN	18.8 ± 5.9	25.0 ± 5.6	18.9 ± 6.5	21.8 ± 3.8	16.1 ± 0.0
	NDCN	4.3 ± 0.7	4.7 ± 1.7	$\bf 5.4 \pm 0.4$	2.7 ± 0.4	5.3 ± 0.7
Mutualistic	LSTM-GNN	51.4 ± 3.3	24.2 ± 24.2	27.0 ± 7.1	58.2 ± 2.4	25.0 ± 22.3
	GRU-GNN	49.8 ± 4.1	$\bf 1.0 \pm 3.6$	12.2 ± 0.8	51.1 ± 4.7	3.7 ± 4.0
Interaction	RNN-GNN	56.6 ± 0.1	8.4 ± 11.3	12.0 ± 0.4	57.4 ± 1.9	8.2 ± 6.4
	NDCN	29.8 ± 1.6	4.7 ± 1.1	11.2 ± 5.0	15.9 ± 2.2	3.8 ± 0.9
	LSTM-GNN	27.7 ± 3.2	67.3 ± 14.2	38.8 ± 12.7	13.1 ± 2.0	53.1 ± 16.4
Gene Regulation	GRU-GNN	24.2 ± 2.8	50.9 ± 6.4	35.1 ± 15.1	11.1 ± 1.8	46.2 ± 7.6
	RNN-GNN	28.0 ± 6.8	56.5 ± 5.7	42.0 ± 12.8	14.0 ± 5.3	46.5 ± 3.5
	NDCN	18.6 ± 9.9	2.4 ± 0.9	$\mathbf{4.1 \pm 1.4}$	5.5 ± 0.8	2.9 ± 0.5

The Problem:

oOne-snapshot case

oInput: G, X, part of labels Y(X)

•Output: To Complete Y(X)

Datasets:

Ο

Table 11: Statistics for three real-world citation network datasets. N, E, D, C represent number of nodes, edges, features, classes respectively.

Dataset	N	E	D	С	Train/Valid/Test
Cora Citeseer Pubmed	$2,708 \\ 3,327 \\ 19,717$	$5,429 \\ 4,732 \\ 44,338$	$1,433 \\ 3,703 \\ 500$	$7 \\ 6 \\ 3$	140/500/1,000 120/500/1,000 60/500/1,000

Baselines

Graph Convolution Network (GCN)
 Attention-based GNN (AGNN)
 Graph Attention Networks (GAT)

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A}XW^{(0)}\right)W^{(1)}\right)$$

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Kipf et al. 2016. <u>Semi-Supervised Classification with Graph Convolutional Networks</u> Velickovic et al. 2017. <u>Graph Attention Networks</u>

Interpretation of model

oInput: G, [X, Mask⊙Y], features and some node labels
oOutput: To Complete Y

Model: A graph dynamics to spread features and labels over time

$$\mathbf{\hat{K}} \frac{d[X,Y]}{dt} = \mathbf{f} \left(\mathbf{G} \quad \mathbf{W} \right)$$

$$\underset{W_e, b_e, W_d, b_d}{\operatorname{argmin}} \qquad \mathcal{L} = \int_0^T \mathcal{R}(t) \, dt - \sum_{i=1}^n \sum_{k=1}^c \hat{Y}_{i,k}(T) \log Y_{i,k}(T)$$

$$subject \text{ to } \qquad X_h(0) = \tanh\left(X(0)W_e + b_e\right)$$

$$\frac{dX_h(t)}{dt} = \operatorname{ReLU}\left(\Phi X_h(t)\right)$$

$$Y(T) = \operatorname{softmax}(X_h(T)W_d + b_d)$$

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

26

Accuracy over 100 runs

Results

Continuous-time
 dynamics on graphs

•Best results at time T=1.2

Continuous depth/time

Not using dropout

Table 4: Test mean accuracy with standard deviation in percentage (%) over 100 runs. Our NDCN model gives very competitive results compared with many GNN models.

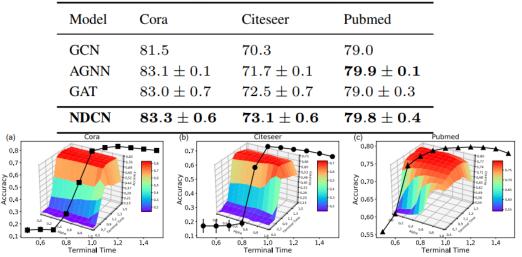


Figure 5: Our NDCN model captures continuous-time dynamics. Mean classification accuracy of 100 runs over terminal time when given a specific α . Insets are the accuracy over the two-dimensional space of terminal time and α

Summary

Our NDCN, a unified framework to solve

- Continuous-time network dynamics prediction:
- Structured sequence prediction
- oNode regression/classification at final state
- good performance with less parameters.

Differential Deep Learning on Graphs

 A potential data-driven method to model structure and dynamics of complex systems in a unified framework