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Motivation

GNNs are powerful only if the graph-structured data is available.
Ø Is the initial graph-structure optimal for the downstream task?

q error-prone data measurement or collection
§ noisy  graphs, incomplete graphs, etc.

q graph construction process might not be ideal for the downstream task
Ø Can we learn graph structure supplementary to the initial graph?

What if the graph-structured input data is NOT available.
Ø Manual graph construction

q requires a lot of domain expertise
q might introduce inevitable noise

Ø Can we do automatic graph construction?



Problem Definition

Input: a set of n objects associated with a feature matrix 
and an (optional and potentially noisy) initial graph 

topology.

Output: an adjacency matrix                 and node embeddings 
with respect to some (semi-)supervised downstream task.



Contributions

ØWe propose a novel iterative deep graph learning framework for jointly 
learning the graph structure and graph embedding. It dynamically stops 
when the learned graph structure approaches the optimized graph.

ØWe cast the graph structure learning problem as a graph similarity metric 
learning problem and leverage adaptive graph regularization for controlling 
smoothness, connectivity and sparsity of the learned graph.

ØBesides its good performance on downstream tasks, it can be more robust
to adversarial graph examples and can cope with both transductive and 
inductive learning. 



Graph Learning and 
Graph Embedding: A 
Unified Perspective

• Jointly learn the graph 
structure and the GNN 
parameters. 
• Better node embeddings ->

better graph structure
• Better graph structure ->

better node embeddings. 
• Dynamically stop the

iterative learning procedure.

Graph
Learner GNN

Input data

Graph
structure

Downstream task
prediction

Graph embeddings

Repeat until condition satisfied

A sketch of the proposed framework



Graph Learning as 
Similarity Metric 

Learning

• Graph similarity metric 
learning.
• Graph sparsification via ɛ-

neighborhood. 
• Obtaining a symmetric 

sparse non-negative 
adjacency matrix.

m independent weight vectorsSimilarity for k-th
perspective

Taking average of 
m similarity scores Symmetric sparse non-

negative adjacency matrix

Multi-head weighted cosine similarity



Incorporating the 
Initial Graph 

Structure

• Assumption: optimized graph 
structure is potentially a shift 
from the initial graph 
structure.
• We combine the learned 

graph with the initial graph.
• If such an initial graph is not 

available, we instead use a 
kNN graph.

Learning a shift from the initial graph structure

is the degree matrix.

Initial graph 
structure

Learned graph 
structure

Normalized 
adjacency 
matrix



Graph Node 
Embeddings and 

Prediction

• Our graph learning 
framework is agnostic to 
various GNNs.
• We adopt two-layered GCN 

in this work.
• First layer: node feature -> 

node embedding.
• Second layer: node 

embedding -> output space.

Normalized learned 
adjacency matrix

Raw node 
feature matrix

Node embedding

Task-
dependent 
output 
function

Task-dependent 
loss function

Task-dependent 
prediction loss

Task-dependent prediction



Graph Regularization

• Control the smoothness, 
connectivity and sparsity of 
the resulting learned graph.
• A is the adjacency matrix 

obtained through graph 
similarity metric learning.

Smoothness

Connectivity Sparsity



Joint Graph Structure 
and Representation 

Learning

• Minimize a joint loss 
function combining both 
the prediction loss and the 
graph regularization loss. 

Task-dependent 
prediction loss

Graph 
regularization loss

Minimizing a joint loss function



Iterative Deep 
Graph Learning 

Framework

• A graph learning network for 
generating a graph topology
• A graph embedding network 

for generating node 
embeddings 
• A prediction network for the 

downstream task 
• A graph regularization 

network 

The overall architecture of our framework



Experimental Results and Analysis: Transductive Setting

v IDGL outperforms LDS in 4 out of 5 benchmarks.
v IDGL can greatly help the downstream task even when the graph topology is given (Cora & Citeseer). 
v Compared to kNN-GCN, IDGL consistently achieves much better results on all datasets. 

Transductive
setting!!!



Experimental Results and Analysis: Inductive Setting

Inductive 
setting!!!

v IDGL performs well in inductive learning as well.



Experimental Results and Analysis: Ablation Study

v Both the iterative learning component and the graph regularization 
component are important!



Experimental Results and Analysis: Robustness Testing

Figure 3. Test accuracy (± standard deviation) in percentage for edge
deletion and addition scenarios on Cora test set.



Experimental Results and Analysis: Convergence Testing

Figure 4. Evolution of the learned adjacency matrix and test accuracy (in %) 
through iterations in the iterative learning procedure.



Experimental Results and Analysis: Stopping Criterion

Figure 5. Performance comparison (i.e., test accuracy in %) of two different stopping 
strategies: i) using a fixed number of iterations (blue line), and ii) using a stopping 
criterion to dynamically determine the convergence (red line).



Experimental Results and Analysis: Graph Visualization

Figure 6. Visualization of the initial graph structure and the learned graph structure (      ) 
on Cora. Colors indicate different node labels.



Conclusion & Future Work

Ø We proposed a novel end-to-end graph learning framework for 
jointly learning the graph structure and graph embedding that are 
optimized towards the prediction task at hand.

Ø Our extensive experiments demonstrate the effectiveness of the 
proposed model.  

Ø Future work includes improving the scalability of the proposed 
method for large graphs.
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Thank you!
Q&A



Backup



Experimental Results and Analysis: Setup
Data statistics

We ran our experiments 5 times with different random seeds.



Full Algorithm

• Repeatedly refining the 
adjacency matrix with the 
updated node embeddings.

• Repeatedly refining the node 
embeddings with the 
updated adjacency matrix.

• After all iterations, the 
overall loss will be back-
propagated through all 
previous iterations to update 
the model parameters.

The IDGL algorithm



Iterative Method for 
Graph Learning 

(cont’d)

Dynamic stopping criterion

||A(t) �A(t�1)||2F  �||A(0)||2F

Iteration stops when the graph structure stops improving

• The iterative method 
dynamically stops when 
the learned graph 
structure approaches close 
enough to the optimal 
graph.


